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Abstract  

Biofilm development and quorum sensing are closely interconnected processes. Biofilm 

formation is a cooperative group behaviour that involves bacterial populations living 

embedded in a self produced extracellular matrix. Quorum sensing (QS) is a cell-cell 

communication mechanism that synchronizes gene expression in response to population 

cell density. Intuitively, it would appear that QS might coordinate the switch to a 

biofilm lifestyle when the population density reaches a threshold level. However, 

compelling evidence obtained in different bacterial species coincides in that activation 

of QS occurs in the formed biofilm and activates the maturation and disassembly of the 

biofilm in a coordinate manner. The aim of this review is to illustrate, using four 

bacterial pathogens as examples, the emergent concept that QS activates the biofilm 

dispersion process. 
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Introduction  

Bacteria are elementary, unicellular organisms able to grow, divide, sense and adapt to 

environmental signals autonomously. Despite their self-sufficiency, bacteria coordinate 

efforts with neighbours to accomplish cooperative activities such as bioluminescence 

production, biofilm development, and exoenzyme secretion. Coordination occurs 

through a mechanism of cell-to-cell communication called quorum sensing (QS) 

(Reviewed in [1-3]). QS confers bacteria the capacity to recognize the population 

density by measuring the accumulation of a specific signalling molecule that members 

of the community secrete. Only when the population density is high, the accumulation 

of the signal in the extracellular environment is sufficient to activate the response. 

Structurally, QS signal molecules have a low molecular weight and belong to a wide 

range of chemical classes including acyl homoserine lactones (AHLs), furanosyl borate 

diesters (AI2), cis-unsaturated fatty acids (DSF family signals) and peptides.  

One of the most common processes that bacteria accomplish in a cooperative manner is 

biofilm development. Biofilms are communities of microorganisms that grow attached 

to a surface or interphase and embedded in a self produced extracellular matrix [4]. 

Inside the biofilm, bacteria grow protected from environmental stresses, such as 

desiccation, attack by the immune system, protozoa ingestion, and antimicrobials. Our 

understanding of how bacteria build the biofilm comprises three sequential stages: 

irreversible adhesion to the surface, followed by bacterial division and production of the 

extracellular matrix and finally, disassembly of the matrix and dispersion of bacteria 

[5]. When thinking about the relationship between biofilm development and QS, the 

first question that comes to mind is at which step bacterial density reaches the threshold 

level that allows QS signalling to participate in biofilm regulation. Intuitively, the initial 

adhesion step seems inappropriate for the accumulation of quorum signals because it 

http://en.wikipedia.org/wiki/Borate_ester
http://en.wikipedia.org/wiki/Borate_ester
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involves bacteria that are swimming freely in the media. It is later, when the attached 

bacteria divide and form microcolonies that the population density increases and 

quorum signals can reach sufficient levels to activate the maturation and disassembly of 

the biofilm in a coordinate manner. In support of this view, recent evidences indicate 

that many bacterial species use QS to coordinate the disassembly of the biofilm 

community. Biofilm dispersion is essential to allow bacteria to escape and colonize new 

niches when nutrients and other resources become limited and waste products 

accumulate. There are different strategies to accomplish biofilm dispersion: ending the 

synthesis of the biofilm matrix compounds, degrading the matrix and also, disrupting 

noncovalent interactions between matrix components (Table 1) [6]. Because QS 

regulatory networks are usually very intricate and may include several genes whose 

products affect biofilm development at different stages, it is not always easy to 

understand how the activation of QS finally triggers biofilm dispersion. In this review, 

we summarize the regulatory connections between QS signalling and biofilm 

development in four bacterial pathogens (Pseudomonas aeruginosa, Vibrio cholerae, 

Xanthomonas campestris and Staphylococcus aureus) to illustrate QS mediated biofilm 

dispersion. 

