Learning ordered pooling weights in image classification

dc.contributor.authorForcén Carvalho, Juan Ignacio
dc.contributor.authorPagola Barrio, Miguel
dc.contributor.authorBarrenechea Tartas, Edurne
dc.contributor.authorBustince Sola, Humberto
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2021-04-07T07:20:57Z
dc.date.available2022-10-21T23:00:17Z
dc.date.issued2020
dc.description.abstractSpatial pooling is an important step in computer vision systems like Convolutional Neural Networks or the Bag-of-Words method. The spatial pooling purpose is to combine neighbouring descriptors to obtain a single descriptor for a given region (local or global). The resultant combined vector must be as discriminant as possible, in other words, must contain relevant information, while removing irrelevant and confusing details. Maximum and average are the most common aggregation functions used in the pooling step. To improve the aggregation of relevant information without degrading their discriminative power for image classification, we introduce a simple but effective scheme based on Ordered Weighted Average (OWA) aggregation operators. We present a method to learn the weights of the OWA aggregation operator in a Bag-of-Words framework and in Convolutional Neural Networks, and provide an extensive evaluation showing that OWA based pooling outperforms classical aggregation operators.en
dc.description.sponsorshipThis work is partially supported by the research services of Universidad Pública de Navarra and by the project TIN2016-77356-P (AEI/FEDER, UE).en
dc.embargo.lift2022-10-21
dc.embargo.terms2022-10-21
dc.format.extent25 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1016/j.neucom.2020.06.028
dc.identifier.issn0925-2312
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/39499
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofNeurocomputing, 2020, 411, 45-53en
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/TIN2016-77356-P/
dc.relation.publisherversionhttps://doi.org/10.1016/j.neucom.2020.06.028
dc.rights© 2020 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.1en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPoolingen
dc.subjectOrdered weighted aggregationen
dc.subjectImage classificationen
dc.subjectBag-of-wordsen
dc.subjectMid-level featuresen
dc.subjectConvolutional neural networksen
dc.subjectGlobal poolingen
dc.titleLearning ordered pooling weights in image classificationen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication2980928f-fd1b-4d86-858b-f8c28e18b365
relation.isAuthorOfPublicatione5ab14f5-4f2e-4000-a415-0a7c3b28ec78
relation.isAuthorOfPublication4b0d58a5-e297-4e65-9a68-83649eb9c81b
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery2980928f-fd1b-4d86-858b-f8c28e18b365

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020101032_Forcen_LearningOrdered.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: