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Lossy mode resonances can be obtained in the transmission spectrum of cladding removed 

multimode optical fiber coated with a thin-film. The sensitivity of these devices to changes 

in the properties of the coating or the surrounding medium can be optimized by means of 

the adequate parameterization of the coating refractive index, the coating thickness and the 

surrounding medium refractive index (SMRI). Some basic rules of design, which enable 

the selection of the best parameters for each specific sensing application, are indicated in 

this work. 

          OCIS codes: 310.0310, 060.2370, 260.5740. 

1. INTRODUCTION 

Generation of resonances in the transmission spectrum with cladding removed multimode optical 

fiber (CRMOF) coated with a thin-film has been proved successfully in [1-5]. Light propagation 

through semiconductor cladded waveguides has been studied in [6], where attenuation maxima 
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of the light propagating through the optical waveguide can be obtained for specific thickness 

values and at certain wavelengths or incidence angles. This is due to a coupling between 

waveguide modes and a particular lossy mode of the semiconductor thin-film [7]. Since the 

phenomenon occurs when the lossy mode of the thin-film is near cut-off, there are thin-film 

thickness values that lead to transmission attenuation maxima [6]. The same phenomenon can be 

observed if the variable is the wavelength and not the thickness. If the thin-film thickness is 

fixed, a resonance is visible in the electromagnetic spectrum for those incident wavelength 

values where there is a mode near cut-off in the overlay. These resonances are not surface 

plasmon resonances (SPR), but lossy mode resonances (LMR) [1,8] or guided mode resonances 

[9] (depending on the expression used by the author). SPR occurs when the real part of the thin-

film permittivity is negative and higher in magnitude than both its own imaginary part and the 

permittivity of the material surrounding the thin-film [9]. LMR occurs when the real part of the 

thin-film permittivity is positive and higher in magnitude than both its own imaginary part and 

the material surrounding the thin-film [9]. Consequently, SPR can be obtained with materials 

with a high imaginary part of the refractive index (typically metals [10-11]), whereas LMR is 

achieved for materials with low imaginary part of the refractive index.  

LMRs have been observed with metal oxides, such as ITO [1-2], TiO2 [3], and Indium Oxide [4]. 

Recently, polymers also have been proved successfully for the same purpose [5]. In addition to 

this, LMRs appear for both TM and TE polarized light and the generation of multiple resonances 

without modifying the optical fiber geometry is also possible [1]. Consequently, they constitute a 

promising research field that could compete with the largely established SPRs. 

There is a number of recent publications with sensing applications based on lossy mode 

resonances: refractometers [1,3], where results overcome the sensitivity of LPFGs and are 
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comparable to SPR based devices [3], humidity sensors [2], or even pH sensors [5]. So far, some 

rules for design have been given for the design of refractometers [4], but nothing has been told 

about the validity of these hints for a humidity sensor or a pH sensor yet. The aim of this article 

is to give some general rules that can help the designer to choose the adequate material for each 

specific application. To this purpose, devices based on the deposition of two different materials 

are compared: TiO2 and a polymeric matrix based on the combination of poly(allylamine 

hydrochloride) (PAH) and poly(acrylic acid) (PAA). 

The remainder of this paper is organized as follows. In Section 2 it is presented the experimental 

setup and the fabrication procedure for the sensing devices. In section 3 it is indicated the 

method used for the analysis of the propagation of light trough the thin-film, and the modeling of 

TiO2 and PAH/PAA. Numerical results and rules for the design of LMR based sensors are given 

in section 4. Conclusions are included in Section 5. 

2. EXPERIMENTAL SECTION 

2.1 Materials 

Titanium(IV) oxide nanoparticles of diameter 21 nm and the polymers poly(allylamine 

hydrochloride) (PAH) (Mw ~100,000), poly(acrylic acid) (PAA) (Mw ~35,000), and 

poly(sodium 4-styrenesulfonate) (PSS) (Mw ~70000), were obtained from Sigma-Aldrich Inc. 

