Publication:
Computational methods for cumulative distribution functions

dc.contributor.authorGil, Amparo
dc.date.accessioned2020-06-04T07:35:24Z
dc.date.available2020-06-04T07:35:24Z
dc.date.issued2019
dc.descriptionResumen del trabajo presentado al Congreso de la Red de Polinomios Ortogonales y Teoría de Aproximación. Pamplona, 28-29 de marzo de 2019es_ES
dc.description.abstractSome special functions are particularly relevant in Applied Probability and Statistics. For example, the incomplete gamma and beta functions are (up to normalization factors) the cumulative central gamma and beta distribution functions, respectively. The corresponding noncentral distributions (the Marcum-Q function and the cumulative noncentral beta distribution function) play also a signi_x001C_cant role in several applications. The inversion of cumulative distribution functions (CDFs) is also an important problem, in particular for computing percentage points or values of some relevant parameters when the distribution function is involved in hypothesis testing. In this talk, methods for computing and inverting the gamma and beta CDFs are discussed. The performance of the methods will be illustrated with numerical examples. As we will see, we may contemplate CDFs as a branch of the large family of special functions yet probably not so well known as other classical functions.en
dc.format.extent1 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/37057
dc.language.isoengen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectCumulative distribution functionsen
dc.titleComputational methods for cumulative distribution functionsen
dc.typeinfo:eu-repo/semantics/conferenceObject
dspace.entity.typePublication

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gil_ComputationalMethods.pdf
Size:
44 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: