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Abstract. We study the dynamics of a family of perturbed three-degrees-

of-freedom (3-DOF) Hamiltonian systems which are in 1:1:1 resonance. The

perturbation consists of axially symmetric cubic and quartic arbitrary poly-

nomials. Our analysis is performed by normalisation, reduction and KAM

techniques. Firstly, the system is reduced by the axial symmetry and then,

periodic solutions and KAM 3-tori of the full system are determined from the

relative equilibria. Next, the oscillator symmetry is extended by normalisation

up to terms of degree 4 in rectangular coordinates; after truncation of higher

orders and reduction to the orbit space, some relative equilibria are established

and periodic solutions and KAM 3-tori of the original system are obtained. As

a third step, the reduction of the two symmetries leads to a one-degrees-of-

freedom system that is completely analysed in the twice reduced space. All

the relative equilibria, together with the stability and parametric bifurcations

are determined. Moreover the invariant 2-tori (related to the critical points

of the twice reduced space), some periodic solutions and the KAM 3-tori, all

corresponding to the full system, are established. Additionally, the bifurca-

tions of equilibria occurring in the twice reduce space are reconstructed as

quasi-periodic bifurcations involving 2-tori and periodic solutions of the full

system.
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1. Introduction

The study of perturbations of isotropic harmonic oscillators is a classical subject.

We can find in the literature pure mathematical works, as well as applications in

many fields. Perturbed harmonic oscillators in 1:1:1 resonance model, for instance,

the near-harmonic motion in the core of an elliptical galaxy [75, 12, 72, 73, 74, 8,

4, 9]. The existence of stars whose orbits lie out of the main plane of the galaxy

cannot be explained by the perturbations of a planar dynamical system. Thus,

one should consider the 3-DOF case, the so called triaxial elliptical galaxies [72].

The situation is similar in other fields in physics and chemistry, such as molecular

dynamics. Indeed, small-amplitude vibrations in molecules follow an oscillatory

law, as their spectra and their reactions show [36]. Chemists adopt models based

on perturbations of harmonic oscillators to describe the motion of the nuclei in

small molecules [17, 24]. The dynamics of ions in Penning traps [44] can be also

studied in this setting. More applications are found in mechanical engineering,

wave mechanics, semiclassical quantization, lattices, non-linear optics, or statistical

mechanics. For references see, for instance, [47] and references therein.

We tackle the analysis of our 3-DOF problem under the light of normal forms [18,

54] and singular reduction [2, 15]. In [57] we can find a geometric interpretation of

singular reduction theory in the setting of resonant Hamiltonians with n degrees of

freedom. A generalisation is in progress [58]. We apply some of the results of [57]

in the present problem. Our starting Hamiltonian system can be reduced both by

one exact symmetry and by one approximate symmetry. On the one hand, the

system is axially symmetric, but on the other hand, the oscillator symmetry may

be extended by normalisation up to a certain order with respect to a small param-

eter. So, we can reduce the system (i) by the axial symmetry, (ii) by the oscillator

symmetry (after truncation) or (iii) by both symmetries. Each reduced system

provides information about the original one. In this paper we analyse the three

reduced systems in their corresponding reduced spaces and perform the reconstruc-

tion of the flow corresponding to the starting Hamiltonian in the three situations.
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The coordinates we use to perform the analysis of the reduced space are the so

called invariants. They are quantities intrinsic to the symmetry that is reduced

and are used to parametrise the reduced space, thus they are global coordinates of

the reduced space.

For the reconstruction of invariant 3-tori we apply the KAM-type theorem by

Han, Li and Yi [39], that can be applied to highly degenerate systems as ours

is, and allows us to get some families of invariant tori of dimension three for the

starting Hamiltonian. These 3-tori are located around the periodic solutions that

we establish in cases (i) and (ii) and around the periodic solutions and invariant 2-

tori that we obtain in case (iii). The characterisation of these KAM tori by applying

Han-Li-Yi’s Theorem is new compared to the paper [31].

Along the paper we will see that certain types of periodic solutions and invariant

2-tori are obtained as relative equilibria of the vector fields related to the reduced

Hamiltonian systems in the three different situations. More specifically, solutions

whose projection in configuration space Oxyz are rectilinear trajectories in the Oz-

axis (from now on, rectilinear trajectories in the Oz-axis) are studied in the spaces

resulting after reducing the symmetries (ii) and (iii). Periodic solutions in T ∗R3

whose projections in configuration space are close to circular solutions on the Oxy-

plane (from now on, circular-equatorial solutions) are analysed using the reductions

related to the cases (i) and (ii). Finally, the invariant 2-tori are determined in the

reduced space that results after applying both symmetries, that is, case (iii). Hence,

different reductions provide us with different features of the original system.

Perturbations of the 1:1:1 resonance have been previously studied under the

point of view of singular reduction. In [16], the bases for the reduction of axially

symmetric perturbations of the isotropic harmonic oscillator are established. As an

example, the authors apply their results to a particular case of an axially symmetric

quartic perturbation. Later on, Ferrer et al [34] consider the normalisation and

reduction of perturbations that are arbitrary cubic and quartic polynomials. The

integrability of certain subfamilies is also analysed. Paper [31] treats the reduction
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process, analysis of the reduced system and reconstruction of axially symmetric

cubic potentials. Although the perturbation is only at first order, a second order

in the normalisation procedure is required to obtain a non-trivial normal form.

Thus, as it is pointed out in the introduction of [31], rigorously, the second

order perturbation (i.e., the quartic terms) should be taken into account in the

formulation of the starting system. In this sense, our study comes to complete the

work started in [31], as the perturbation considered here is composed by axially-

symmetric cubic and quartic homogeneous polynomials.

As we will see throughout the paper, the main difference between taking into

account only cubic perturbations and taking both cubic and quartic ones is that, in

the first case the dynamics in the twice reduced space depends only on two essential

parameters, whereas in the second case it depends on three. Consequently, the

consideration of cubic and quartic terms leads to a more complex analysis. The

bifurcation lines in [31] are now bifurcation surfaces. We recover the same type of

bifurcations that appeared in [31] and find a new one, a Z-symmetric A+
5 (see a

description of it in [40]), also called a butterfly A5 with reflection symmetry [64].

Moreover, in this paper we resort to recent KAM results, as the one by Han,

Li and Yi [39], for the explicit reconstruction of certain KAM 3-tori. These KAM

tori appear as Cantor-like families of Diophantine invariant tori that depend on

the external parameters of the problem (five in our case) as well as three internal

parameters (three due to the dimension of the 3-tori), see [6].