Aqueous solutions of PAH and PAA (10mM) were prepared using ultrapure deionized water 

(18.2MΩ) and adjusted to pH 4.4. The same procedure was used for the preparation of aqueous 

solutions of TiO2 (0.33% wt) and PSS (10mM), with the exception that both of them were 

adjusted to pH 2.0. The pH of the solutions was verified using an electronic pH-meter (Crison 



 4

Inc.) and adjusted when necessary by adding a few drops of NaOH or HCl. Plastic-clad silica 

fibers of 200/225µm core/cladding diameter (FT200EMT) were provided by Thorlabs Inc. 

2.2 Deposition of the nanocoating  

The cladding of the optical fiber is removed in a portion of several centimetres in order to 

deposit a thin-film, which will support one or more lossy modes. After cladding removal the 

optical fibers were cleaned as described in [12].  

The TiO2 coating was deposited onto the optical fiber core fragment by means of the Layer by 

Layer (LbL) method [13]. The PSS solution was used as anionic polyelectrolyte and the solution 

of TiO2 nanoparticles was used as cationic polyelectrolyte. A SEM image of the deposition of 

TiO2/PSS on optical fiber is shown in Fig. 1a. 

The same LbL procedure was used for the build up process of the PAH/PAA coating. The PAA 

solution was used as anionic polyelectrolyte and the solution of PAH was used as cationic 

polyelectrolyte. A SEM image of the deposition of PAH/PAA on optical fiber is shown in Fig. 

1b. 

2.3 Device characterization 

Transmission spectra were obtained by using the experimental setup of Fig. 2. A white light 

source Ando AQ-4303B, which covers a band of 400 to 1800 nm, is connected to one end of the 

optical fiber. The other end is connected through a bifurcated optical fiber (VIS-NIR from 

OceanOptics with low OH content) to two spectrometers: a UV/Vis spectrometer (HR4000) and 

a NIR spectrometer (NIR512), both of them from Oceanoptics Inc. This permits to monitor a 

wavelength range from 400 to 1500 nm.  
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Since the spectrum of the white light source is not flat, the transmission spectra are referenced to 

a spectrum obtained before the deposition starts. 

3. THEORY 

The method used for simulating the propagation of light through a coated CRMOF is based on 

that used in [1]. In order to obtain the transmitted optical power in the setup of Fig.2 the 

attenuated total reflection (ATR) method with a Kretschmann configuration must be applied. In 

this way, the reflectivity as a function of wavelength and incidence angle is obtained at the 

coating - fiber core interface R(θ,λ) [10,14], where λ is the light wavelength and θ the angle of 

incidence. The expression for calculation of the transmitted optical power is [10,14]: 
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where θc is the critical angle, N(θ) is the number of reflections at the coating - fiber core 

interface, and p(θ) is the power distribution of the optical source (a Gaussian distribution [11]). 

RN(θ)(θ,λ) represents the reflected light as a combination of the reflected power in TE and TM 

mode polarization [14].  

The wavelength dependence of silica, which is the optical waveguide material, is expressed 

according to the Sellmeier expression [15]:  
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With parameters: B1=0.691663, B2=0.4079426, B3=0.8974794, λ1=0.0684043 µm, λ2= 

0.1162414, and λ3= 9.896161, where λj=2πc/ωj and c is the speed of light in vacuum. 

The Lorentz model [16], is used for the dispersion of TiO2/PSS: 
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where Ak, Bk and Ek are respectively the amplitude, the center energy and the broadening of the 

kth oscillator, E is the photon-energy and ε∞ is an offset that indicates the permittivity at high 

frequency. For the sake of simplicity a single oscillator is used in expression (3). The parameters 

that lead to a best fit are: ε∞ = 1, Bk = 1.2 eV, Ak = 101 eV2 and Ek = 6.2 eV. They are calculated 

by computing numerically the global error between the experimental and the theoretical 

transmission spectra for different coating thicknesses.  

Finally, the wavelength dependence of PAH/PAA is obtained using the same procedure and 

formulation. The parameters obtained are: ε∞ = 1, Bk = 0.31 eV, Ak = 154.5 eV2 and Ek = 11.5 eV.  

The dispersion curves of index of refraction of both TiO2/PSS and PAH/PAA are compared in 

Fig. 3. 

