Publication:
Toward optimal irrigation management at the plot level: evaluation of commercial water potential sensors

Consultable a partir de

Date

2023

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

MINECO//CGL2015-64284-C2-1-R/ES/recolecta
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112908RB-I00/ES/recolecta

Abstract

Proper irrigation practice consists of applying the optimum amount of water to the soil at the right time. The porous characteristics of the soil determine the capacity of the soil to absorb, infiltrate, and store water. In irrigation, it is not sufficient to only determine the water content of the soil; it is also necessary to determine the availability of water for plants: water potential. In this paper, a comprehensive laboratory evaluation—accuracy and variability—of the world’s leading commercial water potential sensors is carried out. No such comprehensive and exhaustive comparative evaluation of these devices has been carried out to date. Ten pairs of representative commercial sensors from four different families were selected according to their principle of operation (tensiometers, capacitive sensors, heat dissipation sensors, and resistance blocks). The accuracy of the readings (0 kPa–200 kPa) was determined in two soils of contrasting textures. The variability in the recordings—repeatability and reproducibility—was carried out in a homogeneous and inert material (sand) in the same suction range. The response in terms of accuracy and value dispersion of the different sensor families was different according to the suction range considered. In the suction range of agronomic interest (0–100 kPa), the heat dissipation sensor and the capacitive sensors were the most accurate. In both families, registrations could be extended up to 150–200 kPa. The scatter in the readings across the different sensors was due to approximately 80% of the repeatability or intrinsic variability in the sensor unit and 20% of the reproducibility. Some sensors would significantly improve their performance with ad hoc calibrations.

Keywords

Agronomy, Performance, Soil water dynamics, Soil water measurement, Soil water monitoring

Department

Ciencias / Zientziak / Ingeniería / Ingeniaritza / Institute on Innovation and Sustainable Development in Food Chain - ISFOOD

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This study was supported by funding from the Ministerio de Economía y Competitividad (Government of Spain) via Research Project CGL2015-64284-C2-1-R and PID2020-112908RB-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER “Una manera de hacer Europa”.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.