Also, apart from establishing the existence of families of periodic solutions and

invariant 3-tori from the twice reduced system, we determine periodic solutions

and tori from the systems that are reduced either by the oscillator symmetry or

by the axial symmetry. The analysis of the periodic solutions combines techniques

of averaging and reduction theories [60, 11], and in particular is based on Reeb’s

Theorem [62] for getting families of periodic solutions from the critical points of a

reduced system defined on the reduced space. Additional results and some more
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theory on this topic have been developed in [71], see also [54, 55, 57], and we shall

make use of them along the paper.

In [41] and [42], axially-symmetric perturbed isotropic harmonic oscillators are

considered under the point of view of bifurcation theory, the perturbation being

a cubic polynomial. In particular, Hanßmann and van der Meer have focused

on the Hamiltonian Hopf bifurcation occurring in this context, devising methods

to determine the presence of this type of bifurcation in three-degrees-of-freedom

systems by putting the bifurcation into standard form, see also [40]. We shall follow

their procedure in Section 5, but with an appropriate set of rectangular coordinates

that are introduced in Section 4. The monograph [69] contains a detailed analysis of

the second non-trivial normal form corresponding to the potential handled in [31],

focusing on the occurrence of different types of Hamiltonian Hopf bifurcations and

a global bifurcation that cannot be analysed if the normalisation is carried out only

up to terms of order 2 in ε.

In a series of papers, Efstathiou and collaborators analyse perturbations of the

1:1:1 resonance. In [23] they consider point-group-invariant perturbations and cal-

culate stationary points that can undergo a linear Hamiltonian Hopf bifurcation,

see also the monograph [21]. In [22] a cubic potential with tetrahedral symmetry

is chosen and, after normalisation and reduction, they determine relative equilib-

ria and bifurcations. As well as Hanßmann and van der Meer these authors also

use symplectic reduction and invariant theory combined with the introduction of

variables of symplectic nature to deal with the stability character of the periodic

solutions. The sets of variables built in these papers usually lead to very long ex-

pressions compared with the coordinates we introduce in Sections 3, 4 and 5 for

similar purposes. In this respect it is expected that the various bifurcation analyses

performed in these papers, as well as other related studies on bifurcations, KAM

theory, and so on can be better accomplished using the sets of symplectic coor-

dinates we build to deal with the analysis of the relative equilibria in the various

reduced spaces appearing in the paper.
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The type of potentials we tackle in this paper has been considered as well by

some authors with the aim of studying the existence of periodic solutions, see for

example the works of Llibre and coworkers [48, 49, 7]. Also, the potential considered

in [35] is a particular case of ours. Applying averaging theory these authors find

families of periodic solutions and in some cases study their linear stability. Other

papers dealing with the 1:1:1 resonance in the framework of the analysis of periodic

solutions are [75, 72, 73, 8] and more recently [4, 9, 46]. Traditionally, averaging is

applied by means of different sets of coordinates. As they do not use the invariants

of the corresponding reduced spaces, their treatment can lack on the generality to

cover the whole reduced space. An exception is [61] where a potential without axial

symmetry is analysed in the reduced space using the associated invariants of the

reduction together with some convenient sets of local symplectic coordinates that

were introduced for each type of motion we deal with.

Resonances in Hamiltonian systems with three or more degrees of freedom have

been received also the attention of many authors from the point of view of the

determination of periodic solutions and their possible bifurcations, reduction theory,

existence of chaos and other related topics, see for instance [1, 43, 38, 37, 27, 63].

In this case the dimension of the orbit space is at least four and the theory turns

out rather cumbersome. Extensions to the 1:1:1:1 resonance have been considered

by Egea et al [25, 26]. There the authors use reduction and invariant theory,

achieving the existence of families of invariant tori of different dimensions (starting

with periodic solutions) as well as their parametric bifurcations. In these studies

additional symmetries are attached to the perturbation with the aim of exploring

the relationship between the 1:1:1:1 resonance and the spatial two-body problem

by means of the Kustaanheimo-Stiefel regularisation technique.

The paper is divided into eight sections. In Section 2 we introduce the Hamil-

tonian function while in Section 3 we apply the reduction by the axial symme-

try and perform the reconstruction to the starting (or full) Hamiltonian system.



AXIALLY SYMMETRIC PERTURBED HAMILTONIANS IN 1:1:1 RESONANCE 7

The reduction is singular and the reduced space presents a singularity that cor-

responds, precisely, to the rectilinear periodic trajectories in the Oz-axis. The

vector field related to the reduced Hamiltonian is analysed as a function of the

invariants associated to the axial symmetry. On the one hand, there are two rel-

ative equilibria that correspond to linearly stable prograde and retrograde nearly

circular-equatorial periodic trajectories in the full system. On the other hand, the

existence of 3-dimensional KAM tori around these solutions is proved under certain

non-degeneracy conditions.

Section 4 accounts for the reduction of the oscillator symmetry. The starting

Hamiltonian function is normalised up to including polynomials of degree four and

the truncated normalised (and reduced) system is analysed in the corresponding

reduced space, which is CP2
h. In this case the reduction is regular and we find

again the two relative equilibria that correspond to the prograde and retrograde

nearly circular periodic trajectories on the Oxy-plane and another equilibrium that

is associated to the rectilinear solutions in the Oz-axis. The conditions for the

existence of the corresponding periodic solutions and KAM 3-tori are explicitly

calculated.

Section 5 is devoted to the analysis of the twice reduced system. A complete

study of the relative equilibria and parametric bifurcations is presented. The re-

construction of the corresponding invariant 2-tori (and periodic solutions) is given

in Section 6. Moreover, the parametric bifurcations occurring between the relative

equilibria in the twice reduced space are also reconstructed for the full system, lead-

ing to a rather complete description of the Hamiltonian system in 1:1:1 resonance

with an axially symmetric perturbation composed of polynomials of degrees three

and four. In addition to this, the persistence of KAM 3-tori related to the elliptic

(non-degenerate) points is also proved using Han-Li-Yi’s Theorem.

In Section 7 we treat the case of perturbations that are not axially symmetric but

such that the combinations between the parameters make the system to enjoy the

axial symmetry up to terms of degree four. Then, one can reduce the Hamiltonian
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two times and use the theory developed in previous sections. In this situation some

consequences for the starting system can be drawn using the same reconstruction

procedures as in the axially symmetric context.

The paper ends with a section devoted to the conclusions and future work.

2. Axially symmetric perturbed Hamiltonian

Consider the autonomous 3-DOF Hamiltonian system

(1) v′ = J∇H(v), v = (q, p),

with J denoting the standard 6× 6 skew symmetric matrix and H(v) as the Hamil-

tonian function

(2) H(v) = H0(v) +H1(q) +H2(q).

