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7 

Abstract 8 

Surface roughness crucially affects the hydrological and erosive behaviours of soils. In 9 

agricultural areas surface roughness is directly related to tillage, whose action strongly 10 

affects the key physical properties of soils and determines the occurrence and fate of 11 

several processes (e.g., surface storage, infiltration, etc.). The characterisation of surface 12 

roughness as a result of tillage operations is not straightforward, and numerous 13 

parameters and indices have been proposed for quantifying it. In this article, a database 14 

of 164 profiles (each 5 m long), measured in 5 different roughness classes, was analysed. 15 

Four roughness classes corresponded to typical tillage operations (i.e., mouldboard, 16 

harrow, seedbed, etc.), and the fifth represented a seedbed soil that was subject to rainfall. 17 

The aim of the research was to evaluate and select the surface roughness parameters that 18 

best characterised and quantified the surface roughness caused by typical tillage 19 

operations. In total, 21 roughness parameters (divided into 4 categories) were assessed. 20 

The parameters that best separated and characterised the different roughness classes were 21 

the limiting elevation difference (LD) and the Mean Upslope Depression index (MUD); 22 

however, the parameters most sensitive to rainfall action on seedbed soils were limiting 23 

slope (LS) and the crossover lengths measured with the semivariogram method (lSMV) and 24 
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the root mean square method (lRMS). Many parameters had high degrees of correlation 1 

with each other, and therefore gave almost identical information. The results of this study 2 

may contribute to the understanding of the surface roughness phenomenon and its 3 

parameterisation in agricultural soils. 4 

Keywords: surface roughness, roughness parameters, agricultural soils, tillage 5 

 6 

1. Introduction 7 

Surface roughness is a key element in the hydrological and erosive behaviour of soils 8 

(Helming at al., 1998), and as a soil-atmosphere frontier, plays an important role in many 9 

processes, such as infiltration, runoff, the detachment of soil due to water or wind, gas 10 

exchange, evaporation and heat fluxes (Huang and Bradford, 1992).  11 

Depending on the order of magnitude of the soil surface elevation variations, and on the 12 

spatial arrangement of its microforms, surface roughness can be classified into different 13 

categories (Römkens and Wang, 1986): (1) Variations in the soil`s microrelief due to its 14 

individual particles and/or microaggregates (variations of the order of 1 mm, but up to 2 15 

mm). (2) Variations in the surface generated by soil clods caused by agricultural practices 16 

(variations of the order of 100 mm, but up to 200 mm); these two roughness types are 17 

considered random and isotropic (i.e., uniform in all directions). (3) Roughness due to the 18 

systematic differences in elevation (i.e., rows or furrows) caused by tillage implements 19 

(variations between 100-200 mm); these forms are one-directional and this component is, 20 

therefore, oriented or anisotropic. (4) Roughness due to the macroforms of the terrain (of 21 

the order of several meters), which together define the topography of the landscape; these 22 

elevation variations are usually non-directional. Although the classification of Römkens 23 

and Wang (1986) associated the effect of tillage with an oriented type of roughness 24 
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(category 3), it is understood that random roughness (categories 1 and 2) is also affected, 1 

to a greater or lesser extent, by tillage. 2 

The order of magnitude in the elevation variations of the two (or three) first roughness 3 

types is lower than the spatial resolution of the digital elevation models that are 4 

conventionally used (Govers et al., 2000; Mushkin and Gillespie, 2005). Hence, in order 5 

to quantitatively characterise those microforms, it is necessary to take complementary 6 

measurements in situ, which permit the calculation of different surface roughness 7 

parameters or indices. 8 

The parameterisation of the random surface roughness caused by tillage (the first two 9 

categories cited above) is not straightforward. Each tillage practices (or implements) 10 

causes, in theory, a particular type of microrelief under identical soil conditions (in terms 11 

of texture, moisture, density, etc.). Considering the wide range of possible soil conditions, 12 

a huge variety of roughness types could be found in agricultural soils immediately after 13 

tilling. In addition, soil physical properties, particularly surface roughness, can also be 14 

highly variable in space. To further complicate its characterisation, surface roughness also 15 

shows a multi-scale nature making any roughness measurement scale-dependent 16 

(Zhixiong et al., 2005; Verhoest et al., 2008; Álvarez-Mozos et al., 2011). Finally, the 17 

microrelief generated by the different tillage practices is more or less susceptible to 18 

change throughout time due to the action of meteorological agents, e.g., precipitation 19 

(Dalla Rosa et al., 2012), wind and temperature changes in the low atmosphere (Pardini, 20 

2003), or even animal activity.  21 

Although there are many parameters and indices for quantifying surface roughness (e.g., 22 

Helming et al., 1993; Magunda et al., 1997; Kamphorst et al., 2000; Vermang et al., 23 

2013), none work universally and interested scientists/technicians find it difficult to select 24 

the most appropriate one for their particular case. The random roughness parameters that 25 
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are most commonly used in the literature, described in section 2.3, were considered in 1 

this study; these parameters can be divided into four groups, following a criterion similar 2 

to that of Smith (2014): (1) parameters measuring the vertical dimension of roughness or 3 

the magnitude of the elevation variations of the points at the soil surface (vertical 4 

parameters), (2) parameters measuring the horizontal dimension of roughness or the 5 

relation between the height of a point and that of its neighbours (horizontal parameters), 6 

(3) parameters combining both dimensions (combined parameters), and (4) parameters 7 

based on fractal theory, which measure self-affinity or the balance between height 8 

variations at different spatial scales (fractal parameters).  9 

In light of the above, the aim of this research was to evaluate and select the most 10 

appropriate surface roughness parameters to characterise and quantify the surface 11 

roughness caused by typical tillage operations. 12 

 13 

2. Material and methods 14 

2.1. Test site 15 

Roughness data were taken in 10 agricultural fields, with an extension ranging from 3 ha 16 

to 7.3 ha. Fields were located in the experimental hydrological watershed of La Tejería 17 

(N42º44’10.6’’ and W1º56’57.2’’) in Navarre (Spain), which has been used in different 18 

research works in the past (e.g., Casalí et al., 2008; Álvarez-Mozos et al., 2009; Álvarez-19 

