Efficient online generation of fuzzy measures via aggregation functions

Date

2026-01-01

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136627NB-I00/ES/ recolecta
Impacto
Google Scholar
No disponible en Scopus

Abstract

Discrete fuzzy integrals (F-integrals) are fusion functions that leverage discrete fuzzy measures to capture interactions within the data. However, their scalability is often limited by the computational overhead of evaluating the measure across the entire measurable space. This paper introduces an efficient online approach for generating fuzzy measures using aggregation functions. The online methodology allows to calculate the F-integral alongside the fuzzy measure without increasing its asymptotic complexity and without requiring previous calculations. The role of the aggregation functions is to establish the properties of the generated measure. To this end, we define and study non-conjunctive aggregation functions, designed to prevent vanishing measures and ensure that the resulting measures retain meaningful and useful properties. In addition the methodology includes an optimizable component, enabling the learning of fuzzy measures and therefore the use of F-Integrals in learning environments. A complexity analysis confirms the method's efficiency, and experiments on supervised classification tasks demonstrate its practical utility.

Description

Keywords

Fuzzy measure, Fuzzy integral, Fusion function, Data science

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute of Smart Cities - ISC

Faculty/School

Degree

Doctorate program

item.page.cita

Gonzalez-Garcia, X., Horanská, L., Beliakov, G., Bustince, H. (2026). Efficient online generation of fuzzy measures via aggregation functions. Information Fusion, 125, 1-14. https://doi.org/10.1016/j.inffus.2025.103452.

item.page.rights

© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.