Hamiltonian H0 corresponds to the isotropic harmonic oscillator

(3) H0(v) = 1
2 (x2 +X2) + 1

2 (y2 + Y 2) + 1
2 (z2 + Z2),

whereas H1 and H2 are the general homogeneous polynomials of degrees three and

four, respectively, in the coordinates q = (x, y, z), i.e.,

(4)

H1(q) = a1x
3 + a2x

2y + a3xy
2 + a4y

3 + a5x
2z + a6xyz + a7y

2z + a8xz
2

+a9yz
2 + a10z

3,

H2(q) = b1x
4 + b2x

3y + b3x
2y2 + b4xy

3 + b5y
4 + b6x

3z + b7x
2yz + b8xy

2z

+b9y
3z + b10x

2z2 + b11xyz
2 + b12y

2z2 + b13xz
3 + b14yz

3 + b15z
4,

with aj and bj real parameters.

We focus our attention on Hamiltonian functions that are invariant under the

axial S1-action

% : S1 × T ∗R3 → T ∗R3

(ν, (q, p)) 7→ (expν q, expν p)
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where T ∗R3 ∼= R3 × R3 and expv stands for the rotation

expν =


cos ν − sin ν 0

sin ν cos ν 0

0 0 1

 .

The following result characterises the family of Hamiltonian functions of the

form (1) that are invariant under rotations with respect to the S1-action %.

Proposition 2.1. Hamiltonian (1) is axially symmetric with respect to the Oz-axis

when the functions H1 and H2 are of the form

(5)
H1(q) = a5z(x

2 + y2) + a10z
3,

H2(q) = b1(x2 + y2)2 + b10z
2(x2 + y2) + b15z

4.

Proof We denote by N = xY −yX the third component of the angular momentum

vector. The condition for H in (1) to be invariant under rotations around the Oz-

axis is {H, N} = 0, where { , } designates the usual Poisson bracket operator.

Imposing that H commutes with N we arrive at an equation where the following

conditions have to be satisfied, namely, a1 = a2 = a3 = a4 = a6 = a8 = a9 = 0,

a7 = a5, b2 = b4 = b6 = b7 = b8 = b9 = b11 = b13 = b14 = 0, b3 = 2b1, b12 = b10,

b5 = b1. Thus, we end up with Hamiltonian (5) and conclude that N is an integral

of motion for it.

Let us introduce Hε as a small perturbation of H0. More specifically, the Hamil-

tonian function tackled in this paper is

(6) Hε(q, p) = H0(q, p) + εH1(q) + ε2H2(q),

with H1 and H2 given explicitly in (5). The dimensionless parameter ε expresses

the fact that we consider the cubic and quartic perturbations to be small. Indeed, ε

can always be introduced by a scaling (q, p)→ ε(q, p) with the corresponding time

scaling, so that the function H in (1) takes the form (6). Thus, Hε given in (6)

describes the dynamics of the Hamiltonian system close to the origin.
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3. Reduction by the axial symmetry and reconstruction

3.1. Reduction by the axial symmetry. As we have seen in the previous section,

Hamiltonian (6) is invariant under the S1-action %. This action is not free because

it has non-trivial isotropy groups. In fact, the subspace {(0, 0, z, 0, 0, Z) | z, Z ∈ R}

is invariant and consequently, the reduction by the axial symmetry is singular, see

details in [16, 31].

We apply this symmetry to simplify the analysis of the Hamiltonian system

associated to (6) by lowering the number of degrees of freedom from three to two.

We introduce the invariants associated to this symmetry, namely,

(7)
i1 = x2 + y2 , i2 = X2 + Y 2 , i3 = xY − yX = N,

i4 = xX + yY , i5 = z , i6 = Z.

They satisfy the constraints

(8) i1i2 = i23 + i24 , i1 ≥ 0, i2 ≥ 0 ,

see details in [16, 31, 55]. The invariants i1, . . . , i6 subject to the constraints (8)

uniquely specify an orbit. The Poisson brackets among the invariants are given in

Table 1. Notice that Proposition 2.1 can be also directly inferred from (7).

{ij , ik} i1 i2 i3 i4 i5 i6

i1 0 4i4 0 2 i1 0 0

i2 −4i4 0 0 −2i2 0 0

i3 0 0 0 0 0 0

i4 −2i1 2i2 0 0 0 0

i5 0 0 0 0 0 1

i6 0 0 0 0 −1 0

Table 1. Poisson brackets for the invariants ij .

After fixing i3 = N = γ, the reduced space is the non-compact 4-dimensional

orbifold

(9) Mγ =
{

(i1, i2, i4, i5, i6) ∈ R5 | i1i2 − i24 = γ2, i1 ≥ 0, i2 ≥ 0
}
.
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The space is regular (a symplectic manifold) provided γ 6= 0. When γ = 0 the

reduced space M0 is singular. The motions related to any point in M0 are the

ones whose projections onto Oxyz-space are perpendicular to the Oxy-plane, that

is, trajectories of polar type. In particular, all rectilinear solutions passing through

the origin of R6 are contained in M0. The space M0 has a 2-dimensional singular

subspace given by points of the form (0, 0, 0, i5, i6) with i5, i6 in R; these correspond

to the rectilinear solutions occurring on the OzZ-plane. See also [16, 55].

Hamiltonian (6) is written as a function of the invariants in the space Mγ

through

(10) Hε = Hε(i1, i2, i4, i5, i6) = H0 + εH1 + ε2H2,

where

(11)

H0 = 1
2 (i1 + i2 + i25 + i26),

H1 = i5(a5i1 + a10i
2
5),

H2 = b1i
2
1 + b10i1i

2
5 + b15i

4
5.

The associated vector field is calculated by means of Liouville’s Theorem and

yields that

(12) i′j =
d

dt
ij = {ij ,Hε} =

6∑
k=1
k 6=3

{ij , ik}
∂Hε
∂ik

, j ∈ {1, 2, 4, 5, 6},

where

(13)

i′1 = 2i4,

i′2 = −2i4[1 + 2εa5i5 + 2ε2(2b1i1 + b10i
2
5)],

i′4 = i2 − i1 − 2εa5i1i5 − 2ε2i1(2b1i1 + b10i
2
5),

i′5 = i6,

i′6 = −i5 − ε(a5i1 + 3a10i
2
5)− 2ε2i5(b10i1 + 2b15i

2
5).
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The zeroes of system (13) are related to periodic solutions of the HamiltonianHε.

As we consider ε to be small, we will determine only the equilibria that correspond

to periodic solutions that are close to the origin. In case we would not assume ε

small we could find other relative equilibria.

3.2. Periodic solutions from Mγ. There are two types of periodic solutions for

the system defined by (6) that can be studied in Mγ , namely, the ones coming

from the relative equilibria of (13) and the solutions whose projection in configura-

tion space Oxyz are near rectilinear trajectories in the Oz-axis. These rectilinear

motions appear in the singular space M0.