Mozos et al., 2011). Each of the fields was subjected to different tillage operations (see 20 

Fig. 1.A-E and Table 1) following the conventional soil preparation calendar in the area. 21 

Thus, during the months of September and October, 2004, the obtained data corresponded 22 

to soils subjected to primary tillage, i.e., classes Mouldboard Plough (MP), Harrowed 23 

Rough (HR), and Harrowed Smooth (HS). In the month of November 2004, soils were 24 
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sown with cereal crops, representing typical seedbed conditions; this class was referred 1 

to as Planted Unmodified (PU). Finally, a final measurement was carried out in March 2 

2005. By this time, seedbed soils had been modified by the action of the rainfall that had 3 

occurred since sowing (~250 mm); this class was referred to as Planted Modified (PM). 4 

In total, 164 profiles were taken (see Table 1). Profiles were measured in parallel to tillage 5 

rows, to reflect the random roughness component. 6 

Insert Figure 1 here 7 

Insert Table 1 here 8 

2.2. Profile measurements 9 

Profiles were taken with a profilometer designed ad hoc for roughness measurement 10 

(Álvarez-Mozos et al., 2005). This instrument incorporates a laser sensor that measures 11 

the vertical distance from a reference bar down to the surface. The laser profilometer (see 12 

Fig. 1.F) consists of an aluminium bar with its ends fixed to two tripods. The laser distance 13 

meter is located inside a case that moves along the aluminium bar, propelled by a small 14 

electric motor. The laser profilometer has a vertical accuracy of 1.25 mm and a 15 

measurement interval of 5 mm. The total length of profiles was 5 m, so that in each one 16 

there are 1000 height records. 17 

Profiles were processed using a code developed ad hoc, consisting of: (1) the correction 18 

of the buckling effect on the aluminium bar by detrending profiles with a parabolic curve 19 

obtained from a perfect horizontal reference surface, (2) the application of a filter to 20 

eliminate the outliers eventually detected in the height records (e.g., plant material) by 21 

deleting and interpolating records with height differences larger than 10 cm with the 22 

previous and next records, and (3) the correction of terrain slope (i.e., profile detrending) 23 

through the subtraction of the linear trend observed in the data (Xingming et al., 2014). 24 
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Once this process had been carried out, the profiles were ready for the calculation of the 1 

different roughness parameters. 2 

It should be noticed that the data analysed in this study are 2D profiles and that inferences 3 

about 3D phenomena (e.g., depression storage) should be made with caution. 4 

2.3. Calculation of roughness parameters 5 

In total, 21 surface roughness parameters were analysed (Table 2); these parameters could 6 

be classified into vertical, horizontal, combined, and fractal parameters, as explained in 7 

the introduction. Next, each parameter is briefly described; parameter names are 8 

highlighted in bold for clarity. 9 

Insert Table 2 here 10 

Random roughness, one of the indices most frequently used to describe surface 11 

roughness, was proposed by Allmaras et al. (1966) as the standard deviation of heights 12 

after the elevations were transformed to natural logarithms and corrected for slope and 13 

tillage tool marks. After Currence and Lovely (1970) showed that the parameter was more 14 

sensitive without any logarithmic transformation, most authors (e.g., Bertuzzi et al., 1990; 15 

Hansen et al., 1999; Kamphorst et al., 2000) calculate random roughness as the standard 16 

deviation of heights (s) (eq. 1): 17 

ݏ ൌ ට∑ ሺ௭೔మି௭̅మሻ
ಿ
೔సభ

ேିଵ
         (1) 18 

where ܰ is the number of height records, ݖ௜ is the height corresponding to record ݅, and 19 ̅ݖ 

is the mean height of all the records. 20 

The correlation length (lACF) represents the horizontal component of roughness, i.e., it 21 

describes the relative location of heights or the way in which the heights vary along the 22 
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surface (Ogilvy and Foster, 1989). The correlation length was calculated from the 1 

autocorrelation function (eq. 2) (Ulaby et al., 1982): 2 

ሺ݄ሻߩ ൌ
∑ ௭೔௭೔శ೓
ಿሺ೓ሻ
೔సభ

∑ ௭೔మ
ಿ
೔సభ

         (2) 3 

where ߩሺ݄ሻ is the autocorrelation function, which represents the correlation existing 4 

between height z of the point i (ݖ௜ሻ and that of another point located at a lag distance h 5 

from it (ݖ௜ା௛), and ܰሺ݄ሻ is the number of pairs considered in each lag h. The correlation 6 

length (lACF) is then defined arbitrarily as the distance at which the heights of two points 7 

on the surface are considered independent; i.e., ߩሺ݄ሻ is equal to 1/݁, so that ߩሺ݈ሻ ൌ 1/݁. 8 

Another parameter extracted from the autocorrelation function is its initial slope (ρ'(0)), 9 

which also provides a measure of the horizontal roughness (Borgeaud et al., 1995), but in 10 

this case at a more local scale, i.e., focusing on the height variations of a point with its 11 

nearest neighbours. Zribi and Dechambre (2003) proposed parameter ZS as a 12 

combination of s and lACF (eq. 3), and thus accounted for both vertical and horizontal 13 

roughness components: 14 

ܼ௦ ൌ  ଶ/݈஺஼ி          (3) 15ݏ

The concepts of the limiting elevation difference (LD) and the limiting slope (LS) were 16 

developed to include the spatial aspect of roughness (Linden and Van Doren, 1986). 17 

Parameter LD supplies information on the characteristics of roughness at long distances, 18 

whereas LS is used to characterise roughness at short distances (Bertuzzi et al., 1990). 19 

The mean absolute-elevation-difference is defined as (eq. 4): 20 

௛ݖ∆ ൌ ∑ |௭೔ି௭೔శ೓|

ேሺ௛ሻ
ேሺ௛ሻ
௜ୀଵ          (4) 21 

The relationship between ∆ݖ௛ and the lag distance h was obtained from a hyperbolic 22 

linear model defined by (eq. 5): 23 
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௛ݖ∆/1 ൌ ܽ ൅ ܾሺ1/݄ሻ         (5) 1 

where a and b are the fitting parameters obtained for an arbitrary horizontal distance. 2 

After testing different values, and following the recommendation of Linden and Van 3 

