Acha Morrás, Nerea de

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Acha Morrás

First Name

Nerea de

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Development of an aptamer based luminescent optical fiber sensor for the continuous monitoring of Hg2+ in aqueous media
    (MDPI, 2020) Acha Morrás, Nerea de; Elosúa Aguado, César; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    A fluorescent optical fiber sensor for the detection of mercury (Hg2+) ions in aqueous solutions is presented in this work. The sensor was based on a fluorophore-labeled thymine (T)-rich oligodeoxyribonucleotide (ON) sequence that was directly immobilized onto the tip of a tapered optical fiber. In the presence of mercury ions, the formation of T–Hg2+-T mismatches quenches the fluorescence emission by the labeled fluorophore, which enables the measurement of Hg2+ ions in aqueous solutions. Thus, in contrast to commonly designed sensors, neither a fluorescence quencher nor a complementary ON sequence is required. The sensor presented a response time of 24.8 seconds toward 5 × 10−12 M Hg2+. It also showed both good reversibility (higher than the 95.8%) and selectivity: the I0 /I variation was 10 times higher for Hg2+ ions than for Mn2+ ions. Other contaminants examined (Co2+, Ag+, Cd2+, Ni2+, Ca2+, Pb2+, Mn2+, Zn2+, Fe3+, and Cu2+) presented an even lower interference. The limit of detection of the sensor was 4.73 × 10−13 M Hg2+ in buffer solution and 9.03 × 10−13 M Hg2+ in ultrapure water, and was also able to detect 5 × 10−12 M Hg2+ in tap water.
  • PublicationOpen Access
    Polymer-functionalized fiber-optic optrode towards the monitoring of breathing parameters
    (Institute of Electrical and Electronics Engineers Inc., 2023) Álvarez-Jiménez, A.; Acha Morrás, Nerea de; Aginaga Etxamendi, Concepción Isabel; Urrutia Azcona, Aitor; Socorro Leránoz, Abián Bentor; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    An innovative application of lossy mode resonances (LMRs) is presented in this work, pursuing the detection of biomedical variables. In this case, the detection of pH and breathing signal events is shown by means of a reflective fiber-optic optrode consisting of a poly(allylamine chloride) / poly (acrylic acid) polymer matrix deposited on the tip of a 200-micron-core bare multimode optical fiber. The proposed sensor is capable of detecting pH values between 6.5 and 8.0 (saliva pH range) with quite stability and repeatability. Moreover, when monitoring the breathing signal, the proposed sensor presents quite good real time detection of the different events occurring during the inspiration-expiration cycle, different breathing rates and detecting apneas.
  • PublicationOpen Access
    Straightforward nano patterning on optical fiber for sensors development
    (Optical Society of America, 2020) Acha Morrás, Nerea de; Elia Lorente, Victor; Delgado Camón, Arantzazu; Arregui San Martín, Francisco Javier; Elosúa Aguado, César; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI035 BINACS
    A simple method to prepare a nano pattern along the surface of an optical fiber is applied in this Letter to develop a pH sensor. The template is made of a block copolymer that defines specific locations where gold nano particles are adsorbed on forming clusters. The average diameter of the resulting agglomerates is 121 nm, and the mean distance between the centers is 182 nm. The morphology of the gold cluster array produces localized surface plasmon resonance. The absorbance spectrum is affected by pH variations, and the ratio between the absorption at two different wavelengths is used to characterize the response, which is repetitive and reversible. This Letter highlights the potentiality of this type of chemical nano patterning for the development of optical fiber sensors.
  • PublicationOpen Access
    Peculiarities of the structural and optical properties of rare-earth-doped phosphate glasses for temperature sensing applications
    (Elsevier, 2021) Elisa, M.; Iordache, S.M.; Iordache, A.M.; Vasiliu, Ileana Cristina; Grigorescu, C.E.A.; Sava, Bogdan Alexandru; Boroica, L.; Filip, A.V.; Dinca, M. C.; Bartha, Cristina; Acha Morrás, Nerea de; Elosúa Aguado, César; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Eu, Er, Yb-Er, and Dy-doped phosphate glasses were prepared by a wet-route processing of chemical precursors followed by melt-quenching and annealing. XRD measurements highlighted the amorphous nature of the investigated glasses. UV-Vis absorption spectra revealed peaks specific to f-f electronic transitions of the doping ions whereas FTIR and Raman spectroscopy proved the vitreous network forming role of phosphorous pentoxide. Luminescence spectra in the Vis domain, at RT, showed emission bands characteristic to the ion transitions from the excited states to the ground state. The luminescence spectra collected in the 25-160°C range exhibited a decrease of the emission intensity with temperature rise. In the case of Eu and Dy-doped glasses a relatively small decrease of the emission intensity with temperature is observed by comparison with Er and, respectively, Yb-Er-doped glass where a significant change of the emission intensity is noticed, which recommends the latter as promising candidate for sensing devices.
  • PublicationOpen Access
    Trends in the design of intensity-based optical fiber biosensors (2010–2020)
    (MDPI, 2021) Acha Morrás, Nerea de; Socorro Leránoz, Abián Bentor; Elosúa Aguado, César; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    There exists an increasing interest in monitoring low concentrations of biochemical species, as they allow the early-stage detection of illnesses or the monitoring of the environment quality. Thus, both companies and research groups are focused on the development of accurate, fast and highly sensitive biosensors. Optical fiber sensors have been widely employed for these purposes because they provide several advantages for their use in point-of-care and real-time applications. In particular, this review is focused on optical fiber biosensors based on luminescence and absorption. Apart from the key parameters that determine the performance of a sensor (limit of detection, sensibility, cross-sensibility, etc.), other features are analyzed, such as the optical fiber dimensions, the sensing set ups and the fiber functionalization. The aim of this review is to have a comprehensive insight of the different aspects that must be taken into account when working with this kind of sensors.