Proposition 3.1. Assume γ 6= 0 and ε sufficiently small. Then the vector field (13)

has two isolated equilibria on the reduced space Mγ , namely, the point O1 with

coordinates

i11 = −γ + ε2(a2
5 − 2b1)γ2 +O(ε4),

i12 = −γ − ε2(a2
5 − 2b1)γ2 +O(ε4),

i14 = 0,

i15 = εa5γ − ε3a5(a2
5 + 3a5a10 − 2b1 − 2b10)γ2 +O(ε4),

i16 = 0,

for γ < 0 (retrograde motion), and the point O2 with coordinates

i21 = γ + ε2(a2
5 − 2b1)γ2 +O(ε4),

i22 = γ − ε2(a2
5 − 2b1)γ2 +O(ε4),

i24 = 0,

i25 = −εa5γ − ε3a5(a2
5 + 3a5a10 − 2b1 − 2b10)γ2 +O(ε4),

i26 = 0,

for γ > 0 (prograde motion).
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Proof The equilibrium points of system (13) on the space Mγ are of the form

O∗ = (i∗1, i
∗
2, 0, i

∗
5, 0), where i∗1, i

∗
2, i
∗
5 are the zeroes of the algebraic system

(14)

g1(i1, i2, i5; ε) = i2 − i1 − 2εa5i1i5 − 2ε2i1(2b1i1 + b10i
2
5),

g2(i1, i2, i5; ε) = −i5 − ε(a5i1 + 3a10i
2
5)− 2ε2i5(b10i1 + 2b15i

2
5),

g3(i1, i2, i5; ε) = i1i2 − γ2.

When ε = 0 the only solutions of (14) are (i∗1, i
∗
2, i
∗
5) = (∓γ,∓γ, 0). It is clear that

g = (g1, g2, g3) satisfies

g(∓γ,∓γ, 0; 0) = (0, 0, 0), detDg(∓γ,∓γ, 0; 0) = ±2γ.

Therefore, by the implicit function theorem there exists a unique solution (i1(ε),

i2(ε), i5(ε)) of system (14) satisfying (i1(0), i2(0), i5(0)) = (∓γ,∓γ, 0). From now

on, we adopt the convention that when the signs “±” or “∓” appear in an expression

involving γ, the upper sign applies for γ < 0 (retrograde motions) and the lower

sign applies for γ > 0 (prograde motions).

To get the solutions we formally solve system (14) by proposing a Taylor expan-

sion in terms of ε as

(15) i∗j = i∗j0 + ε i∗j1 + ε2 i∗j2 + ε3 i∗j3 +O(ε4) , j = 1, 2, 5.

This leads to the conclusion of the proposition. The corresponding solutions are

close to the Oxy-plane because i∗5 is nearly zero and they are nearly circular ones

because one has that H0 is close to ∓γ.

Theorem 3.1. When γ 6= 0 and ε > 0 is sufficiently small, Hamiltonian (6) has

periodic solutions in T ∗R3 parametrised by γ whose projections in configuration

space are close to retrograde (γ < 0) and prograde (γ > 0) circular trajectories on

the Oxy-plane. These periodic solutions are linearly stable and their periods are

2π[1∓ ε2|a2
5 − 2b1|γ] +O(ε4).
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Proof Firstly, we build symplectic coordinates (Q1, Q2, P1, P2) in Mγ as func-

tions of the invariants given in (7). More precisely, we introduce functions f1 =

f1(i1, i2, i4) and f2 = f2(i1, i2, i4) to be determined such that the transformation

Q1 = i5, P1 = i6, Q2 = f1, P2 = f2

be symplectic. Taking into account relations (7) and the Poisson brackets among

the ij given in Table 1, we trivially have that {Q1, P1} = 1 and

{Q2, P2} = 2

[
∂f1

∂i4

(
i2
∂f2

∂i2
− i1

∂f2

∂i1

)
+
∂f2

∂i4

(
i1
∂f1

∂i1
− i2

∂f1

∂i2

)
+2i4

(
∂f1

∂i1

∂f2

∂i2
− ∂f1

∂i2

∂f2

∂i1

)]
.

Note also that {Q1, Q2} = {Q1, P2} = {Q2, P1} = {P1, P2} = 0.

In order to solve the partial differential equation {Q2, P2} = 1, we select a

convenient function for f1 = i1 and solve for f2, getting

f2(i1, i2, i4) =
i4
2i1

.

Thus, the symplectic coordinates are

(16) Q1 = i5, Q2 = i1, P1 = i6, P2 =
i4
2i1

.

These coordinates are properly defined in Mγ , except for i1 = 0. In particular,

they are valid in neighbourhoods of the points O1 and O2.

Using the transformation (16), we obtain the expressions of the equilibria O1

and O2 in the coordinates (Q,P ). Specifically they are (Q∗1, Q
∗
2, P

∗
1 , P

∗
2 ), with

(17)

Q∗1 = ±εa5γ − ε3a5(a2
5 + 3a5a10 − 2b1 − 2b10)γ2 +O(ε4),

Q∗2 = ∓γ + ε2(a2
5 − 2b1)γ2 +O(ε4),

P ∗1 = 0,

P ∗2 = 0,
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and Hamiltonian (6) is given by

(18) Hε(Q,P ) = H0 + εH1 + ε2H2 ,

where

H0 =
1

2Q2

[
γ2 +Q2(Q2 +Q2

1 + P 2
1 + 4Q2P

2
2 )
]
,

H1 = Q1(a5Q2 + a10Q
2
1),

H2 = b1Q
2
2 + b10Q

2
1Q2 + b15Q

4
1.

Now, we shift the origin to the equilibrium points Oj and rescale time, dividing

the Hamiltonian by ε1/2 and performing the symplectic linear change

(19)

Q1 = ε1/4Q1 +Q∗1 , Q2 = ε1/4Q2 +Q∗2 , P1 = ε1/4P 1 +P ∗1 , P2 = ε1/4P 2 +P ∗2 ,

where Q∗1, Q
∗
2, P

∗
1 , P

∗
2 stand for the coordinates of the equilibria given in (17) after

truncation of terms of order O(ε4). Next, we expand the resulting Hamiltonian

around the origin in powers of ε, obtaining

(20) Hε(Q,P ) = Hε,0 +Hε,2 +Hε,3 +Hε,4 +O(ε3/4),

where

(21)

Hε,0 = ∓ε−1/2 γ
2

[
2± ε2(a2

5 − 2b1)γ
]

+O(ε7/2),

Hε,2 = 1
2γ

[
γ(Q

2

1 + P
2

1)∓ (Q
2

2 + 4γ2P
2

2)
]

+ εa5Q1Q2

+ε2 γ2

[
±2(3a5a10 − b10)Q

2

1 + (−3a2
5 + 8b1)Q

2

2 + 4(a2
5 − b1)γP

2

2

]
±2ε3a5b10γQ1Q2 +O(ε4),

and Hε,3, Hε,4 are homogeneous polynomials of degree 3 and 4 in (Q,P ), respec-

tively. These two Hamiltonians depend upon ε. The remainder O(ε3/4) includes

terms of degree at least five in (Q,P ) while the lowest power in ε is 3/4. When

ε = 0, the quadratic part of Hε is in 2:1 resonance, as it also happens when only

cubic axially-symmetric perturbations are considered [31].
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The eigenvalues associated to Hε,2 are ±iλ1, ±iλ2, where

(22) λ1 = 2± ε2c1γ +O(ε4), λ2 = 1± ε2c2γ +O(ε4),

with

(23) c1 = 1
3 (5a2

5 − 18b1), c2 = 1
3 (2a2

5 + 9a5a10 − 3b10).