Doren (1986), this distance was set to 20 cm. Parameter LD (eq. 6) determines the shape 4 

of the variogram, assumed to follow a hyperbolic function: 5 

ܦܮ ൌ 1/ܽ          (6) 6 

Parameter LS (eq. 7) is the original variogram slope (Kamphorst et al. 2000), given by: 7 

ܵܮ ൌ 1/ܾ          (7) 8 

Linden et al. (1988) proposed a third parameter that was obtained as a combination of 9 

parameters LD and LS, called parameter Q (eq. 8). This parameter can be considered a 10 

combined roughness parameter. 11 

ܳ ൌ ሺܦܮ ∙  ሻଵ/ଶ         (8) 12ܵܮ

The semivariogram represents how height data are related to distance. The semivariance 13 

function depending on the lag h can be calculated as: 14 

ሺ݄ሻߛ ൌ ଵ

ଶேሺ௛ሻ
∑ ሾݖ௜ା௛ െ ௜ሿଶݖ
ேሺ௛ሻ
௜ୀଵ        (9) 15 

Once the experimental semivariogram was calculated, a spherical model was fitted to it 16 

(Vázquez et al., 2009; Croft et al., 2013): 17 

ሺ݄ሻߛ ൌ ൝
ܿଵ ൤1.5

௛

௛ೌ
െ 0.5 ቀ ௛

௛ೌ
ቁ
ଷ
൨ ൅ ܿ଴	; ݄ ൑ ݄௔

ܿଵ ൅ ܿ଴																																						; ݄ ൐ ݄௔
     (10) 18 

where ݄௔ is the Range, ܿଵ is the Sill, and ܿ଴ is the Nugget. After testing different values, 19 

100 cm of maximum lag distance was deemed sufficient to accurately fit the spherical 20 

model to the experimental semivariogram. Sill represents the value of ߛሺ݄ሻ where the 21 
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fitted model reaches the plateau, and Range is the distance at which the Sill is found. No 1 

nugget effect was taken into account (Vermang et al., 2013). Both Sill and Range have 2 

been frequently used as soil surface roughness indices (e.g., Helming et al., 1993; 3 

Vázquez et al., 2009; Croft et al., 2009, Croft et al., 2013; Vermang et al., 2013). 4 

Parameter MIF (eq. 11) was formulated by Römkens and Wang (1986) with the aim of 5 

quantitatively describing surface roughness. This dimensionless parameter represents the 6 

integrated effect of the peak frequency (F) and the microrelief index (MI), and it is 7 

defined arbitrarily as:  8 

ܨܫܯ ൌ ܫܯ ∙  9 (11)          ܨ

where MI represents the area per unit of length between the measured surface profile and 10 

the regression line of least squares through all measured elevations on a transect 11 

(Römkens and Wang, 1986), and F is the number of peaks (i.e., points with higher 12 

elevations than their neighbours on both sides) per unit of length of the profile. Parameters 13 

MI and F (eq. 11) are evaluated separately as descriptive parameters of vertical and 14 

horizontal roughness, respectively. 15 

The Mean Upslope Depression index (MUD) (eq. 12) was specifically developed to 16 

predict surface storage capacity (Hansen et al., 1999). The MUD is based on the elevation 17 

differences ሺݖ௜ െ  ௜ା௛ሻ between a reference point i and another i+h on a line segment 18ݖ

positioned upslope from the reference point. Within each line segment, the calculation 19 

procedure is iterated for a number of sub-segments, each time taking a new upslope point 20 

as the reference point (Hansen et al., 1999): 21 

ܦܷܯ ൌ ∑ ቀ∑ ∆௭

௡
௡
௝ୀଵ ቁ௠

௜ୀଵ ݉⁄ 	൜
ݖ∆ ൌ ௜ݖ െ ;	௜ା௛ݖ ௜ݖ ൒ ௜ା௛ݖ
ݖ∆ ൌ 0															; ௜ݖ ൏ ௜ା௛ݖ

    (12) 22 
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where n is the number of points in a line sub-segment and m is the number of line sub-1 

segments. In Hansen et al. (1999), no particular segment length was recommended, but 2 

they considered a 30-cm length for their conditions. In our case, after testing different 3 

values, a segment length of 20 cm was selected. 4 

Tortuosity is a roughness index based on the ratio of the surface profile perimeter length 5 

 Although variants do exist (e.g., Boiffin, 1984; 6 .(଴ܮ) and its horizontal projection (ଵܮ)

Planchon et al., 1998), the present study used the tortuosity index of Saleh (TS) (eq. 13) 7 

(Saleh et al., 1993): 8 

ௌܶ ൌ 100 ∙ 	
ሺ௅భି௅బሻ

௅భ
         (13) 9 

Different methods have been used to calculate the fractal dimension (and in some cases 10 

the crossover length), which characterises the self-affinity of surface roughness profiles. 11 

The semivariogram method (SMV) was introduced to study the variability of soil 12 

properties and subsequently used to quantify roughness (Burrough, 1983a,b; Armstrong, 13 

1986; Huang and Bradford, 1992; Vidal Vázquez et al., 2005; Chi et al., 2012; Vermang 14 

et al., 2013). The first step in the estimation of the fractal dimension is the calculation of 15 

the experimental semivariogram (eq. 9) (Vidal Vázquez et al., 2005). Assuming a fractal 16 

Brownian motion (fBm) model, the experimental semivariogram can be described as a 17 

function of the lag (Eq. 14): 18 

ሺ݄ሻߛ ൌ ݈ଵିு݄ு         (14) 19 

where l is the crossover length and H is the Hurst coefficient. After a log-log 20 

transformation of eq. 14, H can be estimated as the slope of the semivariance versus the 21 

lag distance. When applied to surface roughness profiles, the logarithmic transformation 22 

normally yields a curved trend rather than a line, thus revealing a multi-fractal nature 23 

(Vidal Vázquez et al., 2005; Moreno et al., 2008). In this study, only the fractality of the 24 
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first stretch (where the linear assumption holds) was measured. For that purpose, a 1 

maximum lag distance of 10 cm was considered because it provided a good fit to the 2 

linear trend in all the profiles. Afterward, the Hurst coefficient was related to the fractal 3 

dimension as follows (Smith, 2014) (eq. 15): 4 

ௌெ௏ܦ ൌ 1 ൅ ݀ െ ܪ ൌ 2 െ  5 (15)        ܪ

where d is the Euclidean dimension of the system (i.e., 1 for profiles, 2 for surfaces, etc.). 6 

