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Abstract 

From the invention of the steam engine to the present, water has represented a 

significant input to the energy system, although this has been mostly ignored in the 

literature. In Spain, the most arid country in Europe, studies about water footprint 

typically just consider domestic, agricultural and industrial water uses, but water 

requirements for the electricity sector are omitted despite our dependence on thermal 

power. It has been demonstrated that for each available cooling technology, nuclear 

needs and consumption of water tend to be larger per MWh generated. We calculate a 

first approximation to the Spanish nuclear water footprint from 1969 to 2015. Our 

results show that while water consumed by Spanish nuclear power plants are around 3 

m�per capita/year, water withdrawals per capita/year are around 70 m�. Moreover, 

our analysis allows extracting conclusions focusing on a River Basins approach. What is 

the water impact of our nuclear power plants? Will water limit our energy future? 

These are some of the issues at stake.  

JEL Code: N540; Q49; Q25 
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1. Introduction.

From the invention of the steam engine to the present, water has represented a 

significant input to the energy system, although this has been mostly ignored in the 

literature. The production of electrical power results in one of the largest uses of water 

worldwide. When accounting total volumes of water in the energy sector we 

differentiate within water withdrawals (the total amount of water removed from a 

source) and water consumption (the amount lost to evaporation that is not returned 

to the source). For example, it is estimated that in 2005 in the US about 41 percent of 

freshwater withdrawals were dedicated to electric production from thermoelectric 

plants, mainly for cooling (Kenny et al., 2009). Likewise, in the year 2010, France 

withdrawn 22 km�of water for cooling purposes and 20 km� in the case of Germany 
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(EUROSTAT, 2014). Moreover, about 80 percent of the world´s electricity is generated 

in thermal power plants (IEA, 2013). In other words, 80 per cent of the world’s 

electricity generation would cease to exist in absence of water; if we add the 

percentage corresponding to hydropower, the number will be close to 95 per cent. 

Thus, we must start thinking of water as the most needed natural resource for 

electricity generation. 

 

Energy and water are valuable resources that support human wellbeing (Brundtland et 

al., 1987). Consequently, the mutual vulnerability of water and energy is considered 

one of the most important concerns of the future and, for this reason, it remains a 

challenge in achieving the Millennium Development Goals (MDGs). In this context, 

great amounts of water are needed in power generation, mainly for cooling processes, 

and the water sector needs energy to extract, treat and transport water. Several 

trends point to rising demands on energy and water because of the growth of 

population and expansion of economies. Therefore, ensuring the provision of water 

and energy in the future is essential to guarantee the sustainable development of 

many countries. In addition, climate change is causing the continued deterioration of 

global water sources. To this aim, several organizations and institutions have 

developed proposals to address the challenges of energy resources planning and 

water. Among these we can find the UN-Water Inter-agency, the World Water Forums, 

and the Thirsty-Energy Initiative launched by the World Bank. The UN-Water 

Interagency coordinates the work of the United Nations on freshwater and sanitation, 

including surface water and groundwater resources, the interface between freshwater 

and seawater and water-related disasters.
1
 Similarly, the World Energy Council and the 

World Water Council through the World Water Forums spotlight the importance of 

water on the political agenda.
2
 Finally, the Thirsty- Energy Initiative from the World 

Bank introduces a wide variety of regulations and management actions in order to help 

governments to ensure water and energy for future generations.
3
 In other words, 

‘Thirsty Energy quantifies trade-offs and identifies synergies between water and energy 

resource management’ (Rodriguez et al., 2013). 

  
Water for thermoelectric power is used in generating electricity with steam-driven 

turbine generators and to cool the power-producing equipment. The water constraint 

has already impacted the energy sector in many parts of the world. Some examples are 

the U.S, France, India, China or Brazil (Rodriguez et al., 2013). Among the available 

thermoelectric technologies, it has been demonstrated that nuclear power requires 

the largest amounts of water of the sector. In other words, for each available cooling 

technology, nuclear withdrawals and consumption of water tend to be larger per MWh 

generated (IEA, 2012).
4
 The use of nuclear energy is one of the heated debates in many 

societies although nuclear energy meets more than 20% of electricity in OECD countries 

                                                           
1
 For more information about UN-Water, see (http://www.unwater.org) 

2
 For more information, see (http://www.worldwaterforum5.org) 

3
 For more information about Thirsty Energy Initiative, see 

 (http://www.worldbank.org/en/topic/sustainabledevelopment/brief/water-energy-nexus) 
4
Friends of the Earth Association (Australia) in its Anti-Nuclear & Clean Energy Campaign about nuclear power and water 

consumption states that ‘a megawatt-hour (MWh) of electricity from coal uses 20 to 270 litres of water at the coal mining stage 

and an additional 1,200 to 2,000 litres when the energy in the coal is converted to electricity, totaling 1,220 to 2,270 litres of water 

consumed per MWh. In comparison, nuclear energy uses 170 to 570 litres of water per MWh during the mining of uranium and 

production of the reactor fuel and an additional 2,700 litres per MWh as the energy from nuclear fission is converted to electricity, 

for a total of 2,870 to 3,270 litres of water consumed per MWh’. [www.foe.org.au/anti-nuclearJanuary 2013] 
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(Zohuri, 2016). But the discussions concentrate on other aspects of nuclear power 

(over all, radiation risks and spent fuel management) rather than on the freshwater 

requirements for nuclear generation. 