Thus, for a sufficiently small ε the equilibria Oj are not in 1:−1 resonance and

therefore they are parametrically stable on the space Mγ . Then, the periodic

solutions reconstructed from Oj are linearly stable, see more details in [71].

The periods of the solutions are computed by calculating 2π |∂Hε(Q,P )/∂γ|−1
,

evaluating the result at (Q∗1, Q
∗
2, P

∗
1 , P

∗
2 ) and expanding it in terms of ε around 0.

We end up with 2π[1∓ ε2|a2
5 − 2b1|γ] +O(ε4).

The characteristic multipliers corresponding to these periodic solutions will be

computed in Section 4.

Now, let us consider periodic solutions whose projection in configuration space

Oxyz are motions on the Oz-axis. When γ = 0 the subspace of R6 given by

i1 = i2 = i3 = i4 = 0 is invariant under the axial symmetry because the plane

Π = span{e3, e6} with e2 = (0, 0, 1, 0, 0, 0) and e6 = (0, 0, 0, 0, 0, 1) is invariant.

Under these conditions system (13) is reduced to

(24)
i′5 = i6,

i′6 = −i5(1 + 3εa10i5 + 4ε2b15i
2
5).

Note that it is an anharmonic oscillator on the OzZ-plane. The solutions of this

system can be obtained explicitly in terms of elliptic integrals. Some of these mo-

tions correspond to periodic solutions of the Hamiltonian system derived from (6).

Nevertheless this type of periodic motions will be analysed after normalising when

studying the dynamics of the reduced system in CP2
h and also in the twice reduced
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space as we shall get easier expressions; so, we postpone their study to Sections 4

and 5.

3.3. KAM tori of dimension 3 from Mγ. In order to prove the existence of

KAM tori, we define the auxiliary constants

(25)
c3 = 4

3a5(a5 − 3a10), m = 3(c1 − 2c2),

∆1 =
1

m
[3(c2 + c3)2 + 2c2m], ∆2 =

3

4m
[(c2 + c3)2 −m(5a2

10 − 2b15)],

with c1 and c2 given in (23).

Theorem 3.2. When c1m 6= 0 and ε > 0 is sufficiently small, there are invariant

KAM 3-tori for Hamiltonian system (6) around the prograde and retrograde nearly

circular periodic solutions on the Oxy-plane. These invariant tori form a major-

ity in the sense that the excluding measure for the existence of the quasi-periodic

invariant tori is of order ε.

Proof Considering Hamiltonian (20), we put its quadratic part, Hε,2, in diagonal

(normal) form. For that, we construct a linear complex symplectic change of coor-

dinates (Q1, Q2, P 1, P 2) −→ (q1, q2, p1, p2) by means of the eigenvectors associated

to Hε,2, see details in [45, 50], and apply it to Hamiltonian (20). The resulting

Hamiltonian is

(26) Hε(q, p) = Hε,0 + i(λ1q1p1 + λ2q2p2) +Hε,3 +Hε,4 +O(ε3/4),

where Hε,3, Hε,4 are homogeneous polynomials of degree 3 and 4 in the new coordi-

nates q and p, respectively. Both Hamiltonians depend on ε but in such a way that

the bigger terms in Hε,3 with respect to ε are of order ε1/4 while the bigger terms

in Hε,4 with respect to ε are of order ε1/2. This gives an idea of the correctness of

the ordering of the Hamiltonians Hε,k in (26) for the forthcoming step.

As the next step, we perform a Lie-Deprit transformation, see for example [18],

with the aim of simplifying the Hamiltonian function. This normal form trans-

formation is made up to terms of degree four in the coordinates q and p, that is,
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two steps in the Lie triangle process are performed. After this, we arrive at the

following Hamiltonian:

(27) Hε(q, p) = Hε,0 + i(λ1q1p1 + λ2q2p2) + ε5/2H4 +O(ε3),

where Hε,0 is given in (21), λ1, λ2 have been introduced in (22) and H4 is a homoge-

neous polynomial of degree 4 in (q, p) in normal form with respect to the quadratic

part and independent of ε. For the existence of the Lie-Deprit transformation it is

necessary to assume that m 6= 0 because this term is present at the denominators

of the generating function built in the process.

With the aim of applying a KAM-type result, we express the normalised Hamil-

tonian Hε in (27) in adequate action-angle coordinates (I, φ) = (I1, I2, φ1, φ2).

They are defined by means of the symplectic transformation

(28)
q1 =

√
I1(cosφ1 − i sinφ1), q2 =

√
I2(cosφ2 − i sinφ2),

p1 =
√
I1(sinφ1 − i cosφ1), p2 =

√
I2(sinφ2 − i cosφ2).

We also identify γ with a third action recalling that γ = N . As we prefer to

apply a KAM-type result to the full Hamiltonian, Hε, we undo the operation we

have performed to pass from the unnormalised Hε to the normal form (with the

same name), i.e. we rescale time by multiplying Hε by ε1/2. Then, after some

simplifications the resulting Hamiltonian in action-angle coordinates reads as

(29)
Hε(φ,N, I) = h0(N) + ηh1(N, I1, I2) + η4h2(N, I1, I2) + η5h3(N, I1, I2)

+η6h4(N, I1, I2) +O(η7),

where η = ε1/2 and

h0 = ∓N, h1 = 2I1 + I2, h2 = − 1
2 (a2

5 − 2b1)N2,

h3 = ±(c1I1 + c2I2)N, h4 = −c1I2
1 −∆1I1I2 + ∆2I

2
2 ,

with m 6= 0. We emphasise that (29) stands for Hamiltonian function (6) in neigh-

bourhoods of the periodic solutions established in Theorem 3.1. Note also that the
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terms hj are independent of the small parameter η, indeed they only depend on

the ai and bj .

