Person: Marzo Pérez, Asier
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Marzo Pérez
First Name
Asier
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0001-6433-1528
person.page.upna
8600
Name
27 results
Search Results
Now showing 1 - 10 of 27
Publication Open Access Comparison of experiment and simulation of ultrasonic mid-air haptic forces(IEEE, 2022) Morales González, Rafael; Georgiou, Orestis; Marzo Pérez, Asier; Frier, William; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCUltrasound mid-air haptics is an emerging technology with many applications in human-computer interactions. Despite great advances in related hardware and software, physics models that predict the resulting forces on a surface (e.g., someone's hand) are either too simple (inaccurate) or too complex (computationally expensive). In this paper, we show that simple models are not sufficient when predicting the force on an experimental setup involving two prototype devices and a precision scale. Specifically, we demonstrate that our experimental measurements cannot be accurately predicted using a linear acoustic model.Publication Open Access LeviPrint: contactless fabrication using full acoustic trapping of elongated parts(ACM, 2022) Ezcurdia Aguirre, Íñigo Fermín; Morales González, Rafael; Andrade, Marco A.B.; Marzo Pérez, Asier; Institute of Smart Cities - ISCLeviPrint is a system for assembling objects in a contactless manner using acoustic levitation. We explore a set of optimum acoustic fields that enables full trapping in position and orientation of elongated objects such as sticks. We then evaluate the capabilities of different ultrasonic levitators to dynamically manipulate these elongated objects. The combination of novel optimization algorithms and levitators enable the manipulation of sticks, beads and droplets to fabricate complex objects. A system prototype composed of a robot arm and a levitator is tested for different fabrication processes. We highlight the reduction of cross-contamination and the capability of building on top of objects from different angles as well as inside closed spaces. We hope that this technique inspires novel fabrication techniques and that reaches fields such as microfabrication of electromechanical components or even in-vivo additive manufacturing.Publication Open Access Standing waves for acoustic levitation(Springer, 2020) Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaStanding waves are the most popular method to achieve acoustic trapping. Particles with greater acoustic impedance than the propagation medium will be trapped at the pressure nodes of a standing wave. Acoustic trapping can be used to hold particles of various materials and sizes, without the need of a close-loop controlling system. Acoustic levitation is a helpful and versatile tool for biomaterials and chemistry, with applications in spectroscopy and lab-on-a-droplet procedures. In this chapter, multiple methods are presented to simulate the acoustic field generated by one or multiple emitters. From the acoustic field, models such as the Gor'kov potential or the Flux Integral are applied to calculate the force exerted on the levitated particles. The position and angle of the acoustic emitters play a fundamental role, thus we analyse commonly used configurations such as emitter and reflector, two opposed emitters, or arrangements using phased arrays.Publication Open Access Full-space metasurface at millimeter-wave frequencies(IEEE, 2023) Ruiz Fernández de Arcaya, María; Marzo Pérez, Asier; Beruete Díaz, Miguel; Institute of Smart Cities - ISCConventional metasurfaces provide control over the electromagnetic waves in a single working frequency operating either in transmission or reflection. Full-Space Metasurfaces (FSM) are an extension that allows operation at two different frequencies with independent functionalities in transmission and reflection. This paper presents a gradient index FSM device based on a 3-layered unit cell where the phase modulation is implemented following the Pancharatman-Berry (PB) principle. The device is designed to operate at millimeter waves, with the lowest frequency operating in reflection and the highest one in transmission. To check the structure performance, a metasurface was designed to provide beam steering in reflection at 49.4 GHz and an amplitude image hologram in transmission at 104 GHz.Publication Open Access Interactions with digital mountains: tangible, immersive and touch interactive virtual reality(Association for Computing Machinery (ACM), 2020) Ardaiz Villanueva, Óscar; Marzo Pérez, Asier; Baztán Larrea, Rubén; Ezcurdia Aguirre, Íñigo Fermín; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako Gobernua, PI043-2019; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaDigitization of Earth mountains and terrains has facilitated to plan journeys, manage natural resources, and learn about the Earth from the comfort of our homes. We aim to develop new interactions on digital mountains with novel interfaces: 3D printed representation of a mountain, an immersive virtual reality visualization, and two different touch interactive interfaces for immersive virtual reality visualizations: a 3D printed mountain with touch sensors and a multitouch tablet. We show how we have built such prototypes based on digital data retrieved from a map provider, and which interactions are possible with each interaction device. We explain how we design and conduct evaluation.Publication Open Access A multi-object grasp technique for placement of objects in virtual reality(MDPI, 2022) Fernández Ortega, Unai Javier; Elizondo Martínez, Sonia; Iriarte Cárdenas, Naroa; Morales, Rafael; Ortiz Nicolás, Amalia; Marichal Baráibar, Sebastián Roberto; Ardaiz Villanueva, Óscar; Marzo Pérez, Asier; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaSome daily tasks involve grasping multiple objects in one hand and releasing them in a determined order, for example laying out a surgical table or distributing items on shelves. For training these tasks in Virtual Reality (VR), there is no technique for allowing users to grasp multiple objects in one hand in a realistic way, and it is not known if such a technique would benefit user experience. Here, we design a multi-object grasp technique that enables users to grasp multiple objects in one hand and release them in a controlled way. We tested an object placement task under three conditions: real life, VR with single-object grasp and VR with multi-object grasp. Task completion time, distance travelled by the hands and subjective experience were measured in three scenarios: sitting in front of a desktop table, standing up in front of shelves and a room-size scenario where walking was required. Results show that the performance in a real environment is better than in Virtual Reality, both for single-object and multi-object grasping. The single-object technique performs better than the multi-object, except for the room scenario, where multi-object leads to less distance travelled and reported physical demand. For use cases where the distances are small (i.e., desktop scenario), single-object grasp is simpler and easier to understand. For larger scenarios, the multi-object grasp technique represents a good option that can be considered by other application designers.Publication Open Access Acoustic levitation in mid-air: recent advances, challenges, and future perspectives(American Institute of Physics, 2020) Brizzotti Andrade, Marco Aurélio; Marzo Pérez, Asier; Adamowski, Julio C.