Further, the crossover length (lSMV) (eq. 16) can be calculated as follows (Huang and 7 

Bradford, 1992): 8 

݈ௌெ௏ ൌ ݌ݔ݁ ቂ ௔ೄಾೇ

ሺଶିଶுሻ
ቃ         (16) 9 

where ܽௌெ௏ is the intercept of the linear trend fitted to the first stretch of the 10 

semivariogram. 11 

The root mean square method (RMS) is based on the evaluation of the root mean square 12 

deviation of elevation values for increasing lag distances, and it has been used in different 13 

studies (Malinverno, 1990; Gallant et al., 1994; Moreira et al., 1994; Vidal Vázquez et 14 

al., 2005). The average RMS values for increasing lag distances (h) are calculated as 15 

(Vidal Vázquez et al., 2005): 16 

ഥܹ ሺ݄ሻ ൌ ଵ

௡೓
∑ ቄଵ

௡
∑ ሾݖ௜ െ ௛̅ሿଶ௜∈௛ݖ ቅ

ଵ
ଶൗ௡೓

௨ୀଵ       (17) 17 

where ݊௛ is the total number of lags of size h and ݖ௛̅ represents the average elevation 18 

values for all points of each lag. As in the semivariogram method, the slope of the 19 

logarithmic transformation of ഥܹ ሺ݄ሻ gives an estimation of the Hurst coefficient, which 20 

enables the calculation of the fractal dimension (DRMS) and the crossover length (lRMS) 21 

(eq. 15 and 16). 22 
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The estimation of the fractal dimension by the box counting method (BC) is motivated 1 

by the scale law defined by Mandelbrot (1977): 2 

ሻݎሺܦ ൌ ୪୭୥	ሺேೝሻ

୪୭୥	ሺଵ ௥⁄ ሻ
         (18) 3 

where ௥ܰ stands for the minimum number of boxes of a width r that can cover the object 4 

(i.e., surface profile). The basic idea is simple since the profile to be studied is initially 5 

covered by a single box. That box is divided into 4 quadrants, and the number of quadrants 6 

required to cover the profile are counted. Then, each quadrant is divided into another four 7 

sub-quadrants, and this division goes on until the width of the boxes reaches the resolution 8 

of the data, counting the number of cells required to cover the profile in each step 9 

(Gneiting et al., 2012). Function ܦሺݎሻ is transformed into logarithms and fitted to a 10 

regression line, from whose slope (ߙ) the fractal dimension DBC (eq. 19) (Liang et al., 11 

2012) is obtained: 12 

஻஼ܦ ൌ െ13 (19)          ߙ 

A further technique used to determine the Hurst coefficient, and hence the fractal 14 

dimension, is the power spectrum method (PS) (Gneiting et al., 2012). This estimator is 15 

based on the spectral density function ܵሺݒሻ for a stationary stochastic process, obtained 16 

by the fast Fourier transform (FFT), which depicts how the roughness is distributed in 17 

components of different frequencies ሺݒሻ. The Hurst coefficient is obtained through the 18 

regression line of the logarithmic transformation of function ܵሺݒሻ, and thereafter the 19 

fractal dimension (DPS) (eq. 15). 20 

Finally, the rescaled range method (RS) (Liu and Molz, 1996; Liang et. al, 2012) was 21 

also used, which is based on calculating the fitted range R in terms of the lag distance h: 22 

ܴሺ݄ሻ ൌ ܴ௔/ݏሺ݄ሻ         (20) 23 
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where ܴ௔ is the sum of the absolute values of the largest positive and negative deviations 1 

of lag points from its trend line, and ݏሺ݄ሻ is the standard deviation of each lag. As in the 2 

previous cases, to obtain the Hurst coefficient, a linear regression of the logarithmic 3 

transformation of ܴሺ݄ሻ is made, from which the fractal dimension (DRS) (eq. 15) is 4 

obtained. 5 

2.4. Parameter evaluation 6 

2.4.1. Descriptive analysis 7 

To assess the different parameters, first, the different roughness classes were visually 8 

analysed. The box plots generated by each of the parameters per roughness class were 9 

also visually analysed. 10 

2.4.2. Separability analysis 11 

The evaluated roughness parameters did not necessarily follow Gaussian probability 12 

distribution functions, since they might have asymmetric distributions. Furthermore, the 13 

different roughness classes did not necessarily have comparable variances. Hence, the 14 

comparison of parameters and classes could not rely on classic statistical tools, such as 15 

the analysis of variance (requiring Normality and homoscedasticity), and thus the 16 

separability analysis was used to select the most suitable parameters for the 17 

characterisation of different roughness classes. Separability, or dissimilarity, is a 18 

statistical metric that quantifies how different two sets of data are; it can be evaluated by 19 

computing different statistical distance measures (e.g., Divergence, Bhattacharyya 20 

distance, etc.). In this study, the Jeffries-Matusita Distance (ܦ௃ெ) (Swain and King, 1973) 21 

was used, which was calculated for each parameter and pair of roughness classes. ܦ௃ெ 22 

(eq. 21) has been frequently used to analyse similarity and feature selection processes, 23 
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and a good number of studies recommend its use (e.g., Bruzzone et al., 1995; D’Urso and 1 

Menenti, 1996): 2 

௃ெܦ ൌ ׬ ቂ൫ඥ݂ሺݔሻ െ ඥ݃ሺݔሻ൯
ଶ
ቃ  3 (21)       ݔ݀

where ܦ௃ெ is the distance between classes ݂ሺݔሻ and ݃ሺݔሻ measured by the parameter x. 4 

 ሻ completely 5ݔሻ and ݃ሺݔ௃ெ  has a range of variability between 0 and 2, i.e., 0 means ݂ሺܦ

overlap and 2 means they are completely separable. Values below 1 can be considered of 6 

poor separability, whereas values from 1-1.5 corresponds to moderate separability, and 7 