 

Pseudomonas aeruginosa  

Biofilm formation has been extensively studied in the Gram negative bacterium P. 

aeruginosa because of its implication in causing severe chronic infections in patients 

with cystic fibrosis (CF) [7]. As regards QS, P. aeruginosa harbors two complete AHL 

circuits, LasI/LasR and RhlI/RhlR, being the LasI/R circuit hierarchically positioned 

upstream the RhlI/R circuit (Fig. 1). These two QS systems are composed of a LuxI 

type synthase, responsible of AHL synthesis, and a LuxR type receptor. At high cell 
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density (HCD), AHLs accumulate and specifically interact with LuxR type transcription 

factors. AHL binding stabilizes the LuxR type proteins, allowing them to fold, bind 

DNA, and regulate transcription of target genes. In many cases, AHL bound LuxR type 

proteins also activate transcription of luxI, providing a signal amplification mechanism 

via a feed forward autoinduction loop. In addition, P. aeruginosa has two orphan LuxR 

homologues, VqsR and QscR, and it also presents the Pseudomonas quinolone signal 

(PQS), which are interconnected with the LasI/LasR and RhlI/RhlR signalling 

circuitries [3,8].  

The first evidence of the relationship between P. aeruginosa QS and biofilm formation 

was shown in 1998 by Davies et al. [9]. Results showed that the LasI/LasR system, 

although not involved in the initial attachment and growth stages, was required for the 

subsequent biofilm differentiation process. From then on, several in vitro studies have 

addressed the role of QS in P. aeruginosa biofilm differentiation but results have been 

discrepant. The reasons behind this disagreement seem to be related to differences in the 

biofilm model used and/or culture conditions [10]. In those cases in which biofilm 

development has been proved to depend on QS, this dependency has been linked to 

different factors involved at determined stages of biofilm development. For example, 

QS induced extracellular DNA (eDNA) release plays a part in offering structural 

stability to the biofilm [11]. QS control of swarming motility has been linked to an early 

step of biofilm formation, since swarming dictates initial coverage of the substratum 

[10]. With respect to exopolysaccharide production, different groups have obtained 

contradictory results. Initially, it was shown that LasI/LasR system activated 

transcription of the pel genes [12] whose products are responsible for the production of 

a glucose-rich exopolysaccharide (PEL) that builds the biofilm matrix. On the contrary, 

Ueda and Wood reported that Las mediated QS inhibits the production of this 
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exopolysaccharide [13]. These authors demonstrated that LasI/LasR positively regulates 

the expression of the tyrosine phosphatase TpbA. TpbA not only inhibits the expression 

of pel genes but also leads to decreased levels of c-di-GMP, probably through 

regulation of the activity of the diguanylate cyclase TpbB. Such low levels of c-di-GMP 

result in a decrease in PEL production, since binding of c-di-GMP to the c-di-GMP 

receptor PelD is needed for PEL synthesis (Fig. 2). Another element controlled by QS, 

specifically by both AHL and PQS signaling, that plays an important role in P. 

aeruginosa biofilm development is rhamnolipids production [14]. These biosurfactants 

were first shown to influence a late stage of biofilm development, maintaining the 

channels between the mushroom shaped structures of the biofilm, once they are formed 

[15]. These channels allow fluids to flow throughout the biofilm, resulting in the 

distribution of nutrients and oxygen and removal of waste products. Although the 

expression of the rhamnolipids synthesis operon rhlAB occurs primarily in the stalks of 

the mushroom like structures [16], rhamnolipids play a role in mushroom cap formation 

by promoting bacterial twitching motility [17]. A notable demonstration that secretion 

of the right amount of rhamnolipids is critical for proper biofilm development was 

shown by Boles et al. [18]. In this study, spontaneous P. aeruginosa variants that 

exhibited accelerated biofilm detachment were analysed. Results revealed that increased 

biofilm detachment was due to the overproduction of rhamnolipids. Furthermore, 

exogenous addition of purified P. aeruginosa rhamnolipids to wild type Pseudomonas 

biofilms or even to biofilms produced by other microorganisms (Bordetella 

bronchiseptica and Candida albicans) caused bacterial detachment [19,20]. In 

summary, QS promotes biofilm dispersion in P. aeruginosa at least by reducing the 

synthesis of one of the major exopolysaccharides of the biofilm matrix (PEL) and 

inducing the synthesis of surfactant molecules (rhamnolipids) (Fig. 2) (Table 1). The 
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finding that QS promotes the release of eDNA, which is a component of the biofilm 

matrix, might seem contradictory with the concept of QS induced biofilm dispersion. 

