Publication:
Sparse approximation using new greedy-like bases in superreflexive spaces

Date

2023

Authors

Ansorena, José L.
Berasategui, Miguel

Director

Publisher

Instytut Matematyczny
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

Abstract

This paper is devoted to theoretical aspects of optimality of sparse approximation. We undertake a quantitative study of new types of greedy-like bases that have recently arisen in the context of non-linear m-term approximation in Banach spaces as a generalization of the properties that characterize almost greedy bases, i.e., quasi-greediness and democracy. As a means to compare the efficiency of these new bases with already existing ones in regard to the implementation of the Thresholding Greedy Algorithm, we place emphasis on obtaining estimates for their sequence of unconditionality parameters. Using an enhanced version of the original Dilworth-Kalton-Kutzarova method (2003) for building almost greedy bases, we manage to construct bidemocratic bases whose unconditionality parameters satisfy significantly worse estimates than almost greedy bases even in Hilbert spaces.

Description

Keywords

Bidemocratic bases, Superreflexive Banach spaces, Thresholding greedy algorithm, Unconditionality constants

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

item.page.cita

Albiac, F., Ansorena, J. L., & Berasategui, M. (2023). Sparse approximation using new greedy-like bases in superreflexive spaces. Studia Mathematica, 271(3), 321-346. https://doi.org/10.4064/sm220506-3-2

item.page.rights

Creative Commons Attribution 4.0 International

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.