4. RESULTS 

4.1 Generation of lossy mode resonances with TiO2/PSS and PAH/PAA  

A TiO2/PSS coating is deposited with LbL method on the cladding removed region of the 

multimode optical fiber. The same procedure is followed in the case of a device coated with 

PAH/PAA.  
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The transmitted power is represented in Figs. 4 and 5 as a function of the coating thickness and 

wavelength for the two nanocoatings deposited: TiO2/PSS and PAH/PAA respectively. In both 

cases, the sensitive region is surrounded by ultrapure water (with a conductivity of 18.2 MΩ and 

a refractive index of 1.321 at 1300 nm). Henceforward the acronym SMRI will be used for the 

surrounding medium refractive index. 

The simulations agree with the experimental results, which confirms the validity of the model of 

section 3. The regions in black represent low transmission, which indicates the presence of a 

lossy mode resonance (LMR)  

In order to observe the shape of the collected spectra, in Fig. 6, two spectra obtained from 

devices with TiO2/PSS coatings of thickness 333 and 1165 nm are represented. Additionally, two 

spectra obtained for devices with PAH/PAA coatings of thickness 750 nm and 1200 nm are also 

shown in Fig. 7. Both for Fig. 6 and Fig. 7 the SMRI is 1.321. 

The sensitivity to different parameters of the thin-film coated CRMOF will be analyzed in detail 

in the next subsections. 

For the sake of simplicity the following notation will be used: 

Sthickness: sensitivity to variations of coating thickness expressed as wavelength shift vs thickness 

variation (nm/nm). 

Scoating_index: sensitivity to variations of coating refractive index expressed as wavelength shift vs 

refractive index variation (nm/RIU). RIU means refractive index unit. 

SSMRI: sensitivity to variations of SMRI expressed as wavelength shift vs refractive index 

variation (nm/RIU). RIU means refractive index unit. 

4.2 Sensitivity to coating thickness variations 
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In Fig. 8 it is represented both theoretically and experimentally the evolution of the resonance 

wavelengths of the LMRs generated with TiO2/PSS and PAH/PAA coatings as a function of the 

coating thickness with SMRI fixed to 1.321. 

From Fig. 8 it is easy to compare both structures. First, we can observe that the number of LMRs 

obtained with TiO2/PSS is higher than the number of LMRs obtained with PAH/PAA. The 

reason is that the refractive index of TiO2/PSS structure is higher than the one of PAH/PAA (see 

Fig. 3a) and, hence, the TiO2/PSS structure can support more lossy modes than the PAH/PAA 

structure under the same conditions (thickness and SMRI). 

Second, the plots of the LMRs are almost linear, which indicates that Sthickness (the sensitivity to 

thickness expressed as wavelength shift versus coating thickness variation) remains constant for 

different thickness values of the coating. 

In addition to this, it can be observed that Sthickness increases progressively as we move towards 

the first LMR in both cases (TiO2/PSS and PAH/PAA coatings). In fact, if we compare the 

second LMR generated with the PAH/PAA coating with the seventh one obtained with the 

TiO2/PSS coating, both of them fit almost exactly, which proves that LMRs plotted as a function 

of the coating thickness occupy the same positions if they show the same Sthickness, provided the 

SMRI remains constant. Moreover, a careful analysis of Fig. 8 permits to conclude that all plots 

converge in the same point of the wavelength axis, which is the cutoff wavelength of the coating 

waveguide.  

In view of the differences between the results obtained with TiO2/PSS and PAH/PAA coatings, it 

is interesting to analyze Sthickness as a function of the coating refractive index for a fixed SMRI of 

1.321 (see Fig. 9a). In order to avoid the influence of wavelength, Sthickness is evaluated as the 
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thickness variation that leads to a resonance wavelength shift between 700 and 800 nm. The 

same is true for the analysis of Fig. 9b, which will be analyzed later. 

After seeing the results of Fig. 8 and Fig. 9a, it can be concluded that in order to increase 

Sthickness, the best choice is to monitor the first LMR and to select a coating with high refractive 

index. 

Another interesting observation in Fig. 9a is that the Sthickness ratio between the LMRs remains 

constant independently of the value of the coating refractive index. 