 

In an international context, Spain, the most arid country in Europe, appears among the 

top ten producers of nuclear energy in the world (IAEA, 2015). Therefore, acquiring the 

knowledge of the Spanish position in this area is essential to provide the necessary 

judgment tools for the optimal decision-making processes by public authorities, and 

both public and private business community. As the literature review below reveals, in 

Spain, unlike other countries, the water problem within energy sector has not yet been 

considered. 

 

This paper pioneers a first approximation to the water requirements of the Spanish 

nuclear power plants from 1969 to 2015. In other words, our aim is to calculate the 

consumptive use of water (i.e. the amount of water evaporated, transpired, or 

incorporated in energy production) by Spanish nuclear power plants, and the amounts 

of water withdrawals required for running nuclear power plants. Even if large portions 

of the water required return to the rivers, yet the opportunity cost exists for such 

water volumes. Our results show that water withdrawn from rivers by Spanish nuclear 

power plants is around 70 m� per capita in 2014. Likewise, water consumed (i.e. 

evaporated) by Spanish nuclear power plants is equivalent to around 3 m� per capita 

for the same year. The results also allow the comparison between sectors (for 

example, water for agricultural or urban uses) allowing us to scale the figures and 

appreciate the importance of this analysis. This study contributes to a better 

understanding of the necessary freshwater resources to produce nuclear electricity in 

Spain and raise awareness about the importance of this issue in a country where the 

water-energy nexus is not a priority on the political agenda. What is the water impact 

of our nuclear power plants? Will water limit our energy future? Should water be 

considered when planning the electricity mix in the future? These are some of the 

issues at stake. 

 

The rest of the paper is structured as follows: Section 2 presents the background and 

the literature review; Section 3 explains the methodology and data used; Section 4 

discusses the results and main conclusions. Finally, Section 5 reviews the potential 

uncertainties and limitations of the analysis presented. 

 

2. Background & Literature Review. 

 

The problem of the interdependence between water and energy is gaining importance 

because of their demand increases in the future. Accordingly, there are several 

international studies on the relationship between energy production and water (Malik, 

2002; Kahrl and Roland-Holst, 2008; Perrone et al., 2011; Siddiqi and Anadon, 2011; 

Spang et al., 2014; Jägerskog et al., 2014). The expanding literature on the water-

energy nexus developed different approaches to the issue. Rodríguez et al., (2013) 

analyze the issue by looking at the general water requirements for power generation, 

and introducing improvement proposals. Delgado et al. (2015) introduce the same 

problem, but from a more technical perspective. These authors add some explanations 
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related to cooling systems, steam cycle processes, heat balance, and the efficiency in 

thermal power plants. For its part, the International Energy Agency (2012) provides 

data about global water withdrawals for power generation and water requirements in 

the energy sector, and analyses possible future scenarios leaving over the air a 

question: Is energy becoming a thirstier resource? Likewise, Morrison et al. (2009) 

highlight the intensifying conflict between energy use and water availability and 

suggest some guidelines that companies should take to evaluate and address water 

risks. Siddiqi and Anadon (2011) analyze water intensity throughout the different 

segments of the energy value chain (i.e. fuel extraction, refining, electricity generation) 

and calculate the energy intensity of the water value chain. Finally, WWAP (2014) 

produced a very extensive report about the linkages between freshwater and energy. 

In the first stage the report introduces the status, trends and challenges related to the 

water-energy nexus. After that, different central themes and regional areas are 

analyzed, keeping space at the end for new guidelines and good practices. 

 

More to our point of interest, some articles and technical reports describe the water 

requirements of power production by cooling technology and several methodologies 

to calculate water footprint and asses the impacts of water uses. For example, Jeswani 

and Azapagic (2011) is a good example showing that. In this case, authors analyze 

some methodological developments which propose methods for inventory modelling 

and impact assessment for water use in life cycle assessment. Alternatively, Dodder 

(2014) provides a systems-level perspective regarding different power technologies 

and Meldrum et al. (2013) and Macknick et al. (2012) introduce a review and 

harmonization of water withdrawal and water consumption factors found in the 

literature. Moreover, Delgado Martín (2012) in her doctoral thesis analyses the water 

use in power plants from a technological perspective through a model based on the 

heat balance of the power plant. Feeley et al. (2008) also analyses water availability in 

a power generation context for the development of a program to reduce the water 

withdrawals and consumptions in the future. In contrast, Spang et al. (2014) explore 

the geographic distribution of water use by national energy portfolios. They define and 

calculate an indicator to compare the water consumption of energy production for 

over 150 countries for year 2008 . For their part, Flörke et al. (2011) assess future 

changes in freshwater needs on electric sector in Europe thought the combination of 

two approaches: a scenario approach and a modelling approach. In fact, there exists an 

expanding literature of technical reports on the water required for electricity 

production: Torcellini et al. (2003), IAEA (2012), EPRI (2000), Averyt et al. (2011), and 

Kohli and Frenken (2011). 

 

Other strain of the literature concentrates on the potential water quality and 

ecosystem impacts by the energy sector. For instance, water withdrawn for cooling but 

not consumed returns to the environment at a higher temperature affecting to surface 

water and aquatic ecosystems (Gunter et al., 2001). Likewise, when water withdrawn 

enters the system can trap fish and other aquatic wildlife. And when power plants tap 

groundwater for cooling, they can deplete aquifers critical for meeting many different 

needs. A related vast body of literature focuses on the ecological footprint of water 

used in different human activities. For example, Wackernagel and Rees (1997) are the 

first to suggest a sustainable development index to evaluate human impact on 
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ecosystems in terms of land and water areas. Another source that talks about water 

resources and human impacts on them is Kenny et al. (2009) that, specifically, achieve 

an estimation of water uses in the Unites States differentiating within different 

activities (i.e. public and domestic supply, irrigation, livestock, aquaculture, industrial 

uses, mining, and thermoelectric power). Moreover, these authors show the evolution 

of water trends in the U.S. from 1950 to 2005.  

