Valero Toranzo, Irene2020-06-042020-06-042019https://academica-e.unavarra.es/handle/2454/37060Resumen del trabajo presentado al Congreso de la Red de Polinomios Ortogonales y Teoría de Aproximación. Pamplona, 28-29 de marzo de 2019In this talk we determine the asymptotics of various logarithmic-type integral functionals of hypergeometric orthogonal polynomials (Laguerre, Gegenbauer) when their parameter α -> ∞. Then, we apply the corresponding results to find the physical Shannon entropies for all the stationary states of harmonic and hydrogenic systems with a very high dimensionality D. Briefly, it is found that these entropies have the same rate of growth, O (D log D), when D -> ∞ 1 for both types of quantum systems.1 p.application/pdfengShannon-like integralsHypergeometric orthogonal polynomialsHigh-dimensional harmonic systemsHydrogenic systemsShannon-like integrals of hypergeometric orthogonal polynomials with large parameters and applications to high-dimensional harmonic and hydrogenic systemsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/openAccess