1.5-2 to high separability (Skriver, 2007). By using this analysis, we aimed to quantify 8 

the ability of the different parameters to discriminate between different roughness classes. 9 

2.4.3. Correlation analysis 10 

A correlation analysis was performed to study the relationships between the different 11 

roughness parameters. For this purpose, the Spearman correlation coefficient (R) was 12 

calculated, which is particularly indicated for detecting any type of monotonic 13 

relationship. 14 

 15 

3. Results 16 

3.1. Descriptive analysis 17 

Roughness class MP presented a higher range of variation in its profile elevations (i.e., 18 

vertical roughness) as a result of the presence of soil clods of up to 10 cm in size, with no 19 

clear spatial pattern or arrangement (Fig. 2). Visually, classes HR and HS did not exhibit 20 

such a large vertical roughness (which was smaller in HS than in HR), but their horizontal 21 

roughness seemed greater than in MP, i.e., displaying more serrated profiles. Classes PU 22 

and PM showed an even smaller range of vertical variation, and although PU had a high 23 
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horizontal roughness, the smoothing effect of the rain, which translated into a lesser 1 

horizontal roughness, could be clearly seen in PM. In this first visual analysis, they could 2 

be ranked –as we understand– in an increasing order of roughness, as follows: 3 

PM<PU<HS<HR<MP. 4 

Insert Figure 2 here 5 

3.2. Parameters per roughness class 6 

The behaviour of the different parameters in terms of the roughness classes were analysed 7 

using boxplots (Fig. 3). In the vertical parameters the mean class values increased with 8 

the roughness, which could be visually observed (Fig. 2). Furthermore, the variability of 9 

each class increased as its roughness did, with a minimum variability for classes PM and 10 

PU, followed by HS and HR, and with a maximum variability for MP. All in all, different 11 

types of tillage (i.e., classes PU, HS, HR, and MP) could be differentiated with relative 12 

clarity. The effect of rainfall lowered class PM’s values, compared to PU, in most vertical 13 

parameters, but their differences were rather small and both classes overlapped to a 14 

certain degree. 15 

Insert Figure 3 here 16 

Horizontal parameters did not exhibit the same trend as the vertical ones (Fig. 3). 17 

Regarding the variability per class, different patterns were observed for the different 18 

parameters, although MP was less variable than the other classes in all parameters. 19 

Parameters lACF and Range behaved similarly, with comparable values for the different 20 

classes and many outliers especially in the least rough classes (i.e., PM and PU). 21 

Parameters ρ'(0) and F followed a similar trend, showing a moderate differentiation 22 

between classes PU, HS, HR, and MP; however, the action of precipitation modified that 23 

trend and made class PM take lower ρ'(0) and F values than PU, indicating a higher 24 
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correlation between the surface elevations. Finally, parameter LS took increasing values 1 

for increasing roughness conditions (i.e., PU, HS, HR, and MP), but there was a high 2 

overlap between classes; nevertheless, this parameter seemed to clearly differentiate PM 3 

from the other classes. 4 

The combined parameters followed a trend similar to the vertical parameters (Fig. 3), i.e., 5 

their values increased with increasing roughness, but the combine parameters did not have 6 

the same marked difference in parameter variability than the vertical parameters did, at 7 

least not in all cases (see parameters Q and TS in Fig. 3). Parameters MIF and MUD, and 8 

to a lesser extent ZS, did behave very similarly to the vertical ones, with increases in 9 

variability as roughness increased; however, parameter Q did not follow this behaviour, 10 

as it had a very similar variability in all the classes. Finally, parameter TS followed a 11 

completely different pattern, with a good separation between classes PM and PU but 12 

minor differences between the rest. 13 

Regarding fractal parameters, the D values calculated with different techniques behaved 14 

similarly, although their absolute values differed slightly (Fig. 3); their performance 15 

resembled that of parameter ρ'(0). This pattern indicates a more self-affine behaviour as 16 

tillage classes increased in roughness, although the precipitation effect modified that 17 

tendency. The variability of the fractal dimensions was rather homogeneous for all the 18 

classes, but the crossover lengths behaved completely differently. Parameter lSMV 19 

followed a very similar trend to the mixed parameters Q and MUD, with incrementing 20 

values for roughness classes, and a very homogeneous variability for all of them. 21 

Meanwhile, parameter lRMS was similar to the horizontal parameter LS, with similar values 22 

for most tillage classes, but with a clear differentiation of class PM. 23 

3.3. Separability between roughness classes 24 



17 
 

The vertical parameters and the combined parameters MUD and Q showed better mean 1 

separability with DJM values >1 (Table 3). More precisely, parameters LD and MUD were 2 

those with a higher mean separability (DJM~1.25). The rest of the combined parameters 3 

(MIF, ZS and TS) offered moderate separabilities (DJM~0.9). The horizontal parameters 4 

displayed somewhat lower mean separabilities, with DJM values of 0.6-0.7, but in the case 5 

of lACF and Range, DJM did not reach 0.3. Lastly, the fractal dimensions calculated with 6 

different techniques followed similar patterns, although their mean separabilities varied 7 

significantly, from 0.92 (DRMS) to 0.52 (DRS), though the crossover lengths behaved 8 

differently. Parameter lSMV ended up reaching a higher separability than 1, while 9 

parameter lRMS hardly exceeded the mean separability of 0.4. 10 

Insert Table 3 here 11 

The vertical parameters had the highest separability values between classes PU, HS, HR, 12 

and MP, especially parameter LD, but none of the vertical parameters was particularly 13 

successful at detecting rainfall smoothening, i.e., separating PM and PU, since in no case 14 

did DJM reach values above 0.4 for these two classes. Separability values between 15 

neighbouring tillage classes (i.e., PU vs. HS, HS vs. HR, and HR vs. MP) were not high 16 

for any of the vertical parameters; Sill and LD functioned best in these cases. For 17 

horizontal parameters, separability between class pairs was generally lower than for 18 

vertical parameters. Nevertheless, the highest DJM value between classes PM and PU was 19 

obtained by parameter LS with a value ~0.9. The behaviour of the combined parameters, 20 

once more, was similar to the vertical ones, offering separabilities comparable to those, 21 

especially for parameters MUD and Q. Regarding the separation between classes PM and 22 