 

Hoekstra and Hung (2002) introduced the concept of water footprint as an indicator of 

freshwater uses that considers, in addition to the direct water use by consumers or 

producers, the indirect water uses made by the same processes. Most of international 

literature about water footprint analysis differentiate three water footprints: green 

(evaporated, transpired or incorporated by plants), blue (evaporated, incorporated 

into product or withdrawn from a body of water) and grey water (the amount of fresh 

water required to restore polluted water to a specified standard).5 In this context, 

Hoekstra (2008) analyzed the water footprint of food, taking into consideration the 

international trade in agricultural commodities. Also, Rost et al. (2008) quantify the 

global blue and green water consumptions in an agricultural context resulting from 

human effect. Another international study based on the agricultural sector and crops 

production is (Mekonnen and Hoekstra, 2011). 

 

Most of the studies about water usage in Spain relate to the concept of water 

footprint. They consider domestic, agricultural and industrial water uses, but the water 

requirements for the energy sector tend to go unnoticed. Aldaya et al. (2010) present 

the estimation and analysis of the water footprint in Spain, from a hydrological, 

economic and ecological perspective providing a multidisciplinary framework for 

optimizing water policy decisions and contributing to the implementation of the EU 

Water Framework Directive (2000/60/EC). Cazcarro et al. (2013) analyze the evolution 

of water consumptions of the Spanish regions and perform a structural decomposition 

about how determinants of economic growth influence water consumption. Their 

numbers show that the Spanish economy has evolved towards a more water-intensive 

society since 1980. Cazcarro et al. (2014) estimate the water footprint within the 

tourism sector through an input-output analysis differentiating between direct 

domestic water and embodied water. They conclude that water footprint of national 

tourism is 3,248,000 hm�. Cazcarro et al. (2015a) combine input-output analyses and 

GIS localized information to estimate the grey virtual water interregional flows and 

footprints in Spain. By their part, Cazcarro, et al. (2015b) analyze the changes in 50 

years in the water footprint in Spain. These authors analyze the blue and green water 

footprint of crop production at the provincial level and from a long-term perspective. 

Historical and spatial dimensions allow them to evaluate the environmental and 

economic impacts associated to the Spanish economic growth. Duarte et al. (2002) 

analyze the behavior of the economic sectors in Spain as water consumers, identifying 

the importance of the agriculture and food sectors as the main water consumers in the 

country. In a step forward, Duarte et al. (2014) analyzed the water footprint of the 

Spanish agricultural sector for the period 1860-2010. In this case, the authors applied a 

decomposition analysis. Another important study about water footprint in the 

                                                           
5
 Water footprint network, What is a water footprint?  

http://waterfootprint.org/en/water-footprint/what-is-water-footprint/ 
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agricultural sector in Spain is (Rodriguez Casado et al., 2008). There exists also studies 

at the regional level. Velazquez (2006) and Tello and Ostos (2012) calculated the water 

footprint of the thirsty region of Andalusia and Barcelona city, respectively. Likewise, 

Aldaya and Llamas (2008) calculate the water footprint for the Guadiana river basin 

and Vanham and Bidoglio (2014) quantify the water footprint of consumption and 

production of Milan. 

 

Despite the above-mentioned efforts, there exist a gap in the literature in the case of 

issue of water needs of the energy sector in Spain. To understand the water 

requirements the electricity sector, we must introduce the evolution of the electric 

generation in Spain in the long run. Until the 1960s, hydroelectricity remained the 

major contributor to Spanish electricity generation. The economic miracle of the 1960s 

and early 1970s required more energy input. In the case of electricity, it translated into 

more thermal plants (coal and fuel-oil) and the beginning of nuclear generation with 

the opening of the first generation of nuclear power plants: Zorita, Garoña and 

Vandellós I opened in 1968, 1971 and 1972 respectively. Over the 1970s Spain become 

the major nuclear client of the US, the world´s largest reactor exporter (De la Torre and 

Rubio-Varas, 2016). The utilities projected over 22,000 MW of nuclear installed 

capacity in the frenzy of atomic optimism, of which only 7000MW got eventually 

connected to the grid, given the declaration of a nuclear moratorium in 1984. From the 

1980s to the present, nuclear electricity contributed with an average 23.9% of the 

electric generation in Spain. With the turn of the century wind and solar power, and 

biomass join to the electricity mix. The figure below shows the complete drawing. Fig.1 

shows the evolution of the Spanish power generation by technology. 

 

Figure 1. Evolution of Spanish Power Generation by technology (1960-2015) 
 

 
Note: Solar and wind power are included coupled with hydropower from 2003. Conventional thermal includes coal, fuel-oil, gas 

and combined cycle plants. 

Source: own elaboration from UNESA´s Annual Reports 
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3. Methodology & Data. 

 

The information related to water resources for energy purposes is heterogeneous and, 

in most cases, limited within Spain. One of the reasons is that water competences on 

water issues are distributed between different administrative levels. The hydraulic 

public property belongs to the State. In addition, water issues affect the environment, 

fishing, agriculture, energy, health, sport and leisure, civil defence, etc., and every 

territorial entity (municipalities, provinces and regional governments) have some 

degree of competence in all these matters. In addition, river basins had their own 

management organization with the denomination Hydrographic Confederations. These 

are public entities attached for administrative purposes to a Ministry (today that of 

Environment and Rural and Marine Affairs) but in basins within a single region the 

water management corresponds to the region alone.
6
 Furthermore, published 

statistical figures are not clearly disaggregated within different types of water (i.e. 

surface water and groundwater) or water uses (withdrawals vs. consumption). 

