Publication:
Aggregation of deep features for image retrieval based on object detection

Date

2019-09-22

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión aceptada / Onetsi den bertsioa

Project identifier

Métricas Alternativas
OpenAlexGoogle Scholar
cited by count

Abstract

Image retrieval can be tackled using deep features from pretrained Convolutional Neural Networks (CNN). The feature map from the last convolutional layer of a CNN encodes descriptive information from which a discriminative global descriptor can be obtained. However, this global descriptors combine all of the information of the image, giving equal importance to the background and the object of the query. We propose to use an object detection based on saliency models to identify relevant regions in the image and therefore obtain better image descriptors. We extend our proposal to multi-regional image representation and we combine our proposal with other spatial weighting measures. The descriptors derived from the salient regions improve the performance in three well known image retrieval datasets as we show in the experiments.

Description

Keywords

Image retrieval, Feature aggregation, Saliency

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute of Smart Cities - ISC

Faculty/School

Degree

Doctorate program

item.page.cita

Forcén, J. I., Pagola, M., Barrenechea, E., Bustince, H. (2019). Aggregation of deep features for image retrieval based on object detection. In Morales, A., Fierrez, J., Sánchez, J. S., Ribeiro B. (Eds.), Pattern recognition and image analysis: 9th Iberian Conference, IbPRIA 2019: Madrid, Spain, July 1-4, 2019: proceedings, part I (pp. 553-564). Springer. https://doi.org/10.1007/978-3-030-31332-6_48.

item.page.rights

© 2019 Springer Nature Switzerland AG.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.