In Fig. 10 the evolution of the resonance wavelength of the LMRs, generated with a coating with 

refractive index that of TiO2/PSS (see Fig. 3a), is represented as a function of thickness for two 

different SMRIs: 1.321 and 1.421.  

It is obvious that Sthickness is improved for all LMRs when the SMRI is increased. In order to 

obtain a better analysis, the evolution of Sthickness as function of the SMRI for a coating with 

refractive index that of TiO2/PSS, is plotted in Fig. 9b.  

Here, it is interesting to observe that even though, as in Fig. 9a, there is an increase as a function 

the SMRI, the shape of the plots is different. Particularly, in the first LMR the sensitivity 

increase is proportionally much higher that that observed for the second, third and fourth LMR, 

with a lower increase. Moreover, the sensitivity increases non-linearly as the refractive index of 

the CRMOF, which is that of silica (see section 3), is approached.  

4.3 Sensitivity to coating refractive index variations 

In this subsection a theoretical analysis of the sensitivity to coating refractive index variations is 

done. The refractive index is composed of real and imaginary part. The real part is responsible 

for wavelength shift of the LMR, whereas the imaginary part is responsible for the depth of the 

LMR.  
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Since the scope of this work is the analysis of the resonance wavelength, focus will be centered 

on the real part of the coating refractive index. However, prior to continue with the analysis of 

the real part or the coating refractive index it is necessary to prove the fact that the imaginary 

part is responsible for the depth of the LMR. Transmission spectra are obtained in Fig. 11 with a 

coating of thickness 333 nm and refractive index that of TiO2/PSS (Fig. 3a), but with different 

imaginary part refractive index values. The SMRI is 1.321.  

The increase in the imaginary part leads to a deeper LMR, whereas a decrease in the imaginary 

part leads to a not so deep LMR. Moreover, the LMR is divided into two local minima. This was 

observed experimentally with an In2O3 coating in [4], where it was explained that each of these 

minima are caused by coupling to a TE and a TM mode respectively. For the cases studied in this 

work the resonances are very close in the optical spectrum and it is not possible to distinguish the 

individual coupling. Therefore, a single attenuation band is observable. 

Now, the effect of varying the real part of the coating refractive index will be studied in more 

detail. For the sake of simplicity we will refer to the real part of the coating refractive index as 

the coating refractive index. 

First, the resonance wavelengths of LMRs are plotted in Fig. 12 as a function of the coating 

refractive index for two different thickness values of the thin-film: 236 and 1200 nm. As 

imaginary part of the thin-film refractive index it has been chosen that of TiO2/PSS (see Fig. 3b). 

The SMRI is fixed to 1.321. In this case, similarly to the analysis of section 4.2, the number of 

LMRs obtained for a thickness of 1200 nm is higher than the number of LMRs obtained with a 

thickness of 236 nm. In general, thick coatings support more LMRs than thin coatings under the 

same conditions (coating refractive index and surrounding media refractive index). 
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Second, the plots of the LMRs are almost linear, which indicates that Scoating_index (the sensitivity 

to coating refractive index expressed as wavelength shift versus coating refractive index 

variation) remains constant for different refractive index values of the coating. 

In addition to this, it can also be observed that Scoating_index increases progressively as we move 

towards the first LMR in both cases (236 nm and 1200 nm coating). In fact, if we compare the 

second LMR generated with the 236 nm coating with the seventh one obtained with the 1200 nm 

coating, both of them fit almost exactly, which proves that LMRs plotted as a function of the 

coating thickness occupy the same positions if they show the same Scoating_index provided the 

surrounding medium refractive index remains constant. 

In view of the difference between the results obtained with 236 nm and 1200 nm coatings, it is 

interesting to analyze Scoating_index as a function of the thickness for a fixed SMRI of 1.321 (see 

Fig. 13a). In order to avoid the influence of wavelength, Scoating_index is evaluated as the thickness 

variation that leads to a resonance wavelength shift between 700 and 800 nm. The same is true 

for the analysis of Fig. 13b, which will be analyzed later. 

