HybriD-GM: a framework for quantum computing simulation targeted to hybrid parallel architectures
Date
Authors
Director
Publisher
Project identifier
Impacto
Abstract
This paper presents the HybriD-GM model conception, from modeling to consolidation. The D-GM environment is also extended, providing efficient parallel executions for quantum computing simulations, targeted to hybrid architectures considering the CPU and GPU integration. By managing projection operators over quantum structures, and exploring coalescing memory access patterns, the HybriD-GM model enables granularity control, optimizing hardware resources in distributed computations organized as tree data structures. In the HybriD-GM evaluation, simulations of Shor’s and Grover’s algorithms achieve significant performance improvements in comparison to the previous D-GM version, and also with other related works, for example, LIQUi|⟩ and ProjectQ simulators.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2023 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.