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Abstract— The generation of lossy mode resonances with 

absorbing thin-films is analyzed with electromagnetic theory. The 
main differences with surface plasmon resonances are presented 
and some rules are given towards an optimum design of sensing 
devices based on absorbing thin-film coated silica substrates. The 
material selected for the absorbing thin-film is ITO, which is 
adequate for supporting both surface plasmon resonances and 
lossy mode resonances. 
 

Index Terms— Thin films, Indium Tin Oxide (ITO), 
electromagnetic theory 

I. INTRODUCTION 

ptical waveguides coated with absorbing thin-films is a 
matter of research since many years both in the analysis 

of the physics [1-9], and in the development of sensors 
applications mainly focused on chemistry, biology and 
immunology [9-13]. Different types of modes can be 
supported by absorbing thin-films [7]. The most important 
resonance phenomenon caused by these modes is surface 
plasmon resonance (SPR). An SPR is generated by coupling 
between an evanescent wave and a surface plasmon [9]. 
However, there are other types of modes supported by 
absorbing thin films. Some authors call them guided modes 
[7], whereas others consider them as lossy modes [5,8]. Since 
lossy modes are a specific type of guided modes, it will be 
used henceforward the name “lossy modes” (LM). 
Consequently, the resonance caused by this type of mode will 
be called lossy mode resonance (LMR). 

The number of applications based on each group of 
resonances has grown differently. There are tens of articles 
where SPR is used for sensing purposes, whereas the number 
of articles based on LMR is quite small. LMR based devices 
are used just for the determination of the thickness and 
permittivity of absorbing thin-films [7,14]. However, a 
promising work where it is proved for the first time its 
applicability as an optical fiber sensor [15], drives us to 
analyze the phenomenon and to obtain general rules towards a 
more efficient design of these devices.  

To this purpose, LMRs are analyzed in detail with 
electromagnetic theory applied to the Kretschmann 
configuration [9]. It is indicated in [7] that a thin-film supports 
a lossy mode if the real part of its permittivity is positive and 
higher in magnitude than both its own imaginary part and the 
material surrounding the thin-film. The only necessary change 
that permits the film to support a surface plasmon is the real 
part of the thin film permittivity to be negative. In view of 
these conditions, transparent conductive oxides (TCO) are 

good candidates for supporting LMRs or SPRs thanks to the 
combination of conductive and transparency/reflectivity 
properties in the visible/infrared region respectively. In the 
region of high reflectance, the imaginary part of the TCO 
refractive index is of the order of metals [16,17]. 
Consequently, this region is adequate for SPR generation. 
However, for the low-reflectance region, the imaginary part is 
lower and permits the LMR generation. Observing both 
phenomena with the same material will help to understand, by 
contrast with SPR, the less explored characteristics of LMR.  

Among TCO it has been selected Indium Thin Oxide (ITO) 
because it is one of the most popular ones. It is well know that 
TCO materials have been widely used in the fabrication of 
heat shields, liquid crystal displays, flat panel displays, 
organic light-emitting diodes, solar cells, and so forth [16,18]. 
More specifically, ITO has been also used in sensing 
applications such as the fabrication of conductimetric sensors 
[19]. In addition to this, the deposition of ITO on different 
substrates has been studied towards the development of optical 
sensors [20-23]. If all these good properties are joined to the 
fact that, as indicated above, the first LMR based optical 
sensor was developed with ITO coating [15], this justifies the 
utilization of ITO as the thin-film material for the results 
presented in this work.  

The remainder of this paper is organized as follows. In 
Section 2 some remarks are indicated on the method used for 
the analysis of the propagation of light trough the thin-film, 
and on the modeling of ITO. In Section 3 numerical results are 
presented and some rules are given for the design of LMR 
based sensors. Conclusions are given in section 4. 

II. THEORY 

In this section the models used for the simulations presented 
in section 3 are presented: the basic concepts for 
understanding the Kretschmann configuration, the model for 
the ITO layer and the model for the silica layer. 