As the Hamiltonian is highly properly degenerate we cannot apply a classical

result on KAM theory, see [3]. Thus we apply a recent result of Han, Li and

Yi [39]. Following the notation in Han-Li-Yi’s paper, a = 4, n0 = 1, n1 = n2 =

n3 = n4 = n = 3,m1 = 1,m2 = 4,m3 = 5,m4 = 6, yn0 = N, yn1 = yn2 = yn3 =

yn4 = (N, I1, I2). The vector of frequencies has dimension 9 and is given by

Ω(N, I1, I2) =

(
∂h0

∂N
,
∂h1

∂I1
,
∂h1

∂I2
,
∂h2

∂I1
,
∂h2

∂I2
,
∂h3

∂I1
,
∂h3

∂I2
,
∂h4

∂I1
,
∂h4

∂I2

)
and the 9× 4 matrix whose columns are Ω, ∂Ω/∂N , ∂Ω/∂I1 and ∂Ω/∂I2 reads as

Ω1
∂Ω1

∂N

∂Ω1

∂I1

∂Ω1

∂I2

Ω2
∂Ω2

∂N

∂Ω2

∂I1

∂Ω2

∂I2

Ω3
∂Ω3

∂N

∂Ω3

∂I1

∂Ω3

∂I2

Ω4
∂Ω4

∂N

∂Ω4

∂I1

∂Ω4

∂I2

Ω5
∂Ω5

∂N

∂Ω5

∂I1

∂Ω5

∂I2

Ω6
∂Ω6

∂N

∂Ω6

∂I1

∂Ω6

∂I2

Ω7
∂Ω7

∂N

∂Ω7

∂I1

∂Ω7

∂I2

Ω8
∂Ω8

∂N

∂Ω8

∂I1

∂Ω8

∂I2

Ω9
∂Ω9

∂N

∂Ω9

∂I1

∂Ω9

∂I2



=



∓1 0 0 0

2 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

±c1N ±c1 0 0

±c2N ±c2 0 0

−2c1I1 −∆1I2 0 −2c1 −∆1

−∆1I1 + 2∆2I2 0 −∆1 2∆2



.

When c1 6= 0 the rank of the matrix is 4 while the rank is two when c1 = 0.

Therefore, Han-Li-Yi’s Theorem guarantees the existence of KAM tori of dimension

3 around the circular-equatorial periodic solutions provided c1 6= 0. Setting b =∑a
j=1mj(nj−nj−1), we obtain b = 2. The maximum order of the partial derivatives

involved in the computation of the 9 × 4 matrix is s = 1. As the perturbation is

in an order O(η8) and ηsb+µ = η2+µ > η7 (for a pre-fixed small positive constant
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µ < 1/5), the excluding measure for the existence of the quasi-periodic invariant

tori is of order ηb = η2 = ε.

Remark 1. When m = 0 we have considered a Taylor series of the equilibria Oj as

in (15) but carrying out the computations up to order O(ε4). Proceeding in the same

way as in the proof of Theorem 3.2, we conclude the existence of KAM tori whenever

c1m̃ 6= 0 with m̃ = 49a3
5− 81a2

5a10− 243a5a
2
10− 162a5b1− 486a10b1− 162a5b15 6= 0.

We have not kept on analysing what happens in the case m̃ = 0.

4. Reduction by the oscillator symmetry and reconstruction

4.1. Normalisation and reduction by the oscillator symmetry. The iso-

tropic harmonic oscillator (3) is invariant under the so called oscillator symmetry,

although Hamiltonian (6) is not invariant under this symmetry, in general. By nor-

malisation and truncation of higher order terms we extend the oscillator symmetry

to the whole (truncated) Hamiltonian. In the following paragraphs we describe the

reduction induced by the oscillator symmetry. Details can be seen in the recent

book [10].

A level set h of Hamiltonian (3) is the 5-dimensional sphere S5
h ⊂ C3 of radius

√
2h, where we can define complex coordinates w1 = x + iX, w2 = y + iY , w3 =

z + iZ. The one-dimensional unitary group U(1) = {eit | t ∈ [0, 2π)}, that is

isomorphic to the sphere S1, acts on C3 by complex multiplication, i.e. it defines a

map

ϕ : U(1)× C3 → C3

(eit, w) 7→ eitw,

where w = (w1, w2, w3). Its infinitesimal generator defines precisely the fundamen-

tal vector field associated to Hamiltonian (3) and its orbits are the trajectories of

the harmonic oscillator. The space of orbits of fixed energy h is the quotient space

S5
h/U(1). Such a space is the 4-dimensional complex projective space CP2

h [60],

that is characterised by the following nine linearly independent invariants, see for
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example [70, 34]:

(30)

ρ1 = x2 +X2, ρ2 = z2 + Z2, ρ3 = y2 + Y 2,

ρ4 = xz +XZ, ρ5 = xy +XY, ρ6 = yz + Y Z,

ρ7 = xZ − zX, ρ8 = xY − yX, ρ9 = zY − yZ.

The first six invariants describe the orbit in the plane of motion. The other invari-

ants, ρ7, ρ8 and ρ9, give us the position of the plane in the space because they are

the components of the angular momentum vector, except for the sign in ρ7 and ρ9.

The linear and quadratic constraints among the invariants are the following:

(31)

ρ1 + ρ2 + ρ3 = 2h, ρ1 ≥ 0, ρ2 ≥ 0, ρ3 ≥ 0,

ρ1ρ2 = ρ2
4 + ρ2

7, ρ1ρ3 = ρ2
5 + ρ2

8, ρ2ρ3 = ρ2
6 + ρ2

9,

ρ1ρ6 = ρ4ρ5 + ρ7ρ8, ρ2ρ8 = ρ4ρ9 + ρ6ρ7, ρ3ρ4 = ρ5ρ6 + ρ8ρ9,

ρ4ρ6 = ρ2ρ5 + ρ7ρ9, ρ4ρ8 = ρ1ρ9 + ρ5ρ7, ρ6ρ8 = ρ3ρ7 + ρ5ρ9.

Since CP2
h is a 4-dimensional compact symplectic space it is characterised by the

nine invariants subject to five fundamental relations and the inequalities ρi ≥ 0,

i = 1, 2, 3. There is some freedom in choosing the fundamental relations, but one

has to select ρ1 + ρ2 + ρ3 = 2h and four more from the second, third or fourth rows

of (31).

Table 2 shows the action of the Poisson bracket on the invariants. It has been

obtained in [70, 31, 34].

{ρj , ρk} ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9

ρ1 0 0 0 2ρ7 2ρ8 0 −2ρ4 −2ρ5 0

ρ2 0 0 0 −2ρ7 0 2ρ9 2ρ4 0 −2ρ6

ρ3 0 0 0 0 −2ρ8 −2ρ9 0 2ρ5 2ρ6

ρ4 −2ρ7 2ρ7 0 0 ρ9 ρ8 ρ1 − ρ2 −ρ6 −ρ5
ρ5 −2ρ8 0 2ρ8 −ρ9 0 ρ7 −ρ6 ρ1 − ρ3 ρ4

ρ6 0 −2ρ9 2ρ9 −ρ8 −ρ7 0 ρ5 ρ4 ρ2 − ρ3
ρ7 2ρ4 −2ρ4 0 ρ2 − ρ1 ρ6 −ρ5 0 ρ9 −ρ8
ρ8 2ρ5 0 −2ρ5 ρ6 ρ3 − ρ1 −ρ4 −ρ9 0 ρ7

ρ9 0 2ρ6 −2ρ6 ρ5 −ρ4 ρ3 − ρ2 ρ8 −ρ7 0

Table 2. Poisson brackets among the invariants ρi.
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The reduced space CP2
h is a symplectic manifold and the reduction process is

regular, see [53, 51].

