Gil Soto, Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gil Soto

First Name

Javier

person.page.departamento

Ingeniería Mecánica, Energética y de Materiales

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    4P operational harmonic and blade vibration in wind turbines: a real case study of an active yaw system and a concrete tower
    (Elsevier, 2024) Torres Elizondo, Antonio; Gil Soto, Javier; Plaza Puértolas, Aitor; Aginaga García, Jokin; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This study aims to comprehensively investigate the impact of mechanical loads on the performance and lifetime of wind turbines, with particular emphasis on blade vibration at the 4P operational harmonic. Experiments and advanced aeroelastic simulations are combined to assess how active yaw systems and concrete towers affect this specific vibration. Contrary to previous assumptions, field tests have shown that there is a resonance phenomenon in the blade. Specifically, the first edgewise mode of the blade resonates at the 4P frequency, which did not happen in the aeroelastic simulations. Remarkably, thorough aeroelastic simulations show that this resonance is triggered by the excitation of the Edgewise Backward Whirling mode of the rotor, which occurs at the 3P operating harmonic. This study highlights the need for accurate and precise modelling using aeroelastic simulations to reproduce the resonance phenomenon and analyse the contributing factors. A major breakthrough is the discovery that stiffening the active yaw system significantly reduces the 3P hub fixed motions, resulting in reduced blade vibration at the 4P frequency. Furthermore, the simulations show the sensitivity of the 4P vibration to different wind characteristics, providing valuable insights for the design of wind turbines in different environmental conditions.
  • PublicationOpen Access
    Comprehensive analysis of rotor edgewise whirling mode interaction with rotor speed harmonics
    (IOP Publishing, 2024) Torres Elizondo, Antonio; Gil Soto, Javier; Plaza Puértolas, Aitor; Aginaga García, Jokin; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC
    This paper presents a model that investigates the interaction between rotor edgewise whirling modes and rotor speed harmonics in wind turbines. The model is based on kinematic and dynamic principles, with a focus on the multi-blade coordinate transformation, which is critical for simulating the behaviour of the rotor whirling modes in wind turbines. The research has two objectives: to investigate the interaction between the rotor edgewise whirling modes and the rotor speed harmonics, and to provide clearer graphs that explain the complex nature of this non-intuitive rotor dynamics. The paper concludes by highlighting the practical implications of the research findings, in particular the effectiveness of visualisation techniques in identifying and explaining unexpected interactions.