Evaluación de distintos algoritmos de IA para mejora de Head Pose Estimation para sistemas webcam-based eye-tracking

Date

2024

Authors

Carrizo Pérez, Adrián

Publisher

Acceso abierto / Sarbide irekia
Trabajo Fin de Máster / Master Amaierako Lana

Project identifier

Abstract

This thesis evaluates multiple AI algorithms to enhance Head Pose Estimation (HPE) in low-cost, webcam-based eye-tracking systems, aiming to reduce errors that affect Gaze Estimation. The study compares state-of-the-art algorithms, including Mediapipe, DECA, and 3DDFA_V2, against a Baseline method, using the UPNA Head Pose Estimation Database. Key metrics analyzed include HPE rotation and translation, 3D eye position accuracy, and inference time. Results show Mediapipe is the best algorithm for real-time HPE due to its balance of accuracy and speed. This work underscores the significance of precise HPE for effective webcam-based eyetracking and suggests further improvements through advanced machine learning techniques. Future research will refine these algorithms, enhancing the accessibility of accurate eye-tracking solutions.

Description

Keywords

Head Pose Estimation (HPE), Gaze Estimation, Eye tracking, Computer vision, Convolutional Neural Networks (CNN), Artificial Intelligence (AI)

Department

Faculty/School

Escuela Técnica Superior de Ingeniería Industrial, Informática y de Telecomunicación / Industria, Informatika eta Telekomunikazio Ingeniaritzako Goi Mailako Eskola Teknikoa

Degree

Máster Universitario en Ingeniería Biomédica por la Universidad Pública de Navarra, Ingeniaritza Biomedikoko Unibertsitate Masterra Nafarroako Unibertsitate Publikoan

Doctorate program

item.page.cita

item.page.rights

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.