In order to perform this reduction explicitly, we first normalise Hamiltonian (6)

with respect to H0 in terms of symplectic complex coordinates including homo-

geneous polynomials of degree 4 in these coordinates, similarly to what we did

in [31, 34]. We use the method of Deprit [18], performing two steps in the Lie

triangle process.

Next, we express the resulting Hamiltonian as a function of the invariants by

applying the division algorithm for multivariate polynomials [65, 14]. In order

to achieve it we calculate the Gröbner basis of the invariants together with their

relations, then we divide the normalised Hamiltonian with respect to this Gröbner

basis and take the remainder in the division. This remainder is an expression given

as a function of the invariants that is invariant with respect toH0. This method can

be applied to check whether a certain expression (usually a polynomial written in

some collection of variables) does belong or does not belong to the ideal generated

by another set of polynomials.

After some simplifications, the normalised reduced Hamiltonian takes the form

(32)
Hε = 1

2 (ρ1 + ρ2 + ρ3) + ε2

2

[
d1(ρ1 + ρ2 + ρ3)2 + d2(ρ1 + ρ2 + ρ3)ρ2

+d3(ρ2
4 + ρ2

6) + d4(ρ2
7 + ρ2

9) + d5ρ
2
8

]
+O(ε4),

where

(33)

d1 = 1
24 (−5a2

5 + 18b1),

d2 = 1
24 (5a2

5 − 45a2
10 − 18b1 + 18b15),

d3 = 1
8 (−5a2

5 − 10a5a10 + 15a2
10 − 6b1 + 6b10 − 6b15),

d4 = 1
8 (3a2

5 − 14a5a10 + 15a2
10 − 6b1 + 2b10 − 6b15),

d5 = − 1
6 (a2

5 + 6b1).
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Now we fix H0 = (ρ1 + ρ2 + ρ3)/2 = h > 0, rescale Hε changing the time and drop

constant terms, obtaining

(34) H̄ε = 2d2hρ2 + d3(ρ2
4 + ρ2

6) + d4(ρ2
7 + ρ2

9) + d5ρ
2
8 +O(ε2).

Applying Liouville’s Theorem to H̄ε and taking into account the Poisson brackets

in Table 2, the equations of motion associated to Hamiltonian (34), after truncation

of order higher than one in ε, are

(35)

ρ̇1 = 4[(d3 − d4)ρ4ρ7 − d5ρ5ρ8],

ρ̇2 = −4(d3 − d4)(ρ4ρ7 − ρ6ρ9),

ρ̇3 = 4[d5ρ5ρ8 − (d3 − d4)ρ6ρ9],

ρ̇4 = 4(d2 + d4)hρ7 − 2d4(2ρ2ρ7 + ρ3ρ7 + ρ5ρ9) + 2(d3 − d5)ρ6ρ8,

ρ̇5 = 4d5hρ8 + 2(d3 − d4)(ρ6ρ7 − ρ4ρ9)− 2d5(ρ2ρ8 + 2ρ3ρ8),

ρ̇6 = −4d2hρ9 + 2d4(ρ5ρ7 + ρ2ρ9 − ρ3ρ9)− 2(d3 − d5)ρ4ρ8,

ρ̇7 = −4(d2 + d3)hρ4 + 2d3(2ρ2ρ4 + ρ3ρ4 − ρ5ρ6)− 2(d4 − d5)ρ8ρ9,

ρ̇8 = 0,

ρ̇9 = 4d2hρ6 + 2d3(ρ4ρ5 − ρ2ρ6 + ρ3ρ6) + 2(d4 − d5)ρ7ρ8,

where the dots refer to derivation with respect to the rescaled time.

4.2. Periodic solutions reconstructed from CP2
h. Under some conditions of

non-degeneracy the equilibria of system (35) correspond with families of periodic

solutions of Hamiltonian (6). System (35) can be simplified, for instance, by elimi-

nating some of the variables ρj . Even then, it is not easy to discuss all the equilibria

from a direct analysis of (35). So, we have to resort to other approaches.

Topology arguments provide a lower bound in the number of periodic solutions

of a given Hamiltonian system. On the one hand, the Lusternik-Schnirelmann

category of CP2
h is 2 (see [13]) and this space is compact and simply connected,

thus 2 is a lower bound of the number of periodic solutions. On the other hand, the
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Euler-Poincaré characteristic of CP2
h is 3 and when the normalised Hamiltonian (32)

after truncating terms of degree higher than 4 in Cartesian coordinates is a Morse

function then, the full Hamiltonian (6) has at least 3 families of periodic solutions

(see [71] and references therein). Weinstein’s Theorem [67, 68], that provides a lower

bound of the number of periodic solutions of a certain flow in terms of the Lusternik-

Schnirelmann category of the reduced space, also states that Hamiltonian (6) has

at least 3 periodic solutions.

Proceeding similarly as we did with the axial symmetry reduction in Section 3

we focus on two special solutions: (i) periodic solutions in T ∗R3 whose projections

in configuration space are circular solutions on the Oxy-plane, and that we call

circular-equatorial solutions; and (ii) periodic solutions whose projection in config-

uration space Oxyz are rectilinear trajectories on the Oz-axis. Recall that case (ii)

was difficult to be handled inMγ and its discussion was postposed to this section.

The rest of the solutions will be considered in the twice reduced space in Section 5.

We establish the first result regarding the periodic solutions of type (i) according

to the discussion of the previous paragraph.

Theorem 4.1. When (2d2 +d3 +d4−d5)d5 6= 0 the points in CP2
h with coordinates

O1
C = (h, 0, h, 0, 0, 0, 0, h, 0) and O2

C = (h, 0, h, 0, 0, 0, 0,−h, 0) are linearly stable

equilibria (centres) of system (35) and, for a sufficiently small ε > 0, they give rise

to families of periodic solutions of Hamiltonian (6) parametrised by h > 0 whose

projections in configuration space are close to (retrograde and prograde, respectively)

circular trajectories on the Oxy-plane. Moreover, when 2d2 + d3 + d4 − 3d5 6=

0 the periodic solutions are linearly stable with characteristic multipliers 1, 1, 1 ±

4πiε2(2d2 + d3 + d4− d5)h+O(ε4), 1± 8πiε2d5h+O(ε4) and periods T (ε) = 2π[1∓

ε2|4d1 + d5|h] +O(ε4).