However, since this eDNA comes from the lysis of bacteria, cell death promoted by QS 

might also be considered as part of the dispersion mechanism. Interestingly, in addition 

to promoting bacterial release, rhamnolipids appear to provide protection from the 

innate immune defense by causing necrotic cell death of polymorphonuclear leukocytes 

[21]. This activity would confer some local protection to the biofilm and also to the 

bacteria released during the dispersion process.  

 

Vibrio cholerae  

V. cholerae, the causative agent of the cholera disease, has two QS pathways that 

function in parallel. At low cell density (LCD), the levels of the two autoinducers, CAI-

1 ((S)-3-hyroxytridecan-4-one), synthesized by CqsA, and AI-2, synthesized by LuxS, 

are low and their membrane bound two-component receptors, CqsS and LuxPQ act as 

kinases. As a result, the phosphotransfer protein LuxU is phosphorylated and then the 

phosphate is transferred to the response regulator LuxO. Phosphorylated LuxO activates 

the transcription of four small RNAs (qrr1-4) that via base pairing prevent ribosome 

binding to hapR mRNA, encoding the QS master regulator, leading to its degradation. 

Also, the qrr1-4 small RNAs promote c-di-GMP synthesis and biofilm development by 

base pairing with the vca0939 mRNA which encodes a GGDEF domain protein. This 

pairing relieves an inhibitory structure that occludes the ribosome binding site of 

vca0939 mRNA and thus, activates its translation [22]. At HCD, CAI-1 and AI-2 

accumulate, and their receptors bound to AIs act as phosphatases. Unphosphorylated 

LuxO cannot activate the transcription of qrr1-4 and hapR mRNA is translated (Fig. 1) 

[3]. Several lines of evidence indicate that activation of HapR at HCD is the key to 
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biofilm dispersion (Fig. 2). Firstly, HapR activates transcription of the hap gene 

encoding haemagglutinin protease (HA/P) [23], leading to detachment of cells from 

biofilms that had been formed at LCD (Table 1). Second, HapR represses transcription 

of the vps exopolysaccharide (VPS) biosynthesis operons by binding to the promoter of 

the vpsT transcription factor, which is a positive activator of vps transcription [24]. 

Third, HapR controls the transcription of several genes encoding proteins that 

synthesize (GGDEF domain proteins) and degrade c-di-GMP (EAL and HD-GYP 

domain proteins) resulting in a reduction in cellular c-di-GMP levels [24,25]. This 

decrease in c-di-GMP has consequences on the activity of two c-di-GMP receptors, 

VpsT itself and VpsR. On one hand, VpsT activity is repressed, since only upon c-di-

GMP binding it oligomerizes and gains the capacity to bind to and activate vps 

transcription (Fig. 2) [26]. On the other, VpsR is no longer able to activate the 

transcription of vpsT [27] (Table 1). Interestingly, two recent publications in Vibrio 

vulnificus, a close relative of V. cholerae, have shown that activation of SmcR, the 

HapR homologue, promotes biofilm dispersion at HCD by downregulating expression 

of VpsT and a GGDEF protein and upregulating the synthesis, amongst others of the 

VvpE protease and the capsule exopolysaccharide (CPS) (Fig. 2) [28,29]. At LCD, 

expression of CPS is repressed but when QS signaling is activated in the mature 

biofilm, synthesis or exogenous addition of CPS restricts the growth of the biofilm, 

limiting its size (Table 1). Although exopolysaccharides are very often essential 

components of the biofilm matrix, there are several examples showing that they can also 

have antibiofilm properties [30,31]. Their mode of action remains poorly characterized 

but it appears that they would act as surfactant molecules that modify the physical 

characteristics of bacterial cells. Thus, similarly to the situation in P. aeruginosa, QS in 
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Vibrio represses the synthesis of biofilm matrix compounds and induces the synthesis of 

molecules with surfactant properties.  

