Acha Morrás, Nerea de

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Acha Morrás

First Name

Nerea de

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Micro and nanostructured materials for the development of optical fibre sensors
    (MDPI, 2017) Elosúa Aguado, César; Arregui San Martín, Francisco Javier; Del Villar, Ignacio; Ruiz Zamarreño, Carlos; Corres Sanz, Jesús María; Bariáin Aisa, Cándido; Goicoechea Fernández, Javier; Hernáez Sáenz de Zaitigui, Miguel; Rivero Fuente, Pedro J.; Socorro Leránoz, Abián Bentor; Urrutia Azcona, Aitor; Sánchez Zábal, Pedro; Zubiate Orzanco, Pablo; López Torres, Diego; Acha Morrás, Nerea de; Ascorbe Muruzabal, Joaquín; Ozcariz Celaya, Aritz; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    The measurement of chemical and biomedical parameters can take advantage of the features exclusively offered by optical fibre: passive nature, electromagnetic immunity and chemical stability are some of the most relevant ones. The small dimensions of the fibre generally require that the sensing material be loaded into a supporting matrix whose morphology is adjusted at a nanometric scale. Thanks to the advances in nanotechnology new deposition methods have been developed: they allow reagents from different chemical nature to be embedded into films with a thickness always below a few microns that also show a relevant aspect ratio to ensure a high transduction interface. This review reveals some of the main techniques that are currently been employed to develop this kind of sensors, describing in detail both the resulting supporting matrices as well as the sensing materials used. The main objective is to offer a general view of the state of the art to expose the main challenges and chances that this technology is facing currently.
  • PublicationOpen Access
    Luminescence-based optical sensors fabricated by means of the layer-by-layer nano-assembly technique
    (MDPI, 2017) Acha Morrás, Nerea de; Elosúa Aguado, César; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    Luminescence-based sensing applications range from agriculture to biology, including medicine and environmental care, which indicates the importance of this technique as a detection tool. Luminescent optical sensors are required to be highly stable, sensitive, and selective, three crucial features that can be achieved by fabricating them by means of the layer-by-layer nano-assembly technique. This method permits us to tailor the sensors0 properties at the nanometer scale, avoiding luminophore aggregation and, hence, self-quenching, promoting the diffusion of the target analytes, and building a barrier against the undesired molecules. These characteristics give rise to the fabrication of custom-made sensors for each particular application.