Assessing the synergistic use of Sentinel-1, Sentinel-2, and LiDAR Data for forest type and species classification

Date

2025-06-12

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107386RB-I00/ES/ recolecta
  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2023-152885OB-I00/ES/ recolecta
  • Gobierno de Navarra//0011-1365-2021-000072/
Impacto
Google Scholar
No disponible en Scopus

Abstract

The design of effective forest management strategies requires the precise characterization of forested areas. Currently, different remote sensing technologies can be used for forest mapping, with optical sensors being the most common. The objective of this study was to evaluate the synergistic use of Sentinel-1, Sentinel-2, and LiDAR data for classifying forest types and species. With this aim, a case study was conducted using random forest, considering three classification levels of increasing complexity. The classifications incorporated Sentinel-1 and Sentinel-2 monthly composites, along with LiDAR metrics and topographic variables. The results showed that the combination of Sentinel-2 monthly composites, LiDAR, and topographic variables obtained the highest overall accuracies (0.90 for level 1, 0.80 for level 2, and 0.79 for level 3). The most important variables were identified as Sentinel-2 red-edge and NIR bands from June, July, and August, along with height-related LiDAR and topographic variables. Although not as precise as Sentinel-2 at the species level, Sentinel-1 enabled the classification of broad forest types with remarkable accuracy (0.80), especially when combined with LiDAR data (0.83). Altogether, the results of this study demonstrate the potential of combining data from different Earth observation technologies to enhance the mapping of forest types and species.

Description

Keywords

ALS, Randomforest, SAR, Multitemporal composites, Multi-source data integration

Department

Ingeniería / Ingeniaritza / Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute of Smart Cities - ISC / Institute on Innovation and Sustainable Development in Food Chain - ISFOOD

Faculty/School

Degree

Doctorate program

item.page.cita

Aranguren, I., González-Audícana, M., Montero, E., Sanz, J. A., Álvarez-Mozos, J. (2025). Assessing the synergistic use of Sentinel-1, Sentinel-2, and LiDAR Data for forest type and species classification. Remote Sensing, 17(12), 1-23. https://doi.org/10.3390/rs17122028.

item.page.rights

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.