After seeing the results of Fig. 12 and Fig. 13a, it can be concluded that, in order to increase 

Scoating_index, the best choice is to monitor the first LMR and to select a thick coating. 

Two other important conclusions can be extracted from Fig. 13a. The first one is that Scoating_index 

increases almost linearly for all LMRs. The second one is that there are no data available for 

thickness values higher than 200 nm in the case of the first LMR, and for values higher than 

1000 nm for the second LMR. This indicates that LMRs shift to higher wavelengths than those 

monitored in the spectrum between 400 and 1500 nm. Consequently, the advantage of increasing 

the thickness in terms of better Scoating_index becomes a problem of detection of the LMR. 



 12

This problem was not observed in Fig. 9. The reason is that for the studied range of coating 

refractive indices (1.5-2.1) and SMRIs (1.321-1.421) used in this work, the modification of the 

resonance wavelengths is not so abrupt as in the case of the studied thickness range (0-1200 nm).  

It is important to indicate that the values used for the study of the influence of thickness and 

refractive index of the coating, and SMRI are those typically used in experiments. In special 

cases other values could be used, but at least it allows us to conclude that it is more probable to 

obtain the first LMRs out of the spectral scope when we move to higher thickness values than 

when we move to higher coating refractive index or SMRI. 

As it was explained before, the Scoating_index observed in Fig. 13a for the first LMR shifts out of 

the studied scope for a thickness of 200 nm. Thus, for thicker coatings, the best monitorizable 

Scoating_index within the studied range is that of second LMR, which increases linearly until a 

thickness of 1000 nm. If we continue increasing the thickness of the coating over 1000 nm, the 

best Scoating_index within the studied range is now that of the third LMR which increases also 

linearly, and so on. Consequently, the increase of Scoating_index as a function of thickness becomes 

a decrease at certain points when low order LMRs shift progressively out of the monitorizable 

spectrum. 

The evolution of the resonance wavelengths of the LMRs generated with a 600 nm coating is 

represented in Fig. 14 as a function of the coating refractive index for two different SMRIs: 

1.321 (i.e. that of water) and 1.421. It is clear that Scoating_index is improved for all LMRs when the 

SMRI is increased.  

In order to obtain a better analysis, the evolution of Scoating_index as function of the SMRI, is 

plotted for a coating thickness of 600 nm in Fig. 13b. As in Fig. 13a, there is also an increase as a 

function of the parameter of the x axis (in Fig. 13a it is the thickness and Fig. 13b it is the 
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SMRI), but in this case the increase is non-linear. There is a slight increase of the plot slope as 

the refractive index of silica is approached. In the second LMR this increase is proportionally 

higher than in the third one.  

 

4.4 Sensitivity to surrounding medium refractive index variations (SMRI) 

In this subsection it is presented a theoretical analysis of the sensitivity to SMRI variations.  

First, the resonance wavelengths of LMRs are plotted in Fig. 15 as a function of the SMRI for 

two different thickness values of the coating: 48 and 1200 nm. The coating refractive index is 

that of TiO2/PSS. Similar to the analysis of section 4.2 and 4.3, the number of LMRs obtained at 

a thickness of 1200 nm is higher than the number of LMRs obtained with a thickness of 48 nm. 

The explanation is that a thick coating contains a higher number of lossy modes than a thin 

coating under the same conditions (coating refractive index and surrounding media refractive 

index). 

In contrast to the analysis of the coating thickness and coating refractive index, the plots of the 

LMRs are non-linear (this is especially observed in the first LMR of the 48 nm thick coating, but 

could be also observed for the rest of LMRs in the 1200 nm thick coating with a zoom in the 

plots), which indicates that the SSMRI (the sensitivity to SMRI expressed as wavelength shift 

versus SMRI variation) does not remain constant for different SMRI values. In fact, the SSMRI 

increases progressively as the refractive index of the optical fiber is approached.  