 

The choice between a cooling system or another has a great impact on water 

requirements for a given type of thermal power generation. Spanish nuclear power 

plants tend to work with two cooling systems: once-through (open-loop) systems and 

cooling towers. On the one hand, once-through systems withdraw water passing it 

through a steam condenser and returning it to a nearby water location downstream 

(legal boundaries tend to apply to the temperature of the returning water). This 

cooling technology evaporates a small fraction of the water withdrawn. On the other 

hand, a cooling tower is a heat rejection mechanism, which extracts waste heat to the 

atmosphere though the cooling of a water stream to a lower temperature. There exist 

a trade-off between water withdrawn and water evaporated. Open-loop systems 

withdraw much more water than cooling towers, but cooling towers evaporate much 

more water than open-loop systems. 

 

To produce a first approximation to the water needs of the Spanish nuclear power 

plants we have just considered those nuclear facilities operating with freshwater 

withdrawing water from rivers or lakes. Plants working with seawater or other 

coolants (such as gas) have been omitted in this study. In environmental terms, 

however, power plants working with seawater also entail potential consequences for 

the environment (for example, those related to the increase in the temperature of the 

water returned to the sea). Spain had 10 nuclear reactors commercially connected to 

the grid, of which only 7 remain operative as for 2016, contributing to about 20 per 

cent of the final electricity generation of the country on that year. They differ in 

cooling technology, with a wide range of water withdrawals and water consumption 

factors. 

 

The nuclear power plants that we consider are Trillo I, Cofrentes, Almaraz I and II, Ascó 

I and II, Santa María de Garoña and José Cabrera (Zorita, as known). We have excluded 

from our analysis Vandellós units I and II which use gas and sea water for cooling, 

respectively. In Table 1 we have categorized Spanish nuclear power plants by type of 

                                                           
6
 The Hydrographical Basin is the basic entity of water management in Spain. See http://hispagua.cedex.es/en 
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cooling system. We also provide the type of data available for water needs and include 

the electric capacity and the source of water supply of each power plant. 
 

Table 1. Classification of Spanish Nuclear Power Plants by Type of Technology and Data Used 
 

 

 
Note: PWR = Pressurised Water Reactor; BWR = Boiling Water Reactor; RDEB = Real Data Extrapolated Backwards. 

Source: own elaboration from Spanish Nuclear Forum and Spanish Nuclear Security Council. 

 

We define water withdrawals (WW) as the total volume of water removed from a 

source by a power plant and water consumption (WC) as the amount lost to 

evaporation during the cooling process. In other words, water consumption is the 

volume of water withdrawn that is not returned to the source and it represents the 

value of the water footprint. Henceforth, the discharge (D) is the volume of water 

withdrawn that is returned to the source, often degraded by use (altered physically or 

chemically) and impacting water quality.
7
 

 

We compiled the published available data on water requirements by nuclear plant in 

Spain. The sources consulted include the water permissions originally granted from the 

State for each nuclear plant as published in Boletin Oficial del Estado (BOE), which 

provide the expected flow required and the maximum threshold of water withdrawals 

allowed for each reactor
8
; the scattered data provided by some of the Hydrographic 

Confederations
9
; data on water use for nuclear plants in Government publications

10
; 

the data provided for some plants by the Nuclear Safety Board (CSN)
11

; the utilities’ 

                                                           
7
For other definitions see: 

- Vickers, A. (2001). Handbook of water use and conservation. Amherst, MA: WaterPlow Press. 

- U.S Geological Survey (USGS) (http://www.usgs.gov) 

- IEA (2012). Water for Energy: is energy becoming a thirstier resource? 

- Averyt, K., J. Fisher, A. Huber-Lee, A. Lewis, J. Macknick, N. Madden, J. Rogers, and S. Tellinghuisen. (2011). Freshwater use by 

U.S. power plants: Electricity’s thirst for a precious resource. A report of the energy and Water in a Warming World initiative. 

Cambridge, MA: Union of Concerned Scientists. November. 
8
 BOE, núm. 48, de 25 de febrero de 1971, pp. 3140-3441. 

BOE, núm. 279, de 22 de noviembre de 1971, pp. 18801-18802. 

BOE, núm. 31, de 5 de febrero de 1977, pp. 2906-2907. 

BOE, núm. 200, de 22 de agosto de 1977, pp. 18744-18746. 

BOE, núm. 138, de 9 de junio de 1984, p. 16717. 

BOE, núm. 207, de 30 de agosto de 1999, pp. 31958-31994. 

BOE, núm. 89, de 12 de abril de 2014, pp. 30535-30638. 
9
 Targus Hidrographic Confederation (HC) speaks of a consumptive use of 20.50 and 46.30 hm�/ year for Trillo and Almaraz. The 

Ebro River HC shows on its website the following data on freshwater demands for cooling: Ascó (2,270 hm�/year) and Garoña (766 

hm�/year). Other figures from the same source are around 2,438.36 hm�/year.For more information, see the uses of water for 

energy production in [http://www.chebro.es/contenido.visualizar.do?idContenido=2137&idMenu=2233] and water uses and 

demands [http://www.chtajo.es/DemarcaTajo/UsosyDemandas]. 
10

 Spanish Government. Ministerio de Medio Ambiente. Secretaria de Estado de Aguas y Costas. Dirección General de Obras 

Hidráulicas y Calidad de Aguas (2000), Libro Blanco del Agua [available online at: http://hispagua.cedex.es/node/66958] 
11

 - Consejo de Seguridad Nuclear (1999). Las centrales nucleares españolas. 2ªed. Madrid: Consejo de Seguridad Nuclear,  218 p. 

