OWA operators based on admissible permutations

Date

2019

Authors

Jin, LeSheng
Mesiar, Radko
Vavríková, Lucia

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Acceso embargado / Sarbidea bahitua dago

Project identifier

  • ES/1PE/TIN2016-77356/
Impacto
OpenAlexGoogle Scholar
cited by count

Abstract

In this work we propose a new OWA operator defined on bounded convex posets of a vector-lattice. In order to overcome the non-existence of a total order, which is necessary to obtain a non-decreasing arrangement of the input data, we use the concept of admissible permutation. Based on it, our proposal calculates the different ways in which the input vector could be arranged, always respecting the partial order. For each admissible arrangement, we calculate an intermediate value which is finally collected and averaged by means of the arithmetic mean. We analyze several properties of this operator and we give some counterexamples of those properties of aggregation functions which are not satisfied.

Description

Keywords

Aggregation functions, Admissible order, Admissible permutation, OWA operator

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

D. Paternain, L. Jin, R. Mesiar, L. Vavríková and H. Bustince, 'OWA Operators Based on Admissible Permutations,' 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA, 2019, pp. 1-5, doi: 10.1109/FUZZ-IEEE.2019.8858866.

item.page.rights

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.