A. Reflectance of Light in Kretschmann configuration 

The well known Kretschmann configuration is represented 
in Fig. 1. The material of the incident medium is silica because 
it is typically used as the substrate in many sensors. The 
material of the thin-film the light impinges onto is ITO. The 
surrounding dielectric medium (SDM) owns a refractive index 
of 1.321 (the refractive index of water at 1300 nm [24]). 
However, in the analysis done in section 3 several values of 
the SDM refractive index will be analyzed to see the 
sensitivity of the device to this parameter. 
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Fig. 1: Kretschmann configuration. Incident medium: silica, thin-film: ITO.  

 
Assuming an incident plane wave and the silica - ITO - SDI 

infinite in the x-y plane, the amplitude reflection coefficient 
can be obtained as [9]: 
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and where subscripts i and j are s, t, or d, according to Fig. 1. 
The reflectivity of the structure is expressed as the square of 

the absolute value of the amplitude reflection coefficient: 
2

stdrR =  (6) 

Another important parameter for the recognition of a 
resonance is the phase of rstd [9], as it will be shown in section 
3. 

B. ITO Layer 

Depending on the technique used for the deposition of ITO 
on optical fiber or any other substrate, the properties of the 
thin-film may differ in a great manner [16-18]. The most 
widely used expression for modeling of ITO is the Drude 
model [16,17]: 
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where ε∞ is the high frequency dielectric constant, τ is the 
electronic scattering time and ωp is the plasma frequency. 

In [18] a more complex model is used, which leads to a 
better definition of the ITO refractive index. The formulation 
is expressed as follows: 
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where the additional term considers the dielectric behavior of 

ITO. It is actually an oscillator model whose variables are: s0 
(oscillator strength), ω0 (oscillator resonance frequency) and γ 
(oscillator damping constant).  The parameters used in that 
work are: ε∞ = 3.57, ωp = 1.89×1015 rad/s, τ = 6.34×10-15 s/rad, 
s0 = 0.49, ω0 = 5.61×1015 rad/s, and γ = 9.72×1013. This 
parameterization leads to the curves of the refractive index and 
extinction coefficient that are represented in Fig. 2. It is easy 
to observe the two regions of high and low reflectivity 
indicated in the introduction. This model will be used 
henceforward for the numerical analysis. 

C. Silica core Layer  

As it was stated above, the incident medium is silica. The 
refractive index of fused silica can be estimated with the well-
known Sellmeier equation: 
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With parameters: B1=0.691663, B2=0.4079426, 
B3=0.8974794, λ1=0.0684043 µm, λ2= 0.1162414 µm, and λ3= 
9.896161 µm, where λj=2πc/ωj and c is the speed of light in 
vacuum [25].  

III.  NUMERICAL RESULTS 

By considering the evolution of the real part of the 
refractive index n and the imaginary part of the refractive 
index k in the model represented in Fig. 2, it is easy to 
conclude that the reflective region of ITO is located above 
2000 nm, and the transparent region below 2000 nm. 
According to the conditions given in the introduction, SPRs 
should be supported by the ITO layer for wavelengths above 
2000 nm (the real part of the permittivity is negative), whereas 
LMRs should be supported for wavelengths below 2000 nm.  
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Fig. 2: ITO model. Index of refraction n and extinction coefficient k of ITO 
deposited layer 
 

To prove the previous assumption, a Kretschmann 
configuration is analyzed with silica as the incident medium, 
an SDI refractive index of 1.321, which is the refractive index 
of water at 1300 nm [24], and an ITO layer of thickness 100 
nm. The reflectance for different angles of incidence ranging 
from 80 to 89 degrees is presented in Fig. 3 both for TE and 
TM polarization.  
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Fig. 3: Reflectance spectrum (dB) for different angles of incidence for an ITO 
thin-film of 100nm: a) TE polarization; b) TM polarization 

 
Two resonances can be observed: one of them is located at 

around 2500 nm and is only visible for TM polarization, 
whereas the other one is located at about 1000 nm and is 
visible both for TE and TM. These results are in agreement 
with works developed elsewhere [7-9], where SPRs can only 
be generated if the real part of the permittivity is negative for 
TM polarization, and LMRs can be generated if the real part 
of the permittivity is positive both for TE and TM 
polarization. SPRs are wider that LMRs. However, this is 
caused by the different dispersion of the silica substrate in the 
left and the right side of the spectrum analyzed. Furthermore, 
several LMRs can be obtained experimentally with TiO2 
coatings. In this case LMRs located at large wavelengths are 
also wider than LMRs located at short wavelengths. 