 

Xanthomonas campestris 

In the last few years, DSF (diffusible signal factor) family signals have been unveiled as 

a novel QS system that is widespread in Gram negative bacterial pathogens. These cis-

unsaturated fatty acids have been shown to regulate a range of biological functions 

including cell growth, biofilm development and virulence [32,33]. DSF was first 

identified and characterized as cis-11-methyl-2-dodecenoic acid in Xanthomonas 

campestris pv campestris (X. camprestis), the causal agent of black rot of cruciferous 

plants [34]. In X. campestris, biosynthesis of DSF is dependent on rpfF and rpfB, which 

encode a crotonase enzyme and a putative long chain fatty acyl CoA ligase, 

respectively, and are located in the rpf gene cluster (rpfA-I) [35]. In addition, the rpfC 

gene encodes a hybrid two-component regulator that functions as a DSF sensor and 

regulates DSF biosynthesis. At LCD, RpfC remains unphosphorylated and maintains a 

conformation that promotes the formation of a complex with RpfF, limiting DSF 

production. At HCD, DSF molecules accumulate, triggering the autophosphorylation of 

RpfC and thus the release of RpfF, resulting in increased DSF production (Fig. 1) 

[36,37]. Moreover, RpfC constitutes a two component regulatory system with RpfG, a 

protein that contains a typical receiver domain and a HD-GYP domain, which is 

responsible of degrading c-di-GMP to two molecules of GMP. Phosphorylation of RpfG 

activates its phospodiesterase activity and results in reduced c-di-GMP levels (Fig. 1) 

[38]. 

Assessment of biofilm formation in X. campestris has been carried out by visualization 

of bacterial aggregation in liquid medium [39,40]. Max Dow and colleagues 
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demonstrated that the DSF mediated QS system controls X. campestris biofilm dispersal 

(Fig. 2). Mutants in rpfF, rpfC or rpfG formed cell aggregates in L medium, whereas 

the wild type grew planktonically under the same conditions. In these aggregates, 

bacteria were held together in a matrix of extracellular material. Addition of DSF 

triggered dispersion of the rpfF mutant strain aggregates, but not those of the rest of the 

mutants, indicating that the DSF mediated dispersal acted through the RpfC/RpfG two-

component signalling system. The molecule responsible for biofilm dispersion, acting 

downstream DSF, was identified as endo-β-1,4-mannanase, which is an extracellular 

enzyme encoded by the manA gene, that could disperse the cell aggregates produced by 

all rpf mutants. However, ManA was not the only factor responsible for DSF inducible 

biofilm dispersal, because it had no detectable activity against soluble xanthan, an 

exopolysaccharide needed for the integrity of the Xanthomonas biofilm, and also 

because DSF was still able to disperse the aggregates of a double rpfF/manA mutant 

[41]. In this respect, Tao et al. identified that RpfC/RpfG can also induce biofilm 

dispersion by repressing transcription of xagABC operon, encoding a putative 

glycosyltransferase system required for the synthesis of an exopolysaccharide essential 

for biofilm formation (Fig. 2) [40]. This work also implicated the cyclic-AMP receptor-

like protein Clp as an element responsible for linking DSF signaling (and alteration in c-

di-GMP) to the expression of manA and the repression of the xagABC operon. Several 

lines of evidence suggest that Clp plays a role in the regulation of biofilm dynamics in 

response to alterations in the c-di-GMP level. Mutation of clp leads to the 

downregulation of expression of manA, which is implicated in biofilm dispersal and, 

conversely, in the upregulation of xag gene expression, which is implicated in biofilm 

formation. The binding of Clp to promoters of both manA and xag genes is inhibited by 

c-di-GMP (Fig. 2) [42]. In addition, a very recent transcriptome analysis has shown that 
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the Rpf/DSF dependent regulon is very complex and comprises over 480 genes 

encoding for putative candidates that might participate in the DSF induced biofilm 

dispersal process [43]. Altogether, the DSF mediated QS acts as a regulatory 

mechanism in modulation of X. campestris biofilm dispersal, at least by means of 

positively regulating ManA and negatively controlling xagABC expression (Table 1).  

