Publication:
A splitting uniformly convergent method for one-dimensional parabolic singularly perturbed convection-diffusion systems

Date

2023

Authors

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/recolecta

Abstract

In this paper we deal with solving robustly and efficiently one-dimensional linear parabolic singularly perturbed systems of convection-diffusion type, where the diffusion parameters can be different at each equation and even they can have different orders of magnitude. The numerical algorithm combines the classical upwind finite difference scheme to discretize in space and the fractional implicit Euler method together with an appropriate splitting by components to discretize in time. We prove that if the spatial discretization is defined on an adequate piecewise uniform Shishkin mesh, the fully discrete scheme is uniformly convergent of first order in time and of almost first order in space. The technique used to discretize in time produces only tridiagonal linear systems to be solved at each time level; thus, from the computational cost point of view, the method we propose is more efficient than other numerical algorithms which have been used for these problems. Numerical results for several test problems are shown, which corroborate in practice both the uniform convergence and the efficiency of the algorithm.

Description

Keywords

Fractional Euler method, Shishkin meshes, Splitting by components, Uniform convergence, Upwind scheme, Weakly coupled parabolic systems

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute of Smart Cities - ISC

Faculty/School

Degree

Doctorate program

item.page.cita

Clavero, C., Jorge, J. C. (2023) A splitting uniformly convergent method for one-dimensional parabolic singularly perturbed convection-diffusion systems. Applied Numerical Mathematics, 183, 317-332. https://doi.org/10.1016/j.apnum.2022.09.012.

item.page.rights

© 2022 The Author(s). This is an open access article under the CC BY license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.