In order to see a more evident prove of the different nature 
of LMRs and SPRs, it can be observed in Fig. 4 the results 
obtained by setting an ITO layer much thicker (1000 nm) than 
in Fig. 3. The result is that no SPR is visible [27]. It is well 
known that an SPR has an optimum thickness where there is a 
maximum light coupling. As the ITO thickness increases, the 
resonance moves to higher wavelengths and there is a less 
significant coupling. This is not the case for an LMR. In fact 
more LMRs are created in Fig. 4.  

Once the different nature of LMRs and SPRs has been 
observed, focus will be centered on explaining the generation 
of an LMR. In [2] it is explained the coupling that occurs in a 
planar waveguide coated with a thin-film. There is a periodical 
coupling between a mode in the waveguide and the lossy 
modes in the thin-film. This behavior can also be observed in 

a cylindrical waveguide [28]. The conditions for a maximum 
coupling are mainly two: there is a considerable overlap 
between the mode fields, and the phase-matching condition 
(i.e. the equality of real parts of propagation constants) is 
sufficiently satisfied [5]. Since the phenomenon occurs when 
the lossy mode is near cut-off, it is stated in [2] that there are 
cut-off thickness values that lead to attenuation maxima. In 
other works similar conclusions are extracted after a thorough 
analysis of the modes. As the thickness of the thin-film on the 
waveguide is increased, some modes guided in the optical 
waveguide become guided in the thin-film, which causes a 
modal redistribution or modal conversion [6,28]. 
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Fig. 4: Reflectance spectrum (dB) for different angles of incidence for an ITO 
thin-film of 1000nm: a) TE polarization; b) TM polarization 
 

However, in the previous studies the Kretschmann 
configuration was not used. Consequently, the analysis of the 
effect of the angle of incidence was not possible. Now a 
similar analysis is done with the model presented in section 2, 
which accounts for the influence of the angle of incidence. For 
the same angles used in Fig. 3 and Fig. 4, it is represented in 
Fig. 5 the absorbance as a function of the ITO thickness. 

Again there are absorbance maxima at specific thickness 
values. Nonetheless, it is easy to appreciate that the position of 
the maxima is not the same for all angles. In fact, the position 
of the various LMRs of Fig. 3 and Fig. 4 is also dependent on 
the angle of incidence. Moreover, the depth of the resonance is 
also dependent on the angle of incidence. These questions can 
be better understood if the effective indices of modes guided 
in the ITO region are analyzed (see Fig. 6). The same 
parameters of Fig. 4 will be used. On the one hand, in Fig. 6 
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the effective indices of the lossy modes (LM), cross the plot of 
the core refractive index approximately at the wavelengths of 
the various LMR in Fig. 4. On the other hand, it is stated in 
[10] that the effective index of the evanescent waves in the 
thin-film can be expressed as: 

( )θsinseff nn =  (10) 

where ns is the silica substrate refractive index and θ is the 
angle of incidence. 
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Fig. 5: Reflectance (dB) for different angles of incidence as a function of ITO 
thin-film thickness: a) TE polarization; b) TM polarization 
 

It is well known that for the generation of an LMR a 
coupling between an evanescent wave and a surface wave 
must occur. Now there is a coupling between an evanescent 
wave and a lossy mode guided in the thin-film.  

If the angle is 90º the effective index of the evanescent 
wave is ns. As well as the angle decreases, the effective index 
of the corresponding evanescent wave decreases. Since an 
LMR is caused by coupling between an evanescent wave and 
a lossy mode, and in Fig. 6 lossy modes decrease in effective 
index as the wavelength increases, coupling must be shifted to 
higher wavelengths as the angle of incidence decreases.  