PU, better separabilities were obtained than with the vertical parameters (especially for 23 

TS, ZS, and Q), although still lower than those of LS. In addition, parameters Q, MUD, and 24 

TS offered the highest separabilities between PM and classes HS, HR, and MP. Lastly, 25 
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regarding fractal parameters, although the different dimensions did not generally exhibit 1 

high separabilities, DRMS had some of the highest separabilities between PU and classes 2 

HR and MP and between HS and HR and MP, and DBC had the highest separability 3 

between classes PU and MP. Regarding the crossover lengths, although the separability 4 

between the different tillage types (PU, HS, HR, and MP) was not high, the good 5 

separability obtained between class PM and the rest was highly noteworthy (especially 6 

for lSMV). 7 

3.4. Parameter correlation 8 

With regard to the correlations between parameters of one type, the vertical parameters 9 

were highly correlated with each other, with R~0.9 (Fig. 4); however, the horizontal 10 

parameters showed more heterogeneous behaviour with different R values. Parameters 11 

lACF and Range had a good correlation (R~0.85), as did ρ'(0) with F, lACF, and Range 12 

(although slightly lower, R~0.6), but the other parameters had relatively low correlations. 13 

Parameter LS, in general, had low correlations with the rest of the horizontal parameters. 14 

On the other hand, mixed parameters showed quite homogeneous behaviour with high 15 

correlations (R~0.9) with each other, but a little lower for ZS and MIF (R~0.75). Finally, 16 

the different fractal dimensions showed high correlations between each other (R≥0.8), 17 

except for parameter DRS (R~0.6). The crossover lengths (lSMV and lRMS) were only 18 

moderately correlated (R~0.6). 19 

Insert Figure 4 here 20 

Overall, vertical parameters correlated well with mixed ones (R≥0.8), except for ZS and 21 

TS, which had somewhat lower correlations (R~0.6). A negative correlation was found 22 

between the vertical parameters and fractal dimensions, although they measure different 23 

phenomena; this would indicate that the greater the vertical roughness, the more self-24 
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affine a surface is. The crossover lengths (lSMV and lRMS) presented a disparate behaviour. 1 

Although lSMV had a good correlation with the different fractal dimensions (negative 2 

correlation), F (negative correlation), and most vertical and combined parameters, lRMS 3 

had no correlations with the different fractal dimensions and lower correlations than lSMV 4 

with the vertical and combined parameters. In both cases, the correlation with parameter 5 

LS was high, especially in the case of lRMS (R≥0.9). 6 

 7 

4. Discussion 8 

4.1. Differentiation between tillage types 9 

The values of s and LD obtained for the different classes are comparable to those reported 10 

in the literature for similar conditions (e.g., Zobeck and Onstad, 1987; Helming et al., 11 

1993; Arvidsson and Bolenius, 2006; Bauer et al., 2015). In the absence of significant 12 

changes caused by the rainfall, s and LD have been successfully related to the size of soil 13 

clods and then proposed as good indices for distinguishing different tillage types 14 

(Helming et al., 1993; Eltz and Norton, 1997; Magunda et al., 1997; Kamphorst et al., 15 

2000; Vermang et al.. 2013; Bauer et al., 2015). The values of Sill obtained here were 16 

considerably higher (although within the range of variation) than those reported by 17 

Helming et al. (1993) and Vermang et al. (2013), partly because their experiments were 18 

carried out using artificial roughness and because of the measurement scale. 19 

Regarding the horizontal parameters, there is no agreement in the literature. For instance, 20 

several authors reported increasing values of lACF for increasing roughness conditions 21 

(Davidson et al., 2003; Baghdadi et al., 2008), while others observed more similar 22 

behaviour to that obtained here, with no clear differences between roughness classes 23 

(Álvarez-Mozos et al., 2005; Verhoest et al., 2008). The Range values obtained in this 24 



20 
 

study were, in general, higher (although within the range of variation) than those reported 1 

by other authors (Helming et al., 1993; Vermang et al., 2013), but with an important 2 

overlap between classes and frequent outliers. Parameters lACF and Range were obtained 3 

using different techniques but represent analogous concepts (Vidal Vázquez et al., 2005), 4 

and this is corroborated by the results presented here. Parameters ρ'(0) and F were the 5 

horizontal parameters that best differentiated tillage classes; this is due to the geometry 6 

of the microforms presented in the smooth classes and the macroforms presented in the 7 

roughest classes, since the smaller the size of the clods, the more parameter F increased 8 

(Bertuzzi et al., 1990). This same phenomenon explains that the reason that ρ'(0) took 9 

lower values in the roughest classes was due to the presence of macroforms, which made 10 

the autocorrelation function descend more gently in these classes, whereas it did so more 11 

abruptly in smoother tillage classes with greater microform presence. 12 

On the other hand, the combined parameters have been rarely used as an approach to 13 

separate tillage types. Baghdadi et al. (2008) mentioned that parameter ZS took on values 14 

of <0.1 cm for smooth soils and >0.1 cm for ploughed ones, but did not investigate 15 

different tillage practices in greater detail. Zribi and Dechambre (2003) found a direct 16 

correlation between the values of ZS and the clod’s size; they reported a variation range 17 

of ZS between 0.07 cm and 1.93 cm for agricultural soils. This trend agrees with our 18 

results, although we observed considerable overlapping between similar tillage classes 19 

and a slightly narrower range of values. On the other hand, MIF appeared to be good 20 

parameter to separate different tillage classes (Lehrsch et al., 1988; Bertuzzi et al., 1990). 21 

In fractal parameters, although some authors found that the values of fractal dimensions 22 

and their respective crossover lengths (calculated with different techniques) should be 23 

relatively similar (Vidal Vázquez et al., 2005; Vivas Miranda et al., 2002), there is not 24 

always an agreement between the values shown in different works. For instance, some 25 
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authors (e.g., Gallant et al., 1994) found substantial variations between methods. In our 1 

case, despite the differences in magnitude, we observed that the behaviour was very 2 

similar in the different procedures used. This is in accord (except for the case of lRMS) 3 

with Chi et al. (2012), who concluded that, generally, the fractal dimension (parameter 4 

