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Abstract: Here we show an optical refractometer with a giant sensitivity of 304,360 nm per 

refractive index unit (nm/RIU). This sensitivity corresponds to a resolution of 3.28 x 10-9 RIU if a 

standard optical spectrum analyzer with a resolution of 1 pm is used. This record sensitivity is 

obtained by means of a Lossy Mode Resonance (LMR) optical fiber sensor in a surrounding 

media with refractive index around 1.45. This achievement implies that the utilization of the 

LMR phenomenon opens the door to devices and systems that can beat, in terms of sensitivity, 

those used currently in real-time biomolecular analysis such as Surface Plasmon Resonance 

(SPR) devices. 
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1. INTRODUCTION 

In the literature, little attention has been paid to waveguides deposited with nanocoatings of 

moderate optical absorbance (lossy materials), and metal-clads [1-3]. This is easy to understand 

because, in order to achieve long distance communications, an optical medium with negligible 

absorbance is pursued [4]. Just the opposite is intended in Surface Plasmon Resonance (SPR) 

devices where metallic thin films coat the optical waveguide [5]. Lossy Mode Resonances 

(LMRs) just stand in the middle of these two extreme situations [6]. The basis of this resonance 

is that a particular mode guided in the waveguide (e.g. an optical fiber) experiences a transition 

to guidance in the moderate absorbing submicron or nanometric scale coating at a certain 

wavelength. Due to the complex refractive index of the coating, the effective index of the mode 

is also complex (it presents a not negligible imaginary part). Consequently, it can be considered 

as a lossy guided mode or, in a more simple way, a lossy mode [4-6]. There are some authors 

that have used the generic term “guided mode” resonance for this phenomenon [7], but a lossy 

mode is a specific type of guided mode and, due to this, the term Lossy Mode Resonance has 

been adopted in the last six years since the first proposal of LMR based devices for sensing [6,8-

10]. LMRs have been often confused with surface plasmon resonances (SPRs) in the past by 

many groups, including ourselves, because both phenomena present a similar shape in the 
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optical spectrum [11-13]. This controversy has been recently solved thanks to one work that 

permits to observe an SPR and an LMR separately with the same experimental setup [14]. Later 

on, it has been possible to analyze the sensitivity of both SPR and LMR resonances in the same 

spectrum [15]. The material used for the thin-film was Indium Tin Oxide (ITO), which at shorter 

wavelengths satisfies the conditions for generation of LMRs (i.e. the real part of the thin-film 

permittivity is negative and higher in magnitude than both its own imaginary part and the 

permittivity of the material surrounding the thin-film), and at longer wavelengths the 

conditions for generation of SPRs (i.e. the real part of the thin-film permittivity is positive and 

higher in magnitude than both its own imaginary part and the material surrounding the thin-

film) [7]. That is why the indication in some works that ITO can be used for generation of SPRs 

[16,17], is not in contradiction with the ability of the same material to be used for generation of 

LMRs. 

In fact, LMRs show some clear differences with respect to SPR: the central wavelength of the 

optical resonance and the sensitivity can be easily adjusted as a function of the thickness and 

refractive index of the lossy thin film [6,18]. Moreover, there is a remarkable peculiarity with 

respect to SPR: the optical resonance in LMRs can be observed for both TM and TE polarizations 

[19].  

In this work, we prove that the combination of a D-shaped optical fiber coated with a 

nanometric scale metal oxide permits indeed high sensitivities both for refractive indices 

approaching the refractive index of fused silica, and for the water refractive index region. The 

phenomenon has been studied numerically and demonstrated experimentally as well.  

 

2. MATERIALS AND METHODS 

The experimental setup is depicted in Fig. 1. Light from a broadband multi-LED light source HP 

83437A is transmitted through a thin-film coated D-shaped fiber. The output of the fiber is 

connected to an optical spectrum analyzer (OSA) HP 86142A that permits to monitor a 

wavelength range from 1150 to 1680 nm. In order to control the polarization of light, a 
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depolarizer from Phoenix Photonics and a polarization controller (Agilent 9169A) are included 

between the broadband source and the fiber.  

The D-shaped optical fiber (from Phoenix Photonics LTD) consists of a standard single mode 

fiber Corning® SMF-28 with a side-polished length of 1.7 cm (see detail in Fig. 1).  

The optical fiber polished length, henceforward called sensitive region, is coated with a thin film 

by means of a DC sputter machine (ND-SCS200 from Nadetech S.L.). Two different materials for 

the target were used: ITO and SnO2. Both of them present a 99.99% of purity and were 

purchased from ZhongNuo Advanced Material Technology Co. The parameters used in the 

experiment were: partial pressure of argon of 9×10-2 mbar and intensity 150 mA. 