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2019-000086Mid-air acoustic levitation is becoming a powerful tool to suspend and manipulate millimetric objects. Because of its unique characteristics, acoustic levitation is suitable to trap a wide variety of materials such as liquids, solids, soap bubbles, and even living creatures. Acoustic levitation can also be combined with noncontact measurement systems, allowing contactless analysis and characterization of levitating samples. In this article, we review some of the advances that have been made over the last decade. We also present the technical challenges that must be overcome in order to extend the capability of current acoustic levitation devices and, finally, we point out future directions for acoustic levitation.Publication Open Access Microfluidic platform using focused ultrasound passing through hydrophobic meshes with jump availability(Oxford University Press, 2023) Koroyasu, Yusuke; Nguyen, Thanh-Vinh; Sasaguri, Shun; Marzo Pérez, Asier; Ezcurdia Aguirre, Íñigo Fermín; Nagata, Yuuya; Yamamoto, Tatsuya; Nomura, Nobuhiko; Hoshi, Takayuki; Ochiai, Yoichi; Fushimi, Tatsuki; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCApplications in chemistry, biology, medicine, and engineering require the large-scale manipulation of a wide range of chemicals, samples, and specimens. To achieve maximum efficiency, parallel control of microlitre droplets using automated techniques is essential. Electrowetting-on-dielectric (EWOD), which manipulates droplets using the imbalance of wetting on a substrate, is the most widely employed method. However, EWOD is limited in its capability to make droplets detach from the substrate (jumping), which hinders throughput and device integration. Here, we propose a novel microfluidic system based on focused ultrasound passing through a hydrophobic mesh with droplets resting on top. A phased array dynamically creates foci to manipulate droplets of up to 300 mu L. This platform offers a jump height of up to 10 cm, a 27-fold improvement over conventional EWOD systems. In addition, droplets can be merged or split by pushing them against a hydrophobic knife. We demonstrate Suzuki-Miyaura cross-coupling using our platform, showing its potential for a wide range of chemical experiments. Biofouling in our system was lower than in conventional EWOD, demonstrating its high suitability for biological experiments. Focused ultrasound allows the manipulation of both solid and liquid targets. Our platform provides a foundation for the advancement of micro-robotics, additive manufacturing, and laboratory automation.Publication Open Access TipTrap: a co-located direct manipulation technique for acoustically levitated content(ACM, 2022) Jankauskis, Eimontas; Elizondo Martínez, Sonia; Montano Murillo, Roberto; Marzo Pérez, Asier; Martinez Plasencia, Diego; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAcoustic levitation has emerged as a promising approach for mid-air displays, by using multiple levitated particles as 3D voxels, cloth and thread props, or high-speed tracer particles, under the promise of creating 3D displays that users can see, hear and feel with their bare eyes, ears and hands. However, interaction with this mid-air content always occurred at a distance, since external objects in the display volume (e.g. user’s hands) can disturb the acoustic fields and make the particles fall. This paper proposes TipTrap, a co-located direct manipulation technique for acoustically levitated particles. TipTrap leverages the reflection of ultrasound on the users’ skin and employs a closed-loop system to create functional acoustic traps 2.1 mm below the fingertips, and addresses its 3 basic stages: selection, manipulation and deselection. We use Finite-Differences Time Domain (FDTD) simulations to explain the principles enabling TipTrap, and explore how finger reflections and user strategies influence the quality of the traps (e.g. approaching direction, orientation and tracking errors), and use these results to design our technique. We then implement the technique, characterizing its performance with a robotic hand setup and finish with an exploration of the ability of TipTrap to manipulate different types of levitated content.Publication Open Access Complex selective manipulations of thermomagnetic programmable matter(Springer Nature, 2022) Irisarri Erviti, Josu; Ezcurdia Aguirre, Íñigo Fermín; Sandúa Fernández, Xabier; Galarreta Rodríguez, Itziar; Pérez de Landazábal Berganzo, José Ignacio; Marzo Pérez, Asier; Ciencias; Zientziak; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISCProgrammable matter can change its shape, stiffness or other physical properties upon command. Previous work has shown contactless optically controlled matter or magnetic actuation, but the former is limited in strength and the latter in spatial resolution. Here, we show an unprecedented level of control combining light patterns and magnetic fields. A mixture of thermoplastic and ferromagnetic powder is heated up at specific locations that become malleable and are attracted by magnetic fields. These heated areas solidify on cool down, and the process can be repeated. We show complex control of 3D slabs, 2D sheets, and 1D filaments with applications in tactile displays and object manipulation. Due to the low transition temperature and the possibility of using microwave heating, the compound can be manipulated in air, water, or inside biological tissue having the potential to revolutionize biomedical devices, robotics or display technologies.
- «
- 1 (current)
- 2
- 3
- »