In order to illustrate the previous explanation, two LMRs 
are selected (located at 1000 and 1300 nm) and it is analyzed 
the reflectance for a wide range of incidence angles in Fig. 7. 
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Fig. 6: Effective index of modes for an ITO thin-film thickness 1000 nm as a 
function of wavelength: a) TE polarization; b) TM polarization 
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Fig. 7: Reflectance spectra for different angles of incidence (TE polarization): 
a) LMR 7 of Fig. 4; b) LMR 8 of Fig. 4 
 

For the sake of simplicity only the results for TE 
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polarization are presented. In both cases the resonance is 
shifted to higher wavelengths as the angle of incidence 
decreases. It can also be visualized that for the band located at 
about 1000 nm a maximum at 79º is observed, whereas for the 
band at 1300 nm the maximum is shifted to 72º. Moving back 
to the results of Fig. 6, the mode that is responsible for the 
generation of the LMR at about 1000 nm is no longer guided 
at a specific wavelength. The highest wavelength where this 
mode is guided is 986.73 nm. At this wavelength the effective 
index of the lossy mode is 1.4239 and the substrate index is 
1.4506. The angle that satisfies this condition in expression 
(10) is 78.99º. The same operation is valid for the LMR at 
1300 nm. In this case the wavelength is 1280.59 nm, the 
effective index of the mode is 1.3783 and the substrate index 
is 1.471. The result is an angle of 72.26º.  

The explanation is that there is a wavelength value when a 
lossy mode starts to be guided in the ITO region. At this 
specific wavelength, the effective index of an evanescent wave 
coincides with the effective index of a lossy mode. 
Consequently, there is a maximum overlap between the mode 
fields and a maximum transfer of energy [5]. As the lossy 
mode increases its effective index and is more confined to the 
thin-film, the effective indices of the evanescent wave and the 
lossy mode start to be different, and the coupling is not 
maximum. This is the reason why for the rest of angles there is 
a decrease in the resonance depth.  

The analysis of the phase also helps to understand the LMR. 
It is well known that the interaction between an incident light 
and a surface plasmon affects the phase of the reflected light, 
which exhibits an abrupt jump at the wavelength range where 
the resonance occurs [29]. This is also true for an LMR, as it 
can be observed in the analysis of Fig. 8, which is done for the 
same parameters of Fig. 7. In other words, Fig. 7 and Fig. 8 
represent the reflectivity and the phase as a function of the 
wavelength respectively.  

In Fig. 8 there are two types of evanescent waves: those 
generated with an incidence angle below the angle of 
maximum coupling and those generated with an incidence 
angle above the angle of maximum coupling. Apparently it 
seems that there is a discontinuity for those angles above the 
angle of maximum coupling. However, it is just the pass from 
180º to -180º. After this explanation, it is easy to appreciate 
that as the angle of maximum coupling is approached from 
both groups of evanescent waves, the phase change is more 
abrupt. The most abrupt change for both groups of evanescent 
waves occurs for the angle which is close to the angle of 
maximum coupling. In Fig. 8a this occurs for angles 78º and 
79º (the angle of maximum coupling is 78.99º) and in Fig. 8b 
this occurs for angles 72º and 73º (the angle of maximum 
coupling is 72.26º). An analogy can be made with the 
phenomenon observed in a cylindrical waveguide [28], where 
it was proved that there are modes with effective index above 
the effective index of the mode that is guided in the thin-film 
which “compete” for being guided in the thin film. Once a 
mode is guided in the thin-film, these modes recover their 
original state. 
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Fig. 8: Phase spectra for different angles of incidence: a) LMR 7 of Fig. 4; b) 
LMR 8 of Fig. 4 

 
In Fig. 8 those evanescent waves generated with angles of 

incidence above the angle of maximum coupling can be 
considered with higher effective index. The phase of the 
reflected light phase shifts from 180º to 0º. However, once a 
mode is guided in the thin-film, the reflected light phase 
moves back to the original state of 180º. On the other hand, for 
those evanescent waves generated with angles of incidence 
below the angle of maximum coupling there is a complete 
phase shift from 180 to -180º. The phase shift is more abrupt 
for angles closer to the angle of maximum coupling. This last 
question has also an effect in the width of the resonance. For 
those angles that induce a less abrupt phase change, the 
resonance is wider (see Fig 7). 

