Robust boundary integral equations for the solution of elastic scattering problems via Helmholtz decompositions

Consultable a partir de

2026-12-01

Date

2024-12-01

Authors

Director

Publisher

Elsevier
Acceso embargado / Sarbidea bahitua dago
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136441NB-I00/ES/ recolecta
Impacto
Google Scholar
No disponible en Scopus

Abstract

Helmholtz decompositions of the elastic fields open up new avenues for the solution of linear elastic scattering problems via boundary integral equations (BIE) (Dong et al. (2021) [20]). The main appeal of this approach is that the ensuing systems of BIE feature only integral operators associated with the Helmholtz equation. However, these BIE involve non standard boundary integral operators that do not result after the application of either the Dirichlet or the Neumann trace to Helmholtz single and double layer potentials. Rather, the Helmholtz decomposition approach leads to BIE formulations of elastic scattering problems with Neumann boundary conditions that involve boundary traces of the Hessians of Helmholtz layer potential. As a consequence, the classical combined field approach applied in the framework of the Helmholtz decompositions leads to BIE formulations which, although robust, are not of the second kind. Following the regularizing methodology introduced in Boubendir et al. (2015) [6] we design and analyze novel robust Helmholtz decomposition BIE for the solution of elastic scattering that are of the second kind in the case of smooth scatterers in two dimensions. We present a variety of numerical results based on Nyström discretizations that illustrate the good performance of the second kind regularized formulations in connections to iterative solvers.

Description

Keywords

Time-harmonic Navier scattering problems, Helmholtz decomposition, Boundary integral equations, Pseudodifferential calculus, Nyström discretizations, Preconditioners

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

item.page.cita

Turc, C., Domínguez, V. (2024). Robust boundary integral equations for the solution of elastic scattering problems via Helmholtz decompositions. Computers and Mathematics with Applications, 175, 152-173. https://doi.org/10.1016/j.camwa.2024.09.013.

item.page.rights

© 2024 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.