Proof It can be easily checked that O1
C and O2

C are isolated zeroes of system (35).

Taking into account formulae (30), we observe that they correspond to families of

solutions on the Oxy-plane because ρ2 = ρ4 = ρ6 = ρ7 = ρ9 = 0. Moreover, they

are of circular type because ρ2
7 + ρ2

8 + ρ2
9 = h2, see [70, 34] for more information.
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In order to analyse the parametric stability of O1
C and O2

C we have to introduce

convenient local symplectic coordinates in CP2
h. We describe the method we follow

to find this set of coordinates. First, we express the normal form (34) in rectangular

variables through formulae (30) and then in Poincaré action-angle variables (I, φ) =

(I1, I2, I3, φ1, φ2, φ3), that are defined by

x =
√

2I1 cosφ1, y =
√

2I2 cosφ2, z =
√

2I3 cosφ3,

X =
√

2I1 sinφ1, Y =
√

2I2 sinφ2, Z =
√

2I3 sinφ3.

Note that the zeroth-order term (3) of Hamiltonian (6) reads as I1 +I2 +I3. At this

point we introduce a linear canonical change of variables from (I1, I2, I3, φ1, φ2, φ3)

to (J1, J2, J3, θ1, θ2, θ3) in such a way that the zeroth-order term be one of the new

actions, for instance J1 = I1 + I2 + I3. Then, the normal form will depend on two

combinations of the angles, namely, θ2 = φ2−φ1 and θ3 = φ3−φ1. For completeness

we set J2 = I2, J3 = I3 and θ1 = φ1. Finally, we introduce rectangular canonical

coordinates from (J2, J3, θ2, θ3) as:

(36)

Q1 =
√

2J2 cos θ2, Q2 =
√

2J3 cos θ3, P1 =
√

2J2 sin θ2, P2 =
√

2J3 sin θ3.

The expression of these rectangular variables as functions of the invariants is

(37) Q1 =
ρ4√
ρ1
, Q2 =

ρ5√
ρ1
, P1 =

ρ7√
ρ1
, P2 =

ρ8√
ρ1
,

that is not defined for ρ1 = 0. The inverse of (37) is

ρ1 = 2h− (Q2
1 +Q2

2 + P 2
1 + P 2

2 ), ρ2 = Q2
1 + P 2

1 , ρ3 = Q2
2 + P 2

2 ,

ρ4 = Q1

√
2h− (Q2

1 +Q2
2 + P 2

1 + P 2
2 ), ρ5 = Q2

√
2h− (Q2

1 +Q2
2 + P 2

1 + P 2
2 ),

ρ6 = Q1Q2 + P1P2, ρ7 = P1

√
2h− (Q2

1 +Q2
2 + P 2

1 + P 2
2 ),

ρ8 = P2

√
2h− (Q2

1 +Q2
2 + P 2

1 + P 2
2 ), ρ9 = Q1P2 −Q2P1.
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A generalisation of these variables for a fully resonant Hamiltonian with n degrees of

freedom appears in [58] and in [57] for 2 degrees of freedom, deriving the construc-

tion of coordinates in full detail. Now, the coordinates (Q,P ) = (Q1, Q2, P1, P2) will

be used in the analysis of the parametric stability of O1
C and O2

C . The expressions

of the equilibria in these coordinates are O1
C = (0, 0, 0,

√
h) and O2

C = (0, 0, 0,−
√
h)

and Hamiltonian (34) reads as

(38)

H̄ε(Q,P ) = 2(d2 + d3)hQ2
1 + 2(d2 + d4)hP 2

1 + 2d5hP
2
2

−d3Q
4
1 − d4P

4
1 − (d3 + d4)Q2

1P
2
1 − d5P

2
2 (Q2

2 + P 2
2 )

+(−d3 + d4 − d5)Q2
1P

2
2 + (d3 − d4 − d5)P 2

1P
2
2

+2(d3 − d4)Q1Q2P1P2 +O(ε2).

The eigenvalues related to the linearisation of H̄ε(Q,P ) evaluated at (0, 0, 0,±
√
h)

are ±iα1, ±iα2, with

(39) α1 = 2(2d2 + d3 + d4 − d5)h, α2 = 4d5h.

Then, for (2d2 + d3 + d4 − d5)d5 6= 0 the equilibria are non-degenerate state points

of centre type. Thus, by Reeb’s Theorem [62], for a sufficiently small ε, they

give rise to families (parametrised by h) of periodic solutions of the system with

Hamiltonian (6) whose projections in configuration space are close to (prograde and

retrograde) circular trajectories on the Oxy-plane.

The period is computed as 2π |∂Hε(Q,P )/∂h|−1
, where Hε(Q,P ) = h+ε2[4d1h

2

+H̄ε(Q,P )]/2, evaluating the result at (Q,P ) = OjC , expanding it in terms of

ε around 0 and truncating at order 4 in ε, see details in [71]. We get T (ε) =

2π[1∓ ε2|4d1 + d5|h] +O(ε4).

The characteristic multipliers are obtained from the eigenvalues associated to

the linearisation, that is, from ±iα1, ±iα2, see for instance [54, 71]. In particular,

we get 1, 1, 1± 2πiε2α1 +O(ε4), 1± 2πiε2α2 +O(ε4).

Moreover, it is straightforward to check that OjC are in 1:−1 resonance if and

only if 2d2 + d3 + d4− 3d5 = 0. Thus, if this condition is not fulfilled the equilibria
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OjC are parametrically stable and the periodic solutions reconstructed from these

points are linearly stable.

Remark 2. The equilibria OjC in CP2
h correspond to the equilibria Oj in Mγ , as

they are associated with the same periodic solutions for Hamiltonian (6). Moreover,

the period calculated in Theorem 3.1 agrees with the period computed in Theorem 4.1

because in the case of circular-equatorial solutions h = |N | = |γ|. The characteristic

multipliers of the periodic solutions have been naturally computed in the analysis

made in CP2
h, because the way to obtain them from Mγ would be more involved.

Nevertheless, the conditions on the parameters for the existence of the periodic

solutions are more restrictive when performing the analysis from CP2
h than when

doing it from Mγ .

Our second result in this section concerns the existence of periodic solutions of

rectilinear type.

Theorem 4.2. When (d3 − d2)(d4 − d2) 6= 0 the point in CP2
h with coordinates

OR = (0, 2h, 0, 0, 0, 0, 0, 0, 0) is an equilibrium of system (35) and, for a sufficiently

small ε > 0, it gives rise to a family of periodic solutions of Hamiltonian (6)

parametrised by h > 0 whose projection in configuration space is close to rectilinear

trajectories in the Oz-