 

 

Fig. 1. Experimental setup. The system is composed of a multi-LED source, a depolarizer, and 
polarization controller, which permits to excite the D-shaped fiber with a TE or a TM polarized 
signal, and an optical spectrum analyzer that monitors the optical spectra. The D-shaped fiber is 
side polished in a region of 1.7 cm, where a thin-film of ITO or SnO2 is deposited. 
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For the characterization of the ITO thin-film an ellipsometer UVISEL, with spectral range 0.6-6.5 

eV (190 – 2100 nm), an angle of incidence 70°, an spot size 1 mm and Software DeltaPsi2TM 

(from Horiba Scientific Thin Film Division) was used. The wavelength dependence of ITO thin-

film refractive index and extinction coefficient can be seen in Fig. 2. 

The optical fiber cladding, made of fused silica, has been estimated with the Sellmeier equation: 
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with parameters: B1=0.691663, B2=0.4079426, B3=0.8974794, λ1=0.0684043 μm, λ2= 0.1162414, 

and λ3= 9.896161, where λj=2πc/ωj and c is the speed of light in vacuum [20]. The optical fiber 

core refractive index for the simulations has been obtained, according to the specifications 

from Fibercore Inc for SMF28, by increasing the refractive index of the cladding 0.36%. 

 

Fig. 2. Index of refraction and extinction coefficient (n,k ) of ITO deposited layer.  

 

 



6 

 

Refractive index measurements from glycerol solutions were taken with a refractometer 30GS 

from Mettler Toledo Inc. This device obtains the refractive index for a wavelength of 589.3 nm. 

The refractive index of water at this wavelength is 1.333. However, according to [21], the 

refractive index of water is 1.321 at 1400 nm, the central wavelength of the range explored in 

our experiments. The same offset observed for water is obtained for glycerol if the values 

obtained at 589.3 nm are compared to those obtained at 1293 nm [22]. Consequently, this 

offset will be applied to all measurements taken by the refractometer for the glycerol solutions 

studied henceforward. Due to the high resolution of the D-shaped fiber based sensor, its value 

is limited to the resolution of the Mettler Toledo Refractometer that we use for calibration, 

which is a fourth decimal in refractive index. Regarding measurement errors, they are negligible 

due to the parabolic approximation used to obtain the central wavelength of the LMR. 

FIMMWAVE® is used for analyzing the transmission through the ITO nanocoated D-shaped 

fiber. The propagation is obtained with FIMMPROP, a module integrated with FIMMWAVE. 

Three sections are defined: an SMF segment, a side polished SMF segment and another SMF 

segment. For the SMF segment the finite difference method FDM is used because it is the most 

accurate method available for a cylindrical waveguide, whereas for the side polished SMF 

segment, with a more complex profile, the FEM Solver, based on the finite-element method, is 

used. This solver can put mesh points on the material boundaries, whereas the FDM Solver has 

a rigid mesh that in general does not coincide with the material boundaries. The number of 

modes analyzed in the SMF section is 1 because light in guided through the core, whereas in the 

side polished SMF 20 modes are analyzed. 

3. RESULTS AND DISCUSSION  

As it was indicated previously, LMRs can be obtained for both TE and TM polarization. For the 

sake of simplicity and in order to underline that it is not an SPR, the TE polarization case will be 

analyzed henceforward. The sensitive region of the LMR device is immersed in deionized 

ultrapure water (RI=1.321) and the experimental spectrum is also plotted in Fig. 3a. Both 

numerical and experimental curves agree.  
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Fig. 3. (A) Numerical and experimental optical spectrum obtained with a D-shaped fiber coated 
with a 92 nm ITO layer. (B) Effective index of modes: the LMR is centered at 1420 nm and the 
effective index real part of modes TE1,1, TE2,1 and TE3,1 experience a transition to guidance in the 
ITO layer in the LMR wavelength range.  
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The generation of this resonance can be explained by analyzing the mode effective 

index as a function of wavelength in Fig. 3b. HE1,1 is the fundamental mode (the mode guided in 

the core), and TE1,1, TE2,1 and TE3,1 are the modes guided in the ITO coating, following the 

notation used for rectangular waveguides (if the polarization was TM, then TM1,1, TM2,1 and 

TM3,1, modes would be guided in the thin-film). Approximately at 1400 nm, TE1,1, TE2,1 and TE3,1, 

experience a transition to guidance in the thin-film, which coincides with the position of the 

resonance and agrees with other works indicating that LMR occurs at near cutoff condition 

[2,6].  