D) decreased and the crossover length (parameter l) increased with the increment of soil 5 

clods. Vermang et al. (2013) also reported that the rougher the surface, the lower 6 

parameter D was.  7 

For all the above, parameter LD is recommended to separate the different types of tillage 8 

studied in terms of the vertical roughness, parameter ρ'(0) in terms of the horizontal 9 

roughness, parameter MUD in terms of both properties, and parameter DRMS in terms of 10 

its self-affinity. 11 

4.2. Effect of rainfall on the different roughness parameters 12 

Although the values of all the vertical parameters changed after successive rainfalls, those 13 

changes were not significant enough to clearly differentiate the precipitation effect 14 

(Huang and Bradford, 1992; Vermang et al., 2013). In this sense, Bertuzzi et al. (1990) 15 

and Magunda et al. (1997) found that parameters representing the roughness’ vertical 16 

component were good indicators of roughness at higher scales (and then useful to 17 

differentiate tillage types), whereas the horizontal parameters were appropriate at lower 18 

scales (and hence suitable to evaluate changes in roughness due to rainfall).  19 

As opposed to the vertical parameters, in Vermang et al. (2013), the values of Range and 20 

lACF increased after rainfall events (applied with a rain simulator). Helming et al. (1993) 21 

and Croft et al. (2009) also observed an increase in parameter Range after rain, which 22 

Helming et al. (1993) attributed to the smoothing and broadening of the largest soil clods, 23 

and Croft et al. (2009) indicated a higher spatial correlation. From a semivariogram 24 



22 
 

analysis, Helming et al. (1993) and Vermang et al. (2013) observed that, on surfaces with 1 

small roughness, rain events gave rise to more erratic Range patterns. Our results are in 2 

agreement with these trends, since the rainfall led to a reduction in vertical parameter 3 

values and increases in the Range and lACF values. 4 

There were other parameters that displayed a greater sensitivity to the effect of rain. 5 

Parameter LS was the most sensitive to the changes in roughness caused by precipitation, 6 

followed by lRMS and lSMV or TS. Taconet and Ciarletti (2007) concluded that TS was a 7 

more suitable parameter than s to detect soil smoothing due to rain. With regard to the 8 

fractal dimensions, in contrast to what was observed here, Vermang et al. (2013) reported 9 

that parameter D increased after rain events in the soils with small roughness, while it 10 

decreased in very rough soils. Eltz and Norton (1997) also observed an increase in 11 

parameter D and a reduction in l after precipitation. Further, Vidal Vázquez et al. (2007) 12 

and Paz-Ferreiro (2008) found similar behaviour to that seen here, with reductions both 13 

in D and in l after rain.  14 

Some of these variations can be, to some extent, explained if we take into account that 15 

rain can either smoothen the roughness, if the sealing processes in the soil are dominant, 16 

or increase roughness, if rills or gullies are developed (Vermang et al., 2013). The soils 17 

studied here had a single tillage treatment modified by the precipitation (roughness class 18 

PM), so that in order to confirm these trends, it would be necessary to carry out similar 19 

experiments in all the other treatments. 20 

4.3. Correlation between parameters 21 

Most of our findings are in agreement with previous investigations. We observed a strong 22 

correlations between the vertical parameters, such as: s and LD (Linden and Van Doren, 23 

1986; Bertuzzi et al., 1990; Magunda et al., 1997); s and Sill (Croft et al., 2013); LS and 24 
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TS (Bertuzzi et al., 1990); lACF and Range (Vidal Vázquez et al., 2005); and s and DSMV 1 

(negative correlation) (Chi et al., 2012). However, some of our results partly disagreed 2 

with previous findings, e.g., the lack of correlation between MIF and other parameters, 3 

such as s or TS (Bertuzzi et al., 1990), or the high correlation between s and LS (Magunda 4 

et al., 1997). 5 

 6 

5. Conclusions 7 

In this study, the most widely used roughness parameters in earth sciences were selected 8 

and their ability to discriminate between the different soil roughness classes created by 9 

typical tillage operations was evaluated. 10 

Vertical and combined parameters took higher values as tillage became rougher. 11 

Horizontal parameters did not show such a clear pattern, with some parameters being 12 

rather insensitive to tillage (lACF and Range), and other increasing (LS) and some others 13 

decreasing (ρ'(0) and F) as tillage became rougher. On the contrary, the different fractal 14 

dimensions that were tested showed a consistent behaviour, with values decreasing (more 15 

auto-affine behaviour) as tillage became rougher. All in all, the best parameters for 16 

differentiating and characterising different tillage types were LD and MUD. 17 

The effect of rainfall was apparent in most parameters. The ones most sensitive to rainfall 18 

action were the horizontal parameter LS, the crossover lengths (lSMV and lRMS), and, to a 19 

lesser extent, the combined parameter TS. 20 

Many of the evaluated parameters were highly correlated with each other (all the vertical 21 

parameters or the combined parameters Q and MUD) and therefore provided almost 22 

identical information. For these, our recommendation is to select the simplest ones (i.e., 23 

s or MUD); however, some parameters showed low correlation values with the rest, since 24 
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they offered complementary information (i.e., lSMV, LS, or lACF). These parameters could 1 

be interesting depending on the particular application pursued. 2 

It is expected that the results of this study could contribute to the understanding of the 3 

surface roughness phenomenon and to its parameterisation in agricultural soils; however, 4 

more research is needed to better characterise roughness dynamics due to the action of 5 

rainfall. 6 
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Table 1. Description of the different roughness classes triggered by agricultural 1 

treatments. 2 

Tillage class Acronym Profiles Description 

Mouldboard Plough MP 20 
Tillage operation performed with a plough with multiple mouldboards at a 
depth of 15-20 cm, resulting in soil inversion and a very rough surface 

Harrowed Rough HR 43 
Operation performed normally with a tine harrow to break soil clods and 
provide a smoother surface suitable for seeding 

Harrowed Smooth HS 29 
In cases where the first harrowing did not smoothen sufficiently the surface 
a second harrowing is applied 

Planted Unmodified PU 44 
Seeding operation performed with conventional sowing machinery, 
normally seed drills 

Planted Modified PM 28 
Planted soils modified by the action of the precipitation during 4 months 
(~250 mm) 

 3 

  4 
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Table 2. Summary of roughness parameters analysed. 1 

