Maximum expected ramp rates using cloud speed sensor measurements

Date

2020

Authors

Wang, Guang Chao
Kurtz, Ben
Bosch, Juan Luis
Kleissl, Jan

Director

Publisher

American Institute of Physics
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • ES/1PE/DPI2016-80641-R/
  • ES/1PE/DPI2016-80642-R/
Impacto

Abstract

Large ramps and ramp rates in photovoltaic (PV) power output are of concern and sometimes even explicitly restricted by grid operators. Battery energy storage systems can smooth the power output and maintain ramp rates within permissible limits. To enable PV plant and energy storage system design and planning, a method to estimate the largest expected ramps for a given location is proposed. Because clouds are the dominant source of PV power output variability, an analytical relationship between the worst expected ramp rate, cloud motion vector, and the geometrical layout of the PV plant is developed. The ability of the proposed method to bracket actual ramp rates is assessed over 10 months under different meteorological conditions, demonstrating an average compliance rate of 98.9% for a 2 min evaluation time window. The largest observed ramp of 29.7% s(-1)is contained with the worst case estimate of 34.3% s(-1). This method provides a convenient yet economical approach to worst-case PV ramp rate modeling and is compatible with solar irradiance measured at coarse temporal resolution.

Description

Keywords

Sensors, Solar irradiance, Solar power plants

Department

Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren / Institute of Smart Cities - ISC / Ingeniería Eléctrica, Electrónica y de Comunicación

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2020 Author(s).

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.