- Barahona and Ramos (1999). Los efluentes radiactivos en  las centrales nucleares españolas: (1980-1997). Madrid: Consejo de 

Seguridad Nuclear, 109 p. 

- Palancar (2004). Proyecto TRACER: estudios de dispersión de contaminantes en ríos y embalses. Madrid: Consejo de Seguridad 

Nuclear, 279 p. 
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environmental reports
12

; the nuclear power plants information pages
13

; sustainability 

projects including any of the nuclear plants
14

; NGOs environmental reports
15

, etc. We 

found large inconsistencies among this sources, both in the magnitudes provided for 

individual reactors but also in the precision about the indicators used. In most cases, 

available data cover either WW or WC but rarely both. In other occasions the sources 

obviate to define whether the figure provided refers to WW or WC. 

 

There are reactors for which no published figure on water withdrawals and/or 

consumption could not be fetched, or the available data were inconsistent or ill 

defined. There exit however, estimations based on the international literature. All 

Spanish reactors are of American manufacturing, except two of them: Vandellós I and 

Trillo, French and German manufacturing respectively (De la Torre and Rubio-Varas, 

2015). Therefore, by reviewing the American literature on cooling technology and 

water factors (Torcellini et al., 2003; Spang et al., 2014; Macknick et al., 2012) the 

same standard factors can be used the Spanish equivalent reactor. We transformed 

the literature factors into cubic meters to facilitate comparison with results from other 

Spanish studies (see Table 2). 
 

Table 2. Withdrawals and Consumption Factors of nuclear power plants by Cooling technology, based 

on the international literature(�� 	
��
��) 
 

 
 

Source: elaborated based on data from Macknick et al. (2012).  

 

For each nuclear reactor we obtained a theoretical technical factors of water use 

according to the international literature (Table 2), plus and array of published figures 

regarding the water use (undefined in some of the sources), water withdrawal and 

consumption for most plants. In the few cases where we could identify consistently 

defined published data –which tend to fell within the upper range of the theoretical 

ranges for either water consumption or withdrawal- we used them in Table 3, after the 

appropriate unit transformations, which required some assumptions in some cases
16

. 

In the remaining cases, the technical factors belong to the theoretical literature. 

According to the Hydrographic Confederations, the coefficients of consumption and 

                                                           
12

 Since 2008,  Iberdrola has published the annual environmental reports for Cofrentes nuclear power plant with data on the 

volume of water abstraction authorized. This source states that Confrentes´ water withdrawals are around 34.7 ℎ��/year and 

water consumption around 21 ℎ��/year. For more information, see: 

 [http://www.cncofrentes.es/wcofrnts/corporativa/iberdrola?IDPAG=ESCOFMEDINF] 
13

 In http://www.cncofrentes.es can be observed a limitation on the water consumed by the nuclear power plant. Thus, it is stated 

that the average flow of the river Júcar in the area where the plant is located is 43 m�/s, having been granted for the use there of 

a flow rate of 1.1 m�/s, with an annual limitation maximum total consumption volume of 20 hm�/year and an amount of water 

catchment of 34.7 authorized hm�/year. From this flow, a portion close to 0.75 m�/s, evaporates in natural draft towers and the 

remaining 0.35 m�/s, returns again to the river through a single point of land filling.   

Data on water consumption for Trillo I and Almaraz in recent years can be found in [http://www.cnat.es]. 
14

Asensio et al. (2000) cite that consumption for cooling in the Cofrentes nuclear plant is around 21  hm�/ year). 
15

 Greenpeace cites that consumption in the Trillo is 21 hm�/year; Nuclear Jose Cabrera (Zorita de los Canes) consumes 15 hm�/ 

year; Almaraz nuclear plant, 16 hm�/ year, all the banks of the Tagus River.On the other hand, Greenpeace estimates that Garoña 

employs 720 hm�/year for cooling. Publication available in 

[http://www.greenpeace.org/espana/Global/espana/report/other/cuenca-hidrografica-del-tajo.pdf] 
16

 For instance, we have assumed that nuclear power plants run 24 h 365 days a year to transform the available data in cubic 

meter per year (m3/year) to cubic meter per MWh. 
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withdrawals have not varied substantially over time, so we have applied coefficients 

for each plant over time. Contrasting the factors resulting from the different sources of 

information and the factors of the international literature, we obtained average 

factors for the whole period analyzed. 
 

Table 3. Adjusted Water Withdrawals and Consumption Factors (�� 	
��
��) 
 

 
 

Note: water consumption factors for Ascó I and II, Santa María de Garoña, and Zorita represent theoretical values for which we 

could not find published data. The remaining values correspond estimated factors. 

Source: elaborated based on real data from Spanish Nuclear Safety Council, Libro Blanco del Agua, BOE and Hydrographical 

Confederations, and estimated data from Macknick et al. (2012). 

 

Having decided on the water factors, we are now in position to calculate the water 

needs for the Spanish nuclear power. We designate with "t" to the period of time and 

"i" to the number of nuclear power plant, being: 

 

t= 1969, 1970, ..., 2014. 