Intriguingly, it has been shown that one bacterial species may produce more than one 

DSF family signal and that DSF signals are implicated not only in intraspecies 

signalling but also in interspecies and interkingdom communication [32,44]. In this 

respect, Davies et al. demonstrated that P. aeruginosa encodes dspI (PA0745), a rpfF 

homologue, which is required for synthesis of a DSF like molecule, cis-2-decanoic acid. 

Furthermore, cis-2-decanoic acid induces the dispersion not only of established P. 

aeruginosa biofilms but also of those formed by a variety of Gram negative and positive 

bacteria and even the yeast Candida albicans [45]. This study and others suggest that 

these cis-unsaturated fatty acid signals might constitute a broadly used mechanism for 

the induction of biofilm dispersal. 

 

Staphylococcus aureus  

QS regulation of S. aureus biofilm development has been assumed to depend on the Agr 

system [46,47]. Following the classical QS signalling in Gram positive bacteria, the Agr 

system consists of a membrane bound protein (AgrB) that modifies and exports the QS 

peptide (AgrD) and a bacterial two-component signal transduction system, composed of 

the sensor histidine kinase (AgrC) and its cognate response regulator (AgrA). When 

modified AgrD accumulates in the extracellular media, note that in contrast with other 

QS systems, the bacterial membrane is impermeable to the peptide, it binds to the 

membrane bound AgrC which autophosphorylates at a conserved histidine residue. 
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Then, AgrC transfers the phosphate to AgrA and phosphorylated AgrA activates its own 

transcription as well as transcription of other targets including the regulatory RNA, 

RNAIII (Fig. 1) [1,48]. Early on in the analysis of Agr function on biofilm 

development, it became apparent that agr mutants displayed an increased capacity to 

produce a biofilm [46]. Because the Agr system upregulates extracellular proteases 

production, it was initially assumed that decreased accumulation of proteases in the agr 

mutant was responsible for the enhanced biofilm phenotype (Table 1). This explanation 

was also supported by the fact that mutants in genes encoding for extracellular proteases 

displayed improved biofilm formation [47]. However, the influence of the Agr system 

in biofilm development is more complex than regulation of protease production (Fig. 2). 

This system also regulates the synthesis of biofilm matrix compounds. S. aureus can 

produce two types of biofilm matrices, one utilizing the exopolysaccharide PIA/PNAG 

and the other based on surface proteins. Experimental evidence suggests that the Agr 

system does not regulate the synthesis of PIA/PNAG. In contrast, it downregulates the 

expression of surface adhesins such as fibronectin binding proteins (FnBPs) and protein 

A [49], which under specific environmental conditions are capable of inducing a 

proteinaceous biofilm matrix [50-53] (Table 1). More recently, an additional role for the 

Agr system in biofilm dispersion has been identified. The group of M. Otto 

demonstrated first in S. epidermidis and then in S. aureus that a specific class of 

secreted peptides (phenol soluble modulins, PSMs) with surfactant like properties 

mediates the main impact of Agr in biofilm dispersion [54,55] (Table 1). PSM operons 

transcription is under strict control by AgrA and consequently agr mutants lack PSM 

production. Analysis of biofilm tridimensional structure using confocal laser scanning 

microscopy revealed that PSMs were not only necessary for biofilm dispersion but also 

impacted the biofilm volume, thickness, roughness, and channel formation. In these 
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studies, the nature of the biofilm matrix produced by the strains under study was not 

determined, and therefore, additional studies would be necessary to determine whether 

PSMs show similar effects when the biofilm matrix is built with exopolysaccharide or 

proteins. Interestingly, under certain growth conditions PSMs can polymerize into 

aggregates that exhibit biochemical and biophysical characteristics of amyloid-like 

fibers [56]. The PSMs derive amyloid like fibers contribute to biofilm development in 

these particular conditions and mutants deficient in PSMs are unable to produce a 

biofilm. These results indicate that PSMs can play a dual function in biofilm 

development depending on their aggregation state. As monomers, they have surfactant 

properties that promote biofilm disassembly, but when they polymerize in fibers they 

favor biofilm development. The environmental conditions that control the switch 

between the monomeric and polymeric state are still undetermined. 