Type Parameter Description Reference 

Vertical s (cm) Standard deviation of the heights Allmaras et al., 1966 

 LD (cm) Limiting elevation difference Linden and Van Doren, 1986 

 Sill (cm2) Sill of the semivariogram Croft et al., 2013 

 MI (cm) Microrelief index Römkens and Wang, 1986 

Horizontal lACF (cm) Correlation length  Ulaby et al., 1982 

 ρ'(0) Initial slope of the auto-correlation function Ulaby et al., 1982 

 LS Limiting slope Linden and Van Doren, 1986 

 Range (cm) Range of the semivariogram Croft et al., 2013 

 F (cm-1) Peak frequency Römkens and Wang, 1986 

Combined ZS (cm) Combined parameter Zribi and Dechambre, 2003 

 Q (cm1/2) Combined parameter Linden et al., 1988 

 MIF Combined parameter Römkens and Wang, 1986 

 MUD (cm) Mean Upslope Depression index Hansen et al., 1999 

 TS Tortuosity Saleh et al., 1993 

Fractals DSMV Fractal dimension (“semivariogram” method) Vidal Vázquez et al., 2005 

 DRMS Fractal dimension (“root mean square” method) Vidal Vázquez et al., 2005 

 DBC Fractal dimension (“box counting” method) Gneiting et al., 2012 

 DPS Fractal dimension (“power spectrum” method) Gneiting et al., 2012 

 DRS Fractal dimension (“rescaled range” method) Liu and Molz, 1996 

 lSMV (cm) Crossover length (“semivariogram” method) Vidal Vázquez et al., 2005 

 lRMS (cm) Crossover length (“root mean square” method) Vidal Vázquez et al., 2005 

 2 

  3 
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Table 3. Separability (DJM) of the parameters per pairs of roughness classes. The 1 

parameter with the highest separability is in dark grey, and the other two parameters with 2 

a high separability for each pair of classes in pale grey. 3 

Parameter 
Separability between classes 

PM-PU PM-HS PM-HR PM-MP PU-HS PU-HR PU-MP HS-HR HS-MP HR-MP Mean 

s (cm) 0.23 1.03 1.61 1.84 0.64 1.33 1.75 0.28 1.24 0.80 1.07 

LD (cm) 0.40 1.61 1.67 1.92 0.72 1.25 1.81 0.73 1.64 0.80 1.26 

Sill (cm2) 0.27 1.07 1.45 1.68 0.73 1.25 1.59 0.27 1.16 0.87 1.03 

MI (cm) 0.20 0.99 1.58 1.82 0.60 1.29 1.73 0.27 1.23 0.81 1.05 

lACF (cm) 0.09 0.08 0.17 0.73 0.01 0.02 0.52 0.03 0.58 0.46 0.27 

ρ'(0)ACF 0.40 0.09 0.11 1.00 0.15 0.82 1.66 0.34 1.11 0.83 0.65 

LS 0.90 1.38 1.47 1.70 0.11 0.16 0.29 0.01 0.06 0.04 0.61 

Range (cm) 0.05 0.08 0.27 0.17 0.01 0.16 0.13 0.12 0.11 0.08 0.12 

F (cm-1) 0.02 0.43 0.59 1.19 0.58 0.78 1.41 0.28 0.76 0.21 0.62 

ZS (cm) 0.69 1.26 1.44 1.83 0.24 0.71 1.39 0.37 0.98 0.21 0.91 

Q (cm1/2) 0.65 1.67 1.75 1.97 0.50 0.96 1.69 0.40 1.36 0.51 1.15 

MIF 0.22 0.81 1.37 1.73 0.43 0.98 1.60 0.17 1.06 0.75 0.91 

MUD (cm) 0.49 1.65 1.74 1.96 0.64 1.19 1.83 0.58 1.59 0.73 1.24 

TS 0.74 1.58 1.72 1.92 0.38 0.63 1.14 0.10 0.50 0.17 0.89 

DSMV 0.34 0.11 0.65 1.59 0.41 1.04 1.74 0.27 1.15 0.50 0.78 

DRMS 0.24 0.12 0.90 1.72 0.56 1.30 1.85 0.51 1.47 0.50 0.92 

DBC 0.38 0.04 0.59 1.62 0.37 1.11 1.86 0.37 1.35 0.47 0.82 

DPS 0.12 0.06 0.75 1.42 0.30 1.12 1.65 0.46 1.16 0.33 0.74 

DRS 0.28 0.06 0.15 0.66 0.27 0.81 1.50 0.27 0.95 0.25 0.52 

lSMV (cm) 0.82 1.61 1.70 1.87 0.38 0.82 1.35 0.35 0.96 0.25 1.01 

lRMS (cm) 0.85 1.10 1.03 0.93 0.04 0.02 0.01 0.00 0.04 0.02 0.40 

 4 
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Figure list and captions 1 

Figure 1. Examples of surface roughness triggered by agricultural treatments; (A) 2 

planted modified by rainfall, (B) planted unmodified, (C) harrowed smooth, (D) 3 

harrowed rough and (E) mouldboard plough; and (F) profilometer used for data taking. 4 

As a reference, the notebook in C, D, and E is 30 cm long; and 5 m the length of the 5 

profilometer bar in F. 6 

Figure 2. Examples of height profiles of each of the roughness classes studied. 7 

Figure 3. Box diagrams per roughness classes of the estimated values of the different 8 

parameters. 9 

Figure 4. Spearman correlation matrix of the roughness parameters (n=164). 10 
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 1 

Figure 1. Examples of surface roughness triggered by agricultural treatments; (A) planted 2 

modified by rainfall, (B) planted unmodified, (C) harrowed smooth, (D) harrowed rough 3 

and (E) mouldboard plough; and (F) profilometer used for data taking. As a reference, the 4 

notebook in C, D, and E is 30 cm long; and 5 m the length of the profilometer bar in F. 5 

  6 
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 1 

Figure 2. Examples of height profiles of each of the roughness classes studied. 2 

  3 
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 1 

Figure 3. Box diagrams per roughness classes of the estimated values of the different 2 

parameters. 3 
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 1 

Figure 4. Spearman correlation matrix of the roughness parameters (n=164). 2 

 3 