 

i= 1,2,3, ... , 8. 

 

Water Consumption (Withdrawals) Coefficients are calculated as follow  

 

WCC =
��

������ ��������� (������)
 , where the term WE means water evaporated, and 

 

WWC =
��

������ ��������� (������)
 , where the term WW means water withdrawn. 

 

In this way, if we want to calculate the amount of water withdrawals or consumptions 

per power plant/year, the water equations are:  

 

�  �
!  * "#�

!                         (1) 

 

and 

 

�� �
!  * "#�

!                     (2) 

  

 

being �� �
!  the water withdrawal coefficient and �  �

!  the water consumption 

coefficient by power plant. Thermoelectric output (TO) corresponds the total 

generation of electricity by nuclear power plants, which data comes from UNESA. 

Thus, for a given year, we have the total amounts as follow: 
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Total ��!= ∑  (�� !!
� * "#!)           (3) 

 

and 

Total � != ∑  (�  !!
� * "#!)           (4) 

   

Accordingly , for a given year Discharge equations can be formulated taking  Eq. (3) 

minus Eq. (4) as follow:  

 

Total %!  = Total ��!  - Total � != ∑  (�� !!
� *"#!) - ∑  (�  !!

� *"#!)           (5) 

 

Finally, dividing total amounts from Eqs. (3) and (4) by the total Spanish population we 

obtain water consumptions and withdrawals per capita. Thus, for a given year we 

have: 

 

WWpc = 
�&��' ��(

)&��'��!&�
       (6) 

 

and 

 

WCpc = 
�&��' �*(

)&��'��!&�
       (7) 

  

As noted before, we always calculate both withdrawals and consumptions because it is 

necessary to know if there is enough running water for the nuclear power plants to 

operate properly. Hence, we can talk about opportunity cost. 

 

4. Results & Conclusions. 

We can divide the whole period in three differentiated stages. The first one, from 1969 

to 1980; the second, until early 1990, and the last one, from 1990 to now. 

The first period is characterized by a scarce water consumption because most facilities 

were disconnected to the grid. In 1969, just Zorita´s nuclear power plant was 

operative. Zorita was the smallest nuclear plant of Spain (153-160 MW). From 1971, 

Santa María de Garoña joints to the nuclear activity. The second period goes from 

1980 to the early 1990s. This decade is characterized by the incorporation of the 

remaining nuclear plants to the Spanish industrial scene. We can observe a spectacular 

nuclear production growth and subsequent increase in water consumption. For the 

period 1978-1988, Spanish electricity generation deriving from uranium increased 

from 7650 GWh to 50,400 GWh, corresponding to a percentage increase of 558% 

(including Vandellós I and II, refrigerated by means different from freshwater) whereas 

water withdrawals for cooling reactors increased from 1370 to 4213 ℎ��, 

corresponding to a percentage increase of 208%.
17

 Finally, in the last sub period 

nuclear power plants continue to grow, but much more moderately. In 1989, Vandellós 

I reactor was decommissioned due to an accident, which does not impact in our water 

estimations since it used gas as coolant. In the years 2007 and 2012, Zorita and Santa 

                                                           
17

 Our Water Footprint calculations ignore Vandellós reactors I and II, refrigerating with gas and seawater, respectively. 
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María de Garoña shut down, respectively, which effects are more observable in the 

estimates of WW than in those of WC given both used open loops (more intense in 

WW than in WC). 

Figs. 2 and 3 show, for the period 1969-2014, the evolution of water withdrawals and 

consumptions when performing minimum, median, and maximum estimations based 

on the international factors of Table 2. As expected, the general trend for the whole 

period is the same from both perspectives. Water withdrawals and consumptions carry 

on the tendency of the nuclear electricity generation.  

Figure 2. Evolution of total Water Withdrawals of Spanish nuclear power plants (1969-2014), by using 

literature factors. 

 
 

Source: own elaboration using water factors of Table 2 and electricity generation from nuclear reactors using fresh water for 

cooling from UNESA. 
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Figure 3.Evolution of total Water Consumptions of Spanish nuclear power plants (1969-2014), by using 

literature factors. 

 
 

Source: own elaboration using water factors of Table 2 and electricity generation from nuclear reactors using fresh water for 

cooling from UNESA 

 

In Figs. 4 and 5 we show the WW and WC using the adjusted factors shown in Table 3. 

Figure 4. Evolution of total Water Withdrawals of Spanish nuclear power plants (1969-2014), by using 

adjusted factors. 

 

Source: own elaboration using water factors of Table 3 and electricity generation from nuclear reactors using fresh water for 

cooling from UNESA 
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Figure 5.Evolution of total Water Consumptions of Spanish nuclear power plants (1969-2014), by using 

adjusted factors 

 

Source: own elaboration using water factors of Table 3 and electricity generation from nuclear reactors using fresh water for 

cooling from UNESA 

Water consumption of nuclear power plants increased on average more than 100 hm� 

from the level of 1969 up to the present. In this way, we can determine a key date: the 

decade of 1980s. From that moment, there is a change in trend of water withdrawals 

of Spanish nuclear power plants and, therefore, a change in trend of water 

consumptions. From then on, the figures increase enormously. For example, water 

withdrawals grew from 1472 hm� to 4641 hm� between 1981 and 1991. Likewise, 

water consumptions grew from 11 hm� to more than 128 hm� in the same period. 

These increases are stabilized in the 1990s up to the present. As in the estimation 

figure, we can observe an important decrease in water withdrawals due to the closure 

of Garoña, whose cooling system withdraws large amounts of water, but does not 

consume as much. 

