A new family of aggregation functions for intervals

Date

2024

Authors

Díaz-Vázquez, Susana
Torres-Manzanera, Emilio
Rico, Noelia
Mesiar, Radko
Díaz, Irene
Montes Rodríguez, Susana

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-139886NB-I00/ES/ recolecta
  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136627NB-I00/ES/ recolecta
Impacto
No disponible en Scopus

Abstract

Aggregation operators are unvaluable tools when different pieces of information have to be taken into account with respect to the same object. They allow to obtain a unique outcome when different evaluations are available for the same element/object. In this contribution we assume that the opinions are not given in form of isolated values, but intervals. We depart from two “classical” aggregation functions and define a new operator for aggregating intervals based on the two original operators. We study under what circumstances this new function is well defined and we provide a general characterization for monotonicity. We also study the behaviour of this operator when the departing functions are the most common aggregation operators. We also provide an illustrative example demonstrating the practical application of the theoretical contribution to ensemble deep learning models.

Description

Keywords

Aggregation function, Injectivity, Intervals, Monotonicity

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

Diaz-Vazquez, S., Torres-Manzanera, E., Rico, N., Mesiar, R., Rodriguez-Martinez, I., Lafuente, J., Diaz, I., Montes, S., Bustince, H. (2024) A new family of aggregation functions for intervals. Computational and Applied Mathematics, 43(1), 1-27. https://doi.org/10.1007/s40314-023-02525-1.

item.page.rights

© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.