Ibañez Vea, María

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Ibañez Vea

First Name

María

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Comprehensive protocol to simultaneously study protein phosphorylation, acetylation, and N-linked sialylated glycosylation
    (Springer, 2021) Melo-Braga, Marcella Nunes; Ibañez Vea, María; Kulej, Katarzyna; Larsen, Martin R.; Ciencias de la Salud; Osasun Zientziak
    Posttranslational modifications (PTMs) such as phosphorylation, acetylation, and glycosylation are an essential regulatory mechanism of protein function and interaction, and they are associated with a wide range of biological processes. Since most PTMs alter the molecular mass of a protein, mass spectrometry (MS) is the ideal analytical tool for studying various PTMs. However, PTMs are often present in substoichiometric levels, and therefore their unmodified counterpart often suppresses their signal in MS. Consequently, PTM analysis by MS is a challenging task, requiring highly specialized and sensitive PTM-specific enrichment methods. Currently, several methods have been implemented for PTM enrichment, and each of them has its drawbacks and advantages as they differ in selectivity and specificity toward specific protein modifications. Unfortunately, for the vast majority of more than 400 known modifications, we have no or poor tools for selective enrichment. Here, we describe a comprehensive workflow to simultaneously study phosphorylation, acetylation, and N-linked sialylated glycosylation from the same biological sample. The protocol involves an initial titanium dioxide (TiO2) step to enrich for phosphopeptides and sialylated N-linked glycopeptides followed by glycan release and post-fractionation using sequential elution from immobilized metal affinity chromatography (SIMAC) to separate mono-phosphorylated and deglycosylated peptides from multi-phosphorylated ones. The IMAC flow-through and acidic elution are subsequently subjected to a next round of TiO2 enrichment for further separation of mono-phosphopeptides from deglycosylated peptides. Furthermore, the lysine-acetylated peptides present in the first TiO2 flow-through fraction are enriched by immunoprecipitation (IP) after peptide cleanup. Finally, the samples are fractionated by high pH reversed phase chromatography (HpH) or hydrophilic interaction liquid chromatography (HILIC) to reduce sample complexity and increase the coverage in the subsequent LC-MS/MS analysis. This allows the analysis of multiple types of modifications from the same highly complex biological sample without decreasing the quality of each individual PTM study.
  • PublicationOpen Access
    A proteomic atlas of lineage and cancer-polarized expression modules in myeloid cells modeling immunosuppressive tumor-infiltrating subsets
    (MDPI, 2021) Blanco, Ester; Ibañez Vea, María; Hernández, Carlos; Drici, Lylia; Martínez de Morentin Iribarren, Xabier; Gato Cañas, María; Ausín, Karina; Bocanegra Gondán, Ana Isabel; Zuazo Ibarra, Miren; Chocarro de Erauso, Luisa; Arasanz Esteban, Hugo; Fernández Hinojal, Gonzalo; Fernández Irigoyen, Joaquín; Smerdou, Cristian; Garnica, Maider; Echaide Górriz, Míriam; Fernández Rubio, Leticia; Morente Sancho, Pilar; Ramos-Castellanos, Pablo; Llopiz, Diana; Santamaría Martínez, Enrique; Larsen, Martin R.; Escors Murugarren, David; Kochan, Grazyna; Osasun Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias de la Salud; Gobierno de Navarra / Nafarroako Gobernua
    Monocytic and granulocytic myeloid-derived suppressor cells together with tumor-infiltrating macrophages constitute the main tumor-infiltrating immunosuppressive myeloid populations. Due to the phenotypic resemblance to conventional myeloid cells, their identification and purification from within the tumors is technically difficult and makes their study a challenge. We differentiated myeloid cells modeling the three main tumor-infiltrating types together with uncommitted macrophages, using ex vivo differentiation methods resembling the tumor microenvironment. The phenotype and proteome of these cells was compared to identify linage-dependent relationships and cancer-specific interactome expression modules. The relationships between monocytic MDSCs and TAMs, monocytic MDSCs and granulocytic MDSCs, and hierarchical relationships of expression networks and transcription factors due to lineage and cancer polarization were mapped. Highly purified immunosuppressive myeloid cell populations that model tumor-infiltrating counterparts were systematically analyzed by quantitative proteomics. Full functional interactome maps have been generated to characterize at high resolution the relationships between the three main myeloid tumor-infiltrating cell types. Our data highlights the biological processes related to each cell type, and uncover novel shared and differential molecular targets. Moreover, the high numbers and fidelity of ex vivo-generated subsets to their natu-ral tumor-shaped counterparts enable their use for validation of new treatments in high-throughput experiments.