In addition to the Agr system, recent studies indicate that S. aureus possesses a 

functional luxS gene and has the ability to produce AI-2 [57,58]. Mutation of luxS 

results in increased biofilm formation compared with the wild type strain under static 

and flow conditions. Quantitative RT-PCR analysis showed that AI-2 activated the 

expression of IcaR, the main negative regulator of PIA/PNAG exopolysaccharide 

synthesis (Fig. 2) (Table 1) [59]. Because the potential AI-2 receptor has not been 

found, the regulatory pathway that connects AI-2 signal with IcaR expression remains 

unknown.  

 

Concluding remarks 

There is an enormous interest to better understand bacterial biofilm development, 

because the biology supporting this process is anticipated to be instrumental for the 

development of new treatments. Early studies mainly focused on the initial steps of 
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biofilm development identified surface adhesins responsible for the interaction with 

both biotic and abiotic surfaces. Then, the efforts were aimed at understanding the 

regulation of the synthesis of biofilm matrix compounds and we learned that most 

bacteria use cyclic nucleotides to induce the synthesis of biofilm matrix 

exopolysaccharides. More recent studies are showing that many bacteria use QS to 

activate, in a coordinate manner, the dispersion of the biofilm structure. The biological 

rational behind this last strategy is that disassembly of the matrix would be a titanic task 

for individual bacteria. An important consideration of this scenario is that antimicrobials 

directed against QS systems would have the unintended consequence of impairing 

biofilm disassembly whereas molecules that mimicry QS signals would induce 

dispersion of the biofilm. Another interesting lesson learnt from these studies is that 

most bacteria use surfactant molecules to promote biofilm detachment. Because very 

often the same surfactant molecule is able to induce biofilm dispersion in different 

bacterial species, it appears that a combination of surfactant molecules with 

antimicrobials might be a promising alternative for the eradication of bacterial biofilms.  
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Figures 

Figure 1. Connection between QS signaling and biofilm matrix compounds occurring at 

HCD. Schematic representation of QS regulatory cascades that end in the activation of a 

master regulator that governs the synthesis of biofilm matrix compounds in the selected 

four bacterial pathogens. In P. aeruginosa, LasI, RhlI, and PqsABCDH synthesize the 

QS signal molecules 3OC12-HSL, C4-HSL, and PQS, respectively. The transcription 

factors LasR, RhlR, and PqsR detect their respective signal molecules, leading to a feed 

forward autoinduction loop and also to the regulation of transcription of target genes. 

The three circuitries are interconnected as indicated by arrows and T-bars, which 

represent positive and negative regulation, respectively. QS induces eDNA release on 

one hand and on the other it inhibits the production of PEL exopolysaccharide. In V. 

cholerae, LuxS and CqsA synthesize AI-2 and CAI-1 respectively. These signal 

molecules are detected by their corresponding receptors, the two-component histidine 

kinases LuxPQ and CqsS. Signal binding promotes their phosphatase activity, resulting 

in unphosphorylated LuxO, cessation of Qrr1-4 transcription and induction of HapR 

expression. HapR, the HCD master transcriptional regulator, represses transcription of 

the vps exopolysaccharide biosynthesis operons. In X. campestris, RpfF synthesizes 

DSF, which is sensed by the membrane-bound histidine kinase protein, RpfC. Ligand 

binding triggers the autophosphorylation of RpfC, which provokes the release of RpfF, 

leading to increased DSF production. RpfC transfers the phosphate to RpfG, which 

activates its PDE activity and decreases the c-di-GMP pool. The RpfC/RpfG two-

component system represses the expression of xagABC, which encodes putative 

glycosyl transferases required for exopolysaccharide synthesis, and induces the 

production of xanthan. In S. aureus, the QS peptide is synthesized as a longer precursor 

by agrD, and is processed and secreted via AgrB. The extracellular signal is detected by 
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the membrane-located histidine kinase AgrC and signal transduction occurs by 

phosphorelay to the AgrA response regulator. AgrA inhibits the expression of the 

biofilm matrix proteins, FnBPs and Protein A. LuxS synthesizes AI-2, which inhibits 

PIA/PNAG exopolysaccharide synthesis through an unknown QS cascade.  