Moreover, when analyzing the results in terms of river basins (see Figs. 6 and 7) we can 

get additional conclusions for decision-making by public bodies. We have also added in 

Fig. 6 the maximum authorized withdrawal for cooling power plants by planning areas. 

These thresholds refer to the maximum volumes authorized in the original concessions 

by the Spanish Hydrographic Confederations, here taken from Libro Blanco del Agua. In 

this point, it is necessary to explain that water demand used for cooling thermal power 

plants, especially if it is done in open circuit, is very little consumptive, since it returns 

around 95% of the water used at a short distance from the point of capture. However, 

this type of use can greatly condition the operation of the systems, since they require 

the availability of large volumes of regulated and guaranteed water and therefore, 
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representing an opportunity cost for other alternative usages.
18

 As we can see, the 

water demands for cooling purposes from Spanish nuclear power plants associated 

with the Ebro River seem to exceed the maximum borderline stipulated, and having 

endangered the available water for other alternative uses. Water withdrawals in the 

Tagus River are below the restriction and in the case of Jucar River, the results are 

aligned perfectly with the threshold. 

Figure 6. Evolution of total Water Withdrawals of Spanish nuclear power plants by River Basins 

 
 

Source: own elaboration using water factors of Table 3 and electricity generation from nuclear reactors using fresh water for 

cooling from UNESA. 

 

 

 

 

 

 

 

 

 

                                                           
18

 The Libro Blanco del Agua extends this information saying that the main demands for open-circuit cooling are the nuclear power 

plants at Ascó (2,270 hm3 / year) and Santa María de Garoña (766 hm3 / year) in the Ebro River, and Almaraz (583 hm3 / year) in 

the Tagus River. For more information, see : http://hispagua.cedex.es/node/66958 
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Figure 7. Evolution of total Water Consumptions of Spanish nuclear power plants by River Basins 

 
 

Source: own elaboration using water factors of Table 3 and electricity generation from nuclear reactors using fresh water for 

cooling from UNESA. 

When comparing our results with water demands for other sectors, we observe the 

agricultural sector as the major water consumer. Thus, whereas our nuclear water 

footprint (i.e. water consumptions) ranges from 80 to 130 hm�per year, Hoekstra and 

Hung (2002) show that blue water figures for Spanish agricultural sector are around 

31,000 hm�. In contrast, the Libro Blanco del Agua shows that agricultural sector 

involves around 25,000 hm� per year. Likewise, Duarte et al. (2014) estimate the water 

footprint of agriculture from a historical point of view. In this way, since 1950s 'an 

intense modernization process associated with production and productivity growth 

took place, entailing the end of traditional agriculture in Spain'. As in the case of 

energy, increases in agricultural production implied increases in water consumption. 

The trend from 1962 to the recent years shows a strong growth in agri-food 

production and, therefore, strong extra water demands. In other words, water 

embodied in Spanish agricultural production soared from 65,186 hm� to 80,486 hm�.  

Urban uses are another sector that consumes large amounts of water. For example, in 

1997 total water flow of Barcelona city is 230.5 hm� whereas total water consumption 

of Spanish nuclear power plants was of 127 hm� in the same year according to our 

estimates with a water withdrawal of 4525 hm
3
 in the same year.  

From another point of view, the water footprint per capita of Spanish nuclear power 

plants is shown in Fig. 8. As we observe, while water footprint per capita are around 3 

m�, water withdrawals per capita are around 70 m� in 2014. 
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Figure 8. Evolution of Water Consumptions (left axis) and Withdrawals (right axis) per capita of 

Spanish nuclear power plants. 

 

Source: own elaboration 

Moreover, to understand the implications of our results we must remark that in 1980 

an important drought took place in Spain and continued up to 1995 (Berbel and 

Gómez-Limón, 2000; Vicente-Serrano, 2006). This period represents a total of 15 years, 

which coincide with the great increases of water requirements by nuclear power 

plants. Our results point at further research for the water history in Spain. 

Although droughts are related to a decrease or absence of rainfall, low rainfall of the 

time along coupled with the large increase in water withdrawals from rivers by Spanish 

nuclear power plants could be a source of aggravation for the economic development 

of country, leaving no water available for other uses (for example, agriculture and 

urban uses) and, therefore, assuming an opportunity cost for the populations of the 

different regions. As important as it might be to understand the reasons for the 

drought it is also important to comprehend that the effects of a drought can last over 

time, even when this is over. Consequently, further research must consider this 

overlap between the increases of water withdrawals due to nuclear power and 

decreases of precipitations in this period to understand the importance of the matter. 

In many cases, drought can be extremely localized. Thus, differences in spatial patterns 

are also important and Iberian Peninsula is an excellent example of such areas. 

Precipitations and its variability are determined by different atmospheric patterns that 

cause significant spatial differences (Vicente-Serrano, 2006). In this way, the southern 

half of Spain has usually less precipitation than the northern half of the country 

throughout the year. Therefore, areas with fewer rainfall and a greater number of 

power nuclear plants installed taking water from rivers basins in the area have a higher 

predisposition to suffer the serious consequences of droughts, affecting economic 
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activity the area and, therefore, the welfare of the population. Accordingly, the 

problems of water shortages become a regional problem or even local. 

