Publication: A deep learning image analysis method for renal perfusion estimation in pseudo-continuous arterial spin labelling MRI
dc.contributor.author | Oyarzun Domeño, Anne | |
dc.contributor.author | Cía Alonso, Izaskun | |
dc.contributor.author | Echeverría Chasco, Rebeca | |
dc.contributor.author | Fernández Seara, María A. | |
dc.contributor.author | Martín Moreno, Paloma L. | |
dc.contributor.author | Bastarrika, Gorka | |
dc.contributor.author | Navallas Irujo, Javier | |
dc.contributor.author | Villanueva Larre, Arantxa | |
dc.contributor.department | Ingeniería Eléctrica, Electrónica y de Comunicación | es_ES |
dc.contributor.department | Institute of Smart Cities - ISC | en |
dc.contributor.department | Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren | eu |
dc.contributor.funder | Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa | es |
dc.date.accessioned | 2024-04-25T13:30:26Z | |
dc.date.available | 2024-04-25T13:30:26Z | |
dc.date.issued | 2023 | |
dc.date.updated | 2024-04-25T13:01:54Z | |
dc.description.abstract | Accurate segmentation of renal tissues is an essential step for renal perfusion estimation and postoperative assessment of the allograft. Images are usually manually labeled, which is tedious and prone to human error. We present an image analysis method for the automatic estimation of renal perfusion based on perfusion magnetic resonance imaging. Specifically, non-contrasted pseudo-continuous arterial spin labeling (PCASL) images are used for kidney transplant evaluation and perfusion estimation, as a biomarker of the status of the allograft. The proposed method uses machine/deep learning tools for the segmentation and classification of renal cortical and medullary tissues and automates the estimation of perfusion values. Data from 16 transplant patients has been used for the experiments. The automatic analysis of differentiated tissues within the kidney, such as cortex and medulla, is performed by employing the time-intensity-curves of non-contrasted T1-weighted MRI series. Specifically, using the Dice similarity coefficient as a figure of merit, results above 93%, 92% and 82% are obtained for whole kidney, cortex, and medulla, respectively. Besides, estimated cortical and medullary perfusion values are considered to be within the acceptable ranges within clinical practice. | en |
dc.description.sponsorship | Project PC181-182 RM-RENAL, supported by the Department of University, Innovation and Digital Transformation (Government of Navarre). The author would also like to acknowledge the Department of University, Innovation and Digital Transformation (Government of Navarre) for the predoctoral grant number 0011-0537-2021-000050. Open access funding provided by Universidad Pública de Navarra. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Oyarzun-Domeño, A., Cia, I., Echeverria-Chasco, R., Fernández-Seara, M. A., Martin-Moreno, P. L., Garcia-Fernandez, N., Bastarrika, G., Navallas, J., Villanueva, A. (2023) A deep learning image analysis method for renal perfusion estimation in pseudo-continuous arterial spin labelling MRI. Magnetic Resonance Imaging, 104, 39-51. https://doi.org/10.1016/j.mri.2023.09.007. | en |
dc.identifier.doi | 10.1016/j.mri.2023.09.007 | |
dc.identifier.issn | 0730-725X | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/48036 | |
dc.language.iso | eng | en |
dc.publisher | Elsevier | en |
dc.relation.ispartof | Magnetic Resonance Imaging 104, (2023), 39–51 | en |
dc.relation.projectID | info:eu-repo/grantAgreement/Gobierno de Navarra//PC181-182 RM-RENAL | en |
dc.relation.projectID | info:eu-repo/grantAgreement/Gobierno de Navarra//0011-0537-2021-000050 | en |
dc.relation.publisherversion | https://doi.org/10.1016/j.mri.2023.09.007 | |
dc.rights | © 2023 The Authors. This is an open access article under the CC BY-NC license. | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/bync/4.0/ | |
dc.subject | Allograft | en |
dc.subject | Deep learning | en |
dc.subject | MRI | en |
dc.subject | Renal perfusion | en |
dc.subject | Segmentation | en |
dc.title | A deep learning image analysis method for renal perfusion estimation in pseudo-continuous arterial spin labelling MRI | en |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | Versión publicada / Argitaratu den bertsioa | es |
dc.type.version | info:eu-repo/semantics/publishedVersion | en |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5cfc3bb5-70a4-49da-9dcb-ea6cd22e0780 | |
relation.isAuthorOfPublication | 9650a6c3-5f76-4005-9979-c140061b5e3c | |
relation.isAuthorOfPublication | d3bfd5bf-8426-455b-bcc4-897ddb0d4c2e | |
relation.isAuthorOfPublication.latestForDiscovery | 9650a6c3-5f76-4005-9979-c140061b5e3c |