Marzo Pérez, Asier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Marzo Pérez
First Name
Asier
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
13 results
Search Results
Now showing 1 - 10 of 13
Publication Open Access Acoustic lock: position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator(American Institute of Physics, 2018) Cox, L; Croxford, A; Drinkwater, Bruce W.; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCWe demonstrate acoustic trapping in both position and orientation of a non-spherical particle of sub-wavelength size in mid-air. To do so, we multiplex in time a pseudo-one-dimensional vertical standing wave and a twin-trap; the vertical standing wave provides converging forces that trap in position, whereas the twin-trap applies a stabilising torque that locks the orientation. The device operates at 40 kHz, and the employed multiplexing ratio of the 2 acoustic fields is 100:50 (standing:twin) periods. This ratio can be changed to provide tunability of the relative trapping strength and converging torque. The torsional spring stiffness of the trap is measured through simulations and experiments with good agreement. Cubes from k/5.56 (1.5 mm) to k/2.5 (3.4 mm) side length were stably locked. We also apply this technique to lock different non-spherical particles in midair: cubes, pyramids, cylinders, and insects such as flies and crickets. This technique adds significant functionality to mid-air acoustic levitation and will enable applications in micro-scale manufacturing as well as containment of specimens for examination and 3D-scanning.Publication Open Access LeviPrint: contactless additive manufacturing using acoustic levitation with position and orientation control of elongated parts(2021) Ezcurdia Aguirre, Íñigo Fermín; Morales González, Rafael; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaLeviPrint assembles small objects in a contactless way using ultrasonic phased-arrays and optimization algorithms. We explore a set of methods that enables 6 Degrees-of-Freedom (DoF) control of elongated bodies. We then evaluate different ultrasonic arrangements to optimize the manipulation of these bodies. The combination of arrangements and optimization algorithms allow us to levitate, orientate and assemble complex objects. These techniques and arrangements can be leveraged for the microfabrication of electromechanical components and in-vivo additive manufacturing. We highlight the reduction of cross-contamination and the capability to manufacture inside closed containers from the outside.Publication Open Access Numerical and experimental investigation of the stability of a drop in a single-axis acoustic levitator(American Institute of Physics, 2019) Brizzotti Andrade, Marco Aurélio; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAcoustic levitation can be employed to hold liquid drops in midair, enabling novel applications in X-ray scattering of proteins, amorphous crystallization of solutions, or contactless mixing. Multiple studies have characterized the physical behavior of a levitated drop inside an acoustic field. Here, we present a numerical and experimental study on the acoustic levitation of water drops in a single-Axis acoustic levitator consisting of an ultrasonic transducer and an opposing reflector. Instead of modeling an abstract incident acoustic field, our model considers the shape of the drop as well as the real geometry of the levitator. We also use a high-speed camera to observe the disintegration and the undesired oscillations of the drops. Our results show that the insertion of a drop in the levitator provokes a shift in its resonant frequency that depends on the shape of the drop. Second, the levitation behavior depends on whether the levitator operates slightly below or above the resonance. Third, if the levitator is driven above the resonant frequency, it is possible to levitate with more strength and avoid disintegration of the drop. This research provides an insight on how to achieve more stable experiments that avoid the bursting and undesired oscillations of the levitated sample. We hope that it will facilitate numerous experiments involving acoustically levitated liquid drops.Publication Open Access Nonlinear trapping stiffness of mid-air single-axis acoustic levitators(American Institute of Physics, 2018) Fushimi, Tatsuki; Hill, Thomas L.; Marzo Pérez, Asier; Drinkwater, Bruce W.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaWe describe and experimentally explore a nonlinear stiffness model of the trapping of a solid particle in a single-axis acoustic levitator. In contrast to the commonly employed linear stiffness assumption, our nonlinear model accurately predicts the response of the system. Our nonlinear model approximates the acoustic field in the vicinity of the trap as a one-dimensional sinusoid and solves the resulting dynamics using numerical continuation. In particular, we predict a softening of stiffness with amplitude as well as period-doubling bifurcations, even for small excitation amplitudes of 2% of the wavelength. These nonlinear dynamic features are observed experimentally in a single-axis levitator operating at 40 kHz and trapping millimetre-scale expanded polystyrene spheres. Excellent agreement between the observed and predicted behaviour is obtained suggesting that this relatively simple model captures the relevant physical phenomena. This new model enables the dynamic instabilities of trapped particles to be accurately predicted, thereby benefiting contactless transportation and manipulation applicationsPublication Open Access Contactless pick-and-place of millimetric objects using inverted near-field acoustic levitation(American Institute of Physics, 2020) Brizzotti Andrade, Marco Aurélio; Ramos, Tiago S.; Adamowski, Julio C.; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaWe model and realize an ultrasonic contactless pick-and-place device capable of picking, self-centering, self-orienting, translating, and releasing flat millimetric objects. The device is an ultrasonic Langevin transducer operating at 21 kHz that radiates into air through a tapered tip. Objects are trapped few micrometers below the tip due to the near-field acoustic levitation phenomenon. We first investigate the conditions to achieve an attractive force on the object depending on its size and the device operating frequency. Second, we use a 3D acoustic model that describes the converging forces and torque that provide the self-centering and self-orienting capabilities. Third, a more advanced Computational Fluid Dynamics model based on the Navier-Stokes equations explains the small gap between the tip and the trapped object. The contactless manipulation capabilities of the device are demonstrated by picking, transporting, and releasing a Surface Mount Device in air. The presented manipulation concept can be an interesting alternative for manipulating delicate objects such as microelectromechanical devices, silicon dies, or micro-optical devices.Publication Open Access Acoustic levitation in mid-air: recent advances, challenges, and future perspectives(American Institute of Physics, 2020) Brizzotti Andrade, Marco Aurélio; Marzo Pérez, Asier; Adamowski, Julio C.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2019-000086Mid-air acoustic levitation is becoming a powerful tool to suspend and manipulate millimetric objects. Because of its unique characteristics, acoustic levitation is suitable to trap a wide variety of materials such as liquids, solids, soap bubbles, and even living creatures. Acoustic levitation can also be combined with noncontact measurement systems, allowing contactless analysis and characterization of levitating samples. In this article, we review some of the advances that have been made over the last decade. We also present the technical challenges that must be overcome in order to extend the capability of current acoustic levitation devices and, finally, we point out future directions for acoustic levitation.Publication Open Access TipTrap: a co-located direct manipulation technique for acoustically levitated content(Association for Computing Machinery, 2022) Jankauskis, Eimontas; Elizondo Martínez, Sonia; Montano Murillo, Roberto; Marzo Pérez, Asier; Martinez Plasencia, Diego; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAcoustic levitation has emerged as a promising approach for mid-air displays, by using multiple levitated particles as 3D voxels, cloth and thread props, or high-speed tracer particles, under the promise of creating 3D displays that users can see, hear and feel with their bare eyes, ears and hands. However, interaction with this mid-air content always occurred at a distance, since external objects in the display volume (e.g. user’s hands) can disturb the acoustic fields and make the particles fall. This paper proposes TipTrap, a co-located direct manipulation technique for acoustically levitated particles. TipTrap leverages the reflection of ultrasound on the users’ skin and employs a closed-loop system to create functional acoustic traps 2.1 mm below the fingertips, and addresses its 3 basic stages: selection, manipulation and deselection. We use Finite-Differences Time Domain (FDTD) simulations to explain the principles enabling TipTrap, and explore how finger reflections and user strategies influence the quality of the traps (e.g. approaching direction, orientation and tracking errors), and use these results to design our technique. We then implement the technique, characterizing its performance with a robotic hand setup and finish with an exploration of the ability of TipTrap to manipulate different types of levitated content.Publication Open Access LeviPrint: contactless fabrication using full acoustic trapping of elongated parts(Association for Computing Machinery, 2022) Ezcurdia Aguirre, Íñigo Fermín; Morales González, Rafael; Andrade, Marco A.B.; Marzo Pérez, Asier; Institute of Smart Cities - ISCLeviPrint is a system for assembling objects in a contactless manner using acoustic levitation. We explore a set of optimum acoustic fields that enables full trapping in position and orientation of elongated objects such as sticks. We then evaluate the capabilities of different ultrasonic levitators to dynamically manipulate these elongated objects. The combination of novel optimization algorithms and levitators enable the manipulation of sticks, beads and droplets to fabricate complex objects. A system prototype composed of a robot arm and a levitator is tested for different fabrication processes. We highlight the reduction of cross-contamination and the capability of building on top of objects from different angles as well as inside closed spaces. We hope that this technique inspires novel fabrication techniques and that reaches fields such as microfabrication of electromechanical components or even in-vivo additive manufacturing.Publication Open Access Acoustophoretic volumetric displays using a fast-moving levitated particle(AIP Publishing, 2019) Fushimi, Tatsuki; Marzo Pérez, Asier; Drinkwater, Bruce W.; Hill, Thomas L.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaDisplays have revolutionized the way we work and learn, and thus, the development of display technologies is of paramount importance. The possibility of a free-space display in which 3D graphics can be viewed from 360° without obstructions is an active area of research - holograms or lightfield displays can realize such a display, but they suffer from clipping and a limited field of view. Here, we use a phased array of ultrasonic emitters to realize a volumetric acoustophoretic display in which a millimetric particle is held in midair using acoustic radiation forces and moved rapidly along a 3D path. Synchronously, a light source illuminates the particle with the target color at each 3D position. We show that it is possible to render simple figures in real time (10 frames per second) as well as raster images at a lower frame rate. Additionally, we explore the dynamics of a fast-moving particle inside a phased-array levitator and identify potential sources of degradation in image quality. The dynamics are nonlinear and lead to distortion in the displayed images, and this distortion increases with drawing speed. The created acoustophoretic display shows promise as a future form of display technology.Publication Open Access Holographic acoustic tweezers(National Academy of Sciences, 2019) Marzo Pérez, Asier; Drinkwater, Bruce W.; Ingeniería; IngeniaritzaAcoustic tweezers use sound radiation forces to manipulate matter without contact. They provide unique characteristics compared with the more established optical tweezers, such as higher trapping forces per unit input power and the ability to manipulate objects from the micrometer to the centimeter scale. They also enable the trapping of a wide range of sample materials in various media. A dramatic advancement in optical tweezers was the development of holographic optical tweezers (HOT) which enabled the independent manipulation of multiple particles leading to applications such as the assembly of 3D microstructures and the probing of soft matter. Now, 20 years after the development of HOT, we present the realization of holographic acoustic tweezers (HAT). We experimentally demonstrate a 40-kHz airborne HAT system implemented using two 256-emitter phased arrays and manipulate individually up to 25 millimetric particles simultaneously. We show that the maximum trapping forces are achieved once the emitting array satisfies Nyquist sampling and an emission phase discretization below π/8 radians. When considered on the scale of a wavelength, HAT provides similar manipulation capabilities as HOT while retaining its unique characteristics. The examples shown here suggest the future use of HAT for novel forms of displays in which the objects are made of physical levitating voxels, assembly processes in the micrometer and millimetric scale, as well as positioning and orientation of multiple objects which could lead to biomedical applications.