HybriD-GM: a framework for quantum computing simulation targeted to hybrid parallel architectures

Date

2023

Authors

Ávila, Anderson
Santos, Helida
Cruz, Anderson
Xavier de Souza, Samuel
Moura, Bruno
Yamin, Adenauer
Reiser, Renata

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

Impacto
OpenAlexGoogle Scholar
cited by count

Abstract

This paper presents the HybriD-GM model conception, from modeling to consolidation. The D-GM environment is also extended, providing efficient parallel executions for quantum computing simulations, targeted to hybrid architectures considering the CPU and GPU integration. By managing projection operators over quantum structures, and exploring coalescing memory access patterns, the HybriD-GM model enables granularity control, optimizing hardware resources in distributed computations organized as tree data structures. In the HybriD-GM evaluation, simulations of Shor’s and Grover’s algorithms achieve significant performance improvements in comparison to the previous D-GM version, and also with other related works, for example, LIQUi|⟩ and ProjectQ simulators.

Description

Keywords

Grover´s algorithm, Hybrid computing, Quantum computing, Quantum simulation, Shor´s algorithm

Department

Institute of Smart Cities - ISC

Faculty/School

Degree

Doctorate program

item.page.cita

Avila, Anderson, Helida Santos, Anderson Cruz, Samuel Xavier-de-Souza, Giancarlo Lucca, Bruno Moura, Adenauer Yamin, and Renata Reiser. 2023. "HybriD-GM: A Framework for Quantum Computing Simulation Targeted to Hybrid Parallel Architectures" Entropy 25, no. 3: 503. https://doi.org/10.3390/e25030503

item.page.rights

© 2023 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.