Uniqueness of unconditional basis of infinite direct sums of quasi-Banach spaces

Date

2022

Authors

Director

Publisher

Kluwer Academic Publishers
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/ recolecta
  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/ recolecta
Impacto
No disponible en Scopus

Abstract

This paper is devoted to providing a unifying approach to the study of the uniqueness of unconditional bases, up to equivalence and permutation, of infinite direct sums of quasi-Banach spaces. Our new approach to this type of problem permits to show that a wide class of vector-valued sequence spaces have a unique unconditional basis up to a permutation. In particular, solving a problem from Albiac and Leránoz (J Math Anal Appl 374(2):394-401, 2011. https://doi.org/10.1016/j.jmaa.2010.09.048) we show that if X is quasi-Banach space with a strongly absolute unconditional basis then the infinite direct sum -1(X) has a unique unconditional basis up to a permutation, even without knowing whether X has a unique unconditional basis or not. Applications to the uniqueness of unconditional structure of infinite direct sums of non-locally convex Orlicz and Lorentz sequence spaces, among other classical spaces, are also obtained as a by-product of our work.

Description

Addendum en https://hdl.handle.net/2454/45133

Keywords

Banach lattice, Equivalence of bases, Quasi-Banach space, Unconditional basis, Uniqueness

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

Albiac-Alesanco, F.; Ansorena, J. L. (2022). Uniqueness of unconditional basis of infinite direct sums of quasi-Banach spaces. Positivity: An International Journal Devoted to the Theory and Applications of Positivity in Analysis. 26,

item.page.rights

©The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.