The imaginary part of the effective index of HE1,1, TE1,1, TE2,1 and TE3,1  can be observed 

in Fig. 4. According to the real part of the effective index, the imaginary part of the effective 

index of TE1,1, TE2,1 and TE3,1 increases constantly as it is progressively guided from longer to 

shorter wavelengths. Consequently, the imaginary part of their effective index increases 

constantly. However, HE1,1 is the core mode and is not guided in the thin-film. According to 

[23], during the transition to guidance of a mode to a thin-film, the rest of modes of the optical 

substrate experience a perturbation that affects the real and imaginary part of their effective 

index. That is why HE1,1 increases its imaginary part during the transition of TE1,1, TE2,1 and TE3,1, 

whereas TE1,1, TE2,1 and TE3,1 just transit to a high imaginary refractive index. In view that the D-

shaped region ends in a SMF region, light detected in the OSA corresponds with the core mode 

HE1,1. Consequently, a lower optical transmission is obtained in the LMR spectral range. 

In order to know the influence of the ITO coating thickness and length, and the influence 

of the thickness of the cladding region between the core and the ITO coating, some additional 

simulations have been performed. In Fig. 5, we use the same parameters as those used in Fig. 3 

except for the cladding region. We compare three values: 5.2, 4.7 and 4.2 µm, and it can be 

observed that the resonance depth is increased as a function of a decreasing cladding region. In 

addition to this, several lengths have been studied for a cladding region of 5.2 µm: 2 mm, 6 

mm, 12 mm and 17 mm. The variation of the length plays no role on the shape of the 

resonance. The resonance depth just increases as a function of the length. This indicates the 

LMR is not an interferometric phenomenon. 
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Fig. 4. Imaginary part of the effective index of the HE1,1 (it shows a maximum a the central LMR 
wavelength: 1420 nm) and TE1,1, TE2,1, TE3,1 (they experience a transition to guidance in the ITO 
layer in the LMR wavelength range). 

 

The previous two variables permit to control the depth. However, the ITO coating thickness 

rules the spectral position of the resonance. In Fig. 6, several thickness values are explored: 80, 

85, 90, 95, 100 and 250 nm. The last value has been selected to shift the resonance to 

wavelengths that cannot be tracked in the OSA. Thanks to this, we can see that the coating 

absorption is below 0.2 dB, negligible if compared with the LMR.  
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Fig. 5. Numerical spectra for different thickness values of the cladding region between the core 
and the ITO coating and for different ITO coating lengths. ITO thickness 92 nm and SRI= 1.321. 

 

Fig. 6. Numerical spectra for different ITO thin-film thickness values. Thickness of the cladding 
region between the core and the ITO coating: 5.2 µm. ITO thin-film length 17 mm. SRI= 1.321. 
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In Fig. 7 the wavelength shift of the LMRs is presented both experimentally and theoretically for 

several refractive indices around a refractive index of 1.321, the typical value of aqueous 

solutions. The sensitivity obtained is 5,855 nm per refractive index unit (nm/RIU). 

 

 

Fig. 7. Numerical and experimental wavelength shift of the LMR for different refractive indices 
around 1.321 (aqueous solutions). R-squared is a statistical measure that shows how close the 
data are to the fitted linear regression lines in the figure. 

 

In Fig. 8, the electric field intensity in the transversal section of the D-shaped fiber is 

represented at different wavelengths for the fundamental mode (HE1,1) and for one of the 

cladding modes that experience a transition to guidance in the ITO layer (TE1,1). The mode TE1,1 

is initially confined in the cladding of the optical fiber at 1690 nm. However, it experiences a 

transformation into a TE mode in the ITO layer as the wavelength decreases. Regarding HE1,1, it 

is confined in all cases in the fiber core. Nonetheless, it is remarkable to mention that at 1420 

nm there is a region, in the proximity of the thin-film, with a subtle yellower color. This 
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indicates that part of the power transmitted by the core mode is coupled to the ITO thin-film, 

which corresponds to the LMR and corroborates the authors’ claims.  

 

Fig. 8. Electric field intensity in the transversal section of the ITO coated D-shaped fiber. The 
simulation window is indicated on the schematic of the D-shaped fiber, in the center of the 
figure. The fundamental mode HE1,1 and the first mode that experiences a transition to 
guidance in the overlay (TE1,1), are analyzed for different wavelengths. As the wavelength 
decreases TE1,1 is progressively confined in the ITO thin-film.  

