Publication:
Along-the-path exponential integration for Floquet stability analysis of wind turbines

Date

2022

Authors

Director

Publisher

IOP Publishing
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión publicada / Argitaratu den bertsioa

Project identifier

Impacto
OpenAlexGoogle Scholar
No disponible en Scopus

Abstract

Traditionally, stability assessment of wind turbines has been performed by eigenanalysis of the azimuthally-averaged linearized system after applying the Multi-Blade Coordinate (MBC) transformation. However, due to internal or external anisotropy, the MBC transform does not produce an exact Linear Time-Invariant (LTI) system, and a Floquet analysis is required to capture the influence of all periodic terms, leading to a more accurate stability analysis. In this paper exponential integration methods that use system linearizations at different blade azimuth positions are used to integrate the perturbed system state and compute the Floquet monodromy matrix. The proposed procedure is assessed for a simple 6 DOF wind turbine model and a more complex aeroelastic model of a 5MW onshore wind turbine. The defined along-the-path or moving-point exponential integrator is found to be the suitable in order to perform a Floquet stability analysis even using a coarse linearization grid.

Description

Trabajo presentado a The Science of Making Torque from Wind (TORQUE 2022), Delft (Holanda)

Keywords

Wind turbines, Floquet analysis, Stability, Exponential integration

Department

Zientziak / Institute of Smart Cities - ISC / Ciencias

Faculty/School

Degree

Doctorate program

item.page.cita

Ros-Ganuza, J.; Olcoz-Alonso, A.; Plaza-Puertolas, A. (2022). Along-the-path exponential integration for Floquet stability analysis of wind turbines. Journal of Physics: Conference Series. 2265,032026 1-11

item.page.rights

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.