In conclusion, the consumption of water resources for cooling purposes by nuclear 

power plants in Spain could be considered a relevant issue when studying the available 

water resources and its different alternative uses. In our context, it is important to 

estimate the water footprint distinguishing amount the two types of cooling systems 

that use the Spanish nuclear power plants (i.e. open loop and cooling towers) at the 

time of incorporating this information into the decision-making process and improve 

the future policy. In this way, diverse measures to reduce the water stress should be 

implemented. For example, all those related to water conservation, protection of 

infrastructures or the improvement of the catchment, treatment, and distribution 

systems. Similarly, another option could be a shift from open loop cooling systems to 

cooling towers since last one is a less-intensive water user in terms of withdrawals (i.e. 

the nuclear plant of Zorita originally built as open loop circuit, was reformed in 1999 

adding a cooling tower in order reduce the water needs of the plant). However, these 

measures can only be implemented on the existing water supply. Thus, to expand the 

current freshwater surface other methods are needed. 

 

Since decades, water desalination has moved from being a secondary option in the 

Spanish water policy to be an important issue (Barahona and Ramos, 1999). Until 

recently, this technique was employed exclusively in the Canary Islands because of 

their water scarcity. However, this matter has also increased in the last years within 

the Iberian Peninsula
19

. In this way, advances in new technologies have allowed 

desalination costs have diminished in recent years, making it possible to establish 

desalination plants near the coast and nuclear power plants for cooling process 

(Elimelech and Phillip, 2011; Zhou and Tol, 2005; Reddy and Ghaffour, 2007). Another 

option considered in order to expand water resources is the reuse of water.
20

 

 

Consequently, the location of nuclear power plants on the territory should be another 

important factor to analyze. We can conclude that locating nuclear facilities on the 

coastal sites would provide ample seawater supply for cooling. Moreover, desalination 

plants could be located near a nuclear plant to make use of its heat or electricity. 

Improvements in technologies could contribute in the opposite direction, pushing 

reductions in freshwater consumption for the power sector and improving water 

resource management practices. Yet, coastal locations meet competing uses of the 

territory in a country where the coast has an alternative lucrative use: tourism. 

Conversely, sitting nuclear power plants near coastal areas may represent a higher risk 

in the event of a major nuclear meltdown: the spread of radioactive contamination 

through sea would be added to the atmospheric contamination.  

 

                                                           
19

 One of the first firm intents of supporting this techniques in Spain was the water policy introduce by the socialist government 

(2004-2008), included in the AGUA Program (Actions for the Management and Use of Water), Concretely, the Law 11/2005 of 22 

June, and its predecessor, the Royal Decree-Law 2/2004 of 18 June. 
20

 This concept refers to the discharge of treated effluent to watercourses and dilution with circulating flows. This reclaimed water 

may be used for urban water uses or industrial usages. Also for agricultural irrigation, ornamental purposes and groundwater 

recharge. 
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Our results show that water consumed by all Spanish nuclear power plants can be 

compared with the consumption of water in a big city like Barcelona, and the impact of 

water withdrawals in some watersheds like the Ebro Basin attain worrisome levels 

considering the likelihood of severe droughts in the region, and the prospects of being 

worsened by climate change. This study contributes to a better understanding of the 

necessary freshwater resources to produce nuclear electricity in Spain and raise 

awareness about the importance of this issue in a country where the water-energy 

nexus is not a priority on the political agenda. It is likely that waste water limit the 

Spanish energy future. Therefore, we claim that water should be considered when 

planning the electricity mix in the future. 

 

5. Uncertainties & Limitations  

 

Certain aspects have been excluded in the paper and we believe that they could serve 

as a possible extension further of this work. First, this section deals with some 

questions related to the loss of efficiency of nuclear power plants. Second, the amount 

of potentially polluted water returned to the ecosystem. Third, the impact on the 

aquatic organisms due to the vast amounts of water withdrawn, and finally, it is 

complicated to carry out reliable economic policy measures due to the absence of 

state regulations and taxes on the power sector related to water withdrawals. 

 

It is important to explain that the loss of efficiency of nuclear power plants might be 

due to two facts. These are the course of time (i.e. their usage time) and the increase 

of the global temperature. First of them is clear. As any tangible asset or infrastructure, 

nuclear power plants loss their efficiency rate due to the passage of time and systems 

need to be repaired or replaced by other. The second fact is not trivial. As we have just 

explained, nuclear power plants need water mainly for their cooling processes. The 

global average temperature is increasing for over last decades and it is causing that 

some nuclear power facilities to shut down. In other words, if the water withdrawn by 

power plants is hot, they cannot refrigerate properly. 

 

For measuring the loss of efficiency of nuclear power plants we might calculate the 

heat rate. It is a measure of the efficiency of a generator or power plant that converts 

a fuel into heat and into electricity (EIA, U.S. Energy Information Administration). 

Generally, this organization expresses heat rate in British thermal units (Btu) per net 

kilowatt hour calculated. But as we have said, this is not the target in this paper. 

 

Another question that we have excluded from the analysis is the amount of potentially 

polluted water that returns to the source once finished the cooling process. Whether 

the water returned to the source poses a risk to the environment, is an entirely 

different question from this paper aim of proving the dependence nuclear power (and 

in fact, of the whole thermoelectric production) on large amounts of available 

freshwater in Spain. Our research results however, contribute to tackle such a question 

in the future, since it makes possible to state the volume of freshwater potentially 

affected. 
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Finally, this paper refers only to nuclear power, a fifth of the Spanish electricity 

generation today, ignoring the rest of the thermal plants (i.e. those burning coal, oil or 

gas) which also require water for functioning. The estimation of the water withdrawals 

for the rest of technologies is the next step of the research agenda, but we can only 

hypothesise that will enlarge the importance of water as an energetic input. 
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