 

In addition, in the video included as supplementary material, S1, the progressive visualization of 

the electric field intensity as the wavelength decreases, permits to observe clearly that in the 

proximity 1420 nm there is a modification in HE1,1 due to the TE1,1 transition. This coincides 

again with the LMR wavelength region. 

Some design rules can be used towards the optimization of the sensitivity of LMR based sensors 

[16]. The first one is to choose the first LMR (i.e. the LMR that is produced by the transition of 
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the first TE mode). This is the case in the results presented so far. However, there are two other 

important ways to increase the sensitivity.  

The first one consists of increasing the SRI approaching the refractive index of the substrate, in 

this case the optical fiber. In Fig. 9, on the right, results are presented of another D-shaped fiber 

coated with an ITO layer but characterized for refractive indices in the range 1.4474-1.449.  

Fig. 9. Experimental central wavelength of the LMR for two different refractive index ranges 
(the water region and the 1.4474-1.449 region) and two different moderate absorbing thin-film 
materials: SnO2 and ITO. Please note that the horizontal scale is not the same for both regions. 

 

The sensitivity achieved is 136,276 nm/RIU. This overcomes, by factor of 23, the value obtained 

in the range of 1.321-1329. Moreover, in the narrower range 1.4487-1.449 a 304,361 nm/RIU, a 

52-fold increase is attained.  

However, in order to obtain chemical sensors or a biosensors, the region of interest is the water 

region, where the analysis of the sensitivity indicates the quality of the sensor developed 

further [24]. The sensitivity obtained with the ITO thin-film is 5,855 nm/RIU. In order to improve 

this, we apply extract the second rule indicated in [18]: to increase the refractive index of the 

thin-film. To this purpose, a different device is fabricated using a SnO2 coating deposited on 
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another D-shaped fiber. The sensitivity in the water region (refractive index around 1.321) is 

14,510 nm/RIU (see Figure 9). This is nearly 3 times more than the value obtained with the ITO 

layer.  

This record sensitivity improves the highest sensitivity reported with long-period fiber gratings 

(LPFG), 9,100 nm/RIU [25], that attained with localized surface plasmon resonance by a factor 

of 70 [26], and our previous results with D-shaped fiber by a factor of 4 [19]. Moreover, even 

though the sensitivity is lower than photonic crystal fiber [27] and SPRs [28], the application of 

higher refractive index materials in future works should permit to compete with these last two 

technologies.  Regarding commercial devices, biosensing label free technology has been used 

by several companies focused on biosensing: Biacore http://www.biacore.com, Bionavis 

http://www.bionavis.com,  or PC Biosensors http://www.pcbiosensors.com. Actually, with the 

comparison table indicated in [29], Biacore T200 and EVA 2.0 from PCbiosensors are the two 

most sensitive devices with 3x10-8 is and 5x10-8 RIU resolution respectively. Our D-shaped fiber 

monitored with an Optical Spectrum Analyzer (OSA) with 1 pm resolution presents a resolution 

that improves these values: 3.28 x 10-9 RIU, and is better than the rest of devices analyzed: 

Biacore X100, OWLS 210 and Horiba OpenPlex. 

A final way of improving the performance of D-shaped fiber devices could be to apply reversed 

symmetric waveguides [30]. By changing the substrate material we could obtain the same 

sensitivity obtain in the silica refractive index region for the water region.  

 

4. CONCLUSIONS 

It has been proved with an ITO nanocoated D-shaped fiber that a record sensitivity of 304,360 

nm can be obtained by adequate selection of the surrounding medium refractive index. This 

value overcomes the detection limits of all other optical devices: surface plasmon resonance 

sensors, long period fibre gratings or photonic crystal fiber, and could become a reality for the 

water region if the substrate refractive index is reduced, like in reserved symmetric 

waveguides.  Another option is to choose, instead of ITO, a higher refractive index material such 

as SnO2, which in this article permits to improve the sensitivity by a factor of 3. 

http://www.biacore.com/
http://www.bionavis.com/
http://www.pcbiosensors.com/
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In spite of being in the early stages of LMR devices, the first experimental demonstrations of 

LMR sensors have been already reported: refractometers [6,18], gas sensors [31], pH sensors 

[32], humidity sensors [33], or inmunosensors [34]. Moreover, the record sensitivity presented 

here indicates that the utilization of LMR can be a very competitive alternative for designing 

instrumentation devices that require an extremely high sensitivity. This can have a high impact 

in diverse disciplines such as those related to life sciences. 
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