Another interesting conclusion is that, unlike in the analysis of subsections 4.2 and 4.3, there is 

no superposition of the LMRs plotted as a function of the SMRI for the same coating refractive 

index. In fact the SSMRI is better for thinner coatings. Thus, in order to obtain an optimal 

sensitivity, the best choice is to monitor the first LMR of a thin coating. 
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More conclusions can be extracted from Fig. 16a. Here, the SSMRI has been plotted for different 

thickness values of the coating. The coating refractive index is that of TiO2/PSS. In view of the 

flatness of the curves of Fig. 15, it is necessary to modify in this subsection the criterion used for 

the sensitivity in subsections 4.2 and 4.3. Now the SSMRI is the quotient between the wavelength 

shift experimented in the range between 1.321 and 1.421  

In Fig. 16a it is clearly appreciated that the SSMRI increase as a function of thickness is linear for 

all LMRs, something that was also observed in Figs. 13a when Scoating_index as a function of 

thickness was analyzed. The similarity between Fig. 16a and Fig. 13a helps to explain that there 

are no data available for thickness values higher than 600 nm in the case of the first LMR. This 

indicates that the LMR shifts to longer wavelengths than those monitored in the spectrum 

between 400 and 1500 nm. Consequently, the advantage of increasing the thickness in terms of 

better SSMRI becomes a problem in the detection of the LMR. The increase of SSMRI observed for 

the first LMR within the range 400-1500 nm is not monitorizable for a thickness of 600 nm. For 

thicker coatings the best sensitivity is that of second LMR (lower than the SSMRI of the first 

LMR), which also increases linearly.  

In Fig. 17 the evolution of the resonance wavelengths of the LMRs generated with a 600 nm 

coating is represented as a function of the SMRI for two coating refractive indices: 1.55 and 2.1.  

Like in Fig. 15, there is no superposition of the LMRs plotted as a function of the SMRI for the 

same coating thickness. In addition to this, there is an increase of SSMRI as we move to the first 

LMR, which had been observed in subsections 4.2, 4.3 and now in subsection 4.4. 

For a better analysis, the SSMRI has been plotted in Fig. 16b for different coating refractive indices 

and a coating thickness of 600 nm. The increase in the sensitivity can be observed for all LMRs. 

However, similarly to what happened in Fig. 9a, the rate of increase is non-linear and decays at 
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longer wavelengths. Moreover, in this case it seems that it achieves a maximum value. An 

additional disadvantage that prevents to move to higher coating refractive indices is that the first 

LMR is out of scope for coating refractive indices higher than 2. For these cases the less 

sensitive second LMR should be monitored. 

 

4.5 Final remarks 

 

In Table I there is summary of the rules that can be used to design optimum LMR based devices.  

The parameters analyzed are the most important ones in terms of design of LMR based sensors. 

These rules have been extracted from materials that present conditions for LMR in a wide 

wavelength range. According to Fig. 3, this is the case for the materials analyzed in this work: 

PAH/PAA and TiO2/PSS. However, if other materials are used, attention must be paid if there 

are regions in the spectrum analyzed where the conditions for SPRs are met. This is the case of 

ITO. In [1] it is proved that the LMR generated with ITO coated CRMOF is not linearly shifted 

as a function of thickness. This is a contradiction with the results of Fig. 8 in this work. The 

reason is that the presence of a region where the conditions for formation of SPR are met 

prevents the LMR to be shifted to higher wavelengths.  

 

 

 

5. CONCLUSIONS 
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Some rules have been obtained for adequate design of sensing devices based on deposition of a 

thin-film on a cladding removed multimode optical fiber.  

The sensing mechanism is based on the detection of the central wavelength of lossy mode 

resonances (LMR) generated only for specific conditions (i.e. the real part of the thin-film 

permittivity is positive and higher in magnitude than both its own imaginary part and the 

material surrounding the thin-film) 

The key parameters for the design are the thickness and real part of the refractive index of the 

thin film, and the refractive index of the surrounding medium. The imaginary part of the thin-

film refractive index is only responsible for the generation of dual resonances and for the depth 

of the resonance, but not for the wavelength shift. 

According to the results obtained, the sensitivity is constant or increases as a function of the 

three parameters studied with some particularities. However, when the value of the key 

parameters is increased there are certain points where the most sensitive LMR (first LMR) is out 

of scope in the spectral range analyzed. In these cases it is necessary to monitor the second, the 

third and so on less sensitive LMRs. 
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Figure captions 

Fig. 1: SEM image of a) TiO2/PSS coated optical fiber core with coating thickness 1200 nm, b) 

PAH/PAA coated optical fiber core with coating thickness 1000 nm. 

