Superbackscattering antenna arrays
Date
Authors
Director
Publisher
Impacto
Abstract
This article discusses the theory, design and practical implementation of superbackscattering antenna arrays. In analogy with Uzkov’s maximal directivity theorem, it is demonstrated that the maximal backscattering cross-section, normalized to the wavelength squared, of a linear array of N isotropic scatterers whose separation tends to zero is N2(N + 1)2=(4pi). This analytical result is validated via numerical optimization of the excitation coefficients, and the same procedure is utilized to assess the maximal backscattering of arrays of electric Hertzian dipoles (EHDs). It is found that electrically small arrays of two and three EHDs can enhance the backscattering by factors of 6.22 and 22.01, respectively, with respect to the maximum value generated by a single element. In addition, physical realizations of arrays featuring comparable enhancement factors can be straightforwardly designed by using a simple procedure inspired by Yagi-Uda antenna concepts. The practical implementations of such arrays based on copper wires and printed circuit technologies is also addressed.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
Copyright © 2015 IEEE. Personal use is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.