HCD, high cell density; eDNA, extracellular DNA; DSF, diffusible signal factor; PDE, 

phosphodiesterase; c-di-GMP, cyclic di-GMP; FnBPs, Fibronectin binding proteins.  

 

Figure 2. Biofilm dispersion mechanisms activated at HCD by QS in bacteria. 

Schematic representation of biofilm mushroom-like pillars indicating the mechanisms 

of biofilm dispersion activated by QS signal accumulation in each bacterial species. In 

P. aeruginosa, QS positively regulates the expression of the periplasmic tyrosine 

phosphatase TpbA. TpbA dephosphorylates the membrane-anchored GGDEF protein 

TpbB deactivating its DGC activity and thus reducing c-di-GMP levels in the cell. As a 

result, the c-di-GMP receptor PelD is not longer bound to c-di-GMP and PEL 

polysaccharide production is decreased. QS also promotes the synthesis of rhamnolipids 

whose overproduction results in biofilm detachment. In Vibrio spp., QS signal 

accumulation provokes a cessation in qrr1-4 small RNAs transcription. In V. cholerae, 

qrr1-4 cannot longer base pair with the vca0939 mRNA, which encodes a GGDEF 

domain protein, and thus its translation is inhibited and c-di-GMP levels decrease. On 

the other hand, the expression of the HCD master transcriptional regulators HapR and 

SmcR of V. cholerae and V. vulnificus increases. HapR and SmcR downregulate 

expression of VpsT, a positive regulator of vps transcription. HapR and SmcR also 

control the transcription of c-di-GMP metabolizing enzymes resulting in a reduction of 

c-di-GMP. This causes a decrease in VPS polysaccharide production since the c-di-

GMP receptor VpsT needs c-di-GMP binding to activate vps transcription. In addition, 
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HapR and SmcR activate the production of HA/P and VvpE proteases, respectively. 

SmcR also upregulates the synthesis of CPS, which restricts the growth of the biofilm. 

In X. campestris, accumulation of DSF leads to a decrease in c-di-GMP levels. Clp, 

which encodes a c-di-GMP responsive transcriptional regulator becomes able to bind to 

manA and xag promoters resulting in an increased production of ManA that has biofilm 

dispersing activity and suppression of xagABC expression, leading to a reduction in 

exopolysaccharide synthesis. In S. aureus, QS peptide accumulation causes the 

phosphorylation of the AgrA response regulator that directly activates expression of 

PSMs and proteases and represses the synthesis of the biofilm matrix proteins, FnBPs 

and Protein A. On the other hand, LuxS inhibits PIA/PNAG exopolysaccharide 

synthesis via induction of expression of IcaR.  

DGC, diguanylate cyclase; HA/P, haemagglutinin protease; CPS, capsule 

exopolysaccharide; ManA, endo-β-1,4-mannanase; PSMs, phenol soluble modulins; 

FnBPs, Fibronectin binding proteins.  
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Table 1. Summary of main biofilm dispersion mechanisms regulated by QS  

 
  Biofilm dispersion strategies 

 QS system Inhibition of matrix 

compounds synthesis 

Matrix degradation Surfactants 

P. aeruginosa LasI/R 

RhlI/R 

PQS 

Pel [13]   Rhamnolipids [18] 

X. campestris DSF XagABC [40] ManA (endo--1,4-

mannanase) 

[39]   

V. cholerae/V. 

vulnificus 

CAI1 

AI2 

Vps [22,24,25] Haemagglutinin 

protease 

VvpE 

[23] 

 

[28] 

Capsule [29] 

 

S. aureus Agr 

 

AI2 

FnbAB 

Protein A 

PIA/PNAG 

[49] 

 

[59] 

Proteases [47] PSMs [55] 
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Highlights Solano et al. 2014 

 

1. Biofilm development and quorum sensing are social bacterial behaviours 

2. Quorum sensing regulates genes involved in biofilm development 

3. Quorum sensing promotes biofilm dispersion 

4. Quorum sensing upregulates the synthesis of surfactant molecules  

 

*Highlights (for review)
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