Finally, it is important to analyze the effect of thickness in 
the design of an LMR based device. It is obvious that the 
central wavelength of the LMR can be tuned by using a 
different parameterization of the ITO layer. If a different ITO 
model such as that of [16] is used, the LMR will move to 
lower wavelengths. The reason is that the wavelength where 
the real part of the permittivity starts to be negative is located 
at about 1400 nm. Consequently, no LMR will be located at 
wavelengths above 1400 nm. However, another way of 
selecting the position of the LMR in the electromagnetic 
spectrum is by setting the ITO thickness. In view of the results 
observed in Fig. 3 and Fig. 4, it is clear that the change in the 
ITO thickness is responsible for the number of LMRs in the 
electromagnetic spectrum. The increase of thickness permits 
to generate several lossy modes in the ITO thin-film and, 
consequently, to create more wavelength ranges where 
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coupling of energy to lossy modes exist. However, it is 
important to know about the relation between the evolution of 
modes as a function of wavelength and the sensitivity of the 
device. To this purpose two different LMRs will be analyzed: 
the LMR 1 and the LMR 8 of Fig. 4. The purpose of selecting 
these bands is to observe the sensitivity in two resonances 
induced by coupling to lossy modes with a different evolution. 
In Fig. 6 the lossy mode responsible for the generation of the 
LMR 1 has an abrupt change as a function of wavelength, 
whereas the one responsible for the LMR 8 has a less abrupt 
change. In Fig. 9a and Fig. 9b, it is analyzed the spectra for 
different surrounding dielectric media which correspond with 
concentrations of glycerol in water: 1.321 (0%), 1.339 (15%), 
1.358 (30%), and 1.378 (45%) [30,31]. For both LMR the 
incidence angle was 80º. The result is that for LMR 1 the 
sensitivity is 11.05 nm/RIU (RIU = refractive index unit), 
which is much lower than the sensitivity of the LMR 8 
(233.33 nm/RIU).  
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Fig. 9: Reflectance spectra (TE polarization) for different surrounding 
medium refractive indices: 1.321, 1.339, 1.358 and 1.378: a) LMR 1 of Fig. 4; 
b) LMR 8 of Fig. 4; c) LMR of Fig. 3. 
 

Another way to increase the sensitivity is to select a 
narrower thin-film. In this way there are fewer lossy modes 
and the change as a function of wavelength is not as abrupt as 
when there are more lossy modes. To prove this fact it is 
analyzed the sensitivity for a thin-film of 100 nm in fig. 9c. 
The result is a sensitivity of 1578.95 nm/RIU. This value is 
comparable with the sensitivity of SPR sensors, which range 
from 1000 to 10000 [32], and can even be improved with 
other coating materials such as TiO2 [26]. The main 
conclusion of these last results is that the sensitivity is 
increased if the variation of the effective index of the lossy 
mode as a function of wavelength is reduced. 

IV.  CONCLUSION 

In this work it has been analyzed the generation of lossy 
mode resonances (LMR) with electromagnetic theory based on 
the Kretschmann configuration. The incidence medium was 
silica. In order to understand the conditions for LMR 
generation, an absorbing thin-film of Indium Tin Oxide (ITO) 
has been used for coating the silica substrate. This material 
supports both surface plasmon resonances (SPR) and LMRs. 
As a result it was possible to see the differences between both 
phenomena: an SPR is only visible for TM polarization 
whereas an LMR is visible for both polarizations. It is possible 
to generate several LMRs if the absorbing thin-film thickness 
is increased, which is not possible for SPRs. The phase and the 

module of the absolute reflection coefficient are critical for the 
generation of an LMR. In fact, for a specific angle of 
incidence the maximum attenuation of the LMR occurs when 
the phase experiments an abrupt change.  

In terms of mode coupling theory, an LMR is the result of 
light coupling between evanescent waves and lossy modes 
guided in the absorbing thin-film. Consequently, the analysis 
of the evolution of the modal effective index permits to 
understand the generation of the resonance. Moreover, the less 
or more abrupt change of the effective index as a function of 
the incidence wavelength leads to higher or lower sensitivity if 
it is used as a sensor. As an example it has been studied the 
response of the sensor against different surrounding medium 
refractive indices. The result was that the sensitivity increases 
if the variation of the modal effective index is less abrupt. This 
occurs for high order LMRs and if there are few lossy modes 
supported by the thin film. In other words, the thickness of 
absorbing thin-films is critical for obtaining a highly sensitive 
device. In view of the interesting properties of LMRs, more 
applications should be found in other fields such as optical 
communications. 
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