Fig. 2: Experimental setup with the light source, the detector and the optical fiber with the coated region. 

Fig. 3: Refractive index dispersion curves of TiO2/PSS and PAH/PAA. 

Fig. 4: Spectral response obtained as a function of thickness for TiO2/PSS coated CRMOF (the SMRI is 

1.321): (a) theoretical, (b) experimental.  

Fig. 5: Spectral response obtained as a function of thickness for PAH/PAA coated CRMOF (the SMRI is 

1.321): (a) theoretical, (b) experimental. 

Fig. 6: Transmission spectra for two different thickness values (333 and 1165 nm) of TiO2/PSS coated 

CRMOF (the SMRI is 1.321): (a) theoretical, (b) experimental. 

Fig. 7: Transmission spectra for two different thickness values (750 and 1200 nm) of PAH/PAA coated 

CRMOF (the SMRI is 1.321): (a) theoretical, (b) experimental. 

Fig. 8: LMR wavelength as function of coating thickness for two different materials: PAH/PAA and 

TiO2/PSS. The SMRI is 1.321 (water). Simulation data: continuous line. Experimental data: squares. 

Fig. 9: Sthickness (sensitivity to variations of coating thickness expressed as wavelength shift vs thickness 

variation nm/nm) as a function of: a) coating refractive index (the SMRI is 1.321), b) surrounding 

medium refractive index (the coating refractive index is that of TiO2/PSS in Fig. 3).  

Fig. 10: LMR wavelength as a function of coating thickness for two different surrounding medium 

refractive indices: 1.321 (water) and 1.421. Coating refractive index: TiO2/PSS in Fig. 3. 

Fig. 11: Transmission spectra for different refractive indices. The real part is that of TiO2/PSS. The 

imaginary part varies from 0.004 to 0.04 in steps of 0.004. The SMRI is 1.321 (water). Coating thickness: 

333 nm. 

Fig. 12: LMR wavelength as a function of the coating refractive index for two different coating thickness 

values: 236 and 1200 nm. The SMRI is 1.321 (water). 
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Fig. 13: Scoating_index (sensitivity to variations of coating refractive index expressed as wavelength shift vs 

refractive index nm/RIU) as a function of: a) coating thickness (the SMRI is 1.321), b) surrounding 

medium refractive index (the coating thickness is 600 nm). 

Fig. 14: LMR wavelength as a function of coating refractive index for two different surrounding medium 

refractive indices: 1.321 (water) and 1.421. Coating thickness: 600 nm. 

Fig. 15: LMR wavelength as a function of the surrounding medium refractive index for two different 

coating thickness values: 48 and 1200 nm. Coating refractive index: TiO2/PSS in Fig. 3. 

Fig. 16: SSMRI (sensitivity to variations of SMRI expressed as wavelength shift vs refractive index 

variation nm/RIU) as a function of: a) coating thickness (the coating refractive index is that of TiO2/PSS 

in Fig. 3), b) coating refractive index (the coating thickness is 600 nm). 

Fig. 17: LMR wavelength as function of the surrounding medium refractive index for two different 

coating refractive indices: 1.55 and 2. Coating thickness: 600 nm. 
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Figures 

Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Fig. 12 
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Fig. 13 
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Fig. 14 
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Fig. 15 
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Fig. 16 
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Fig. 17 
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Table captions 

Table 1: Rules for sensitivity, expressed as wavelength shift vs variation of a parameter, for the different 

parameters analyzed in this work. 
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Table 1 

 
Sensitivity  

Sthickness Scoating_index SSMRI 

Coating thickness constant increasing linearly increasing linearly 

Coating refractive index Increasing non-linearly 
(decreasing slope) 

constant Increasing non-linearly  
(decreasing slope) 

SMRI 

Increasing non-linearly  
(increasing slope) 

More separation between 
LMRs 

Increasing non-linearly 
(increasing slope) 

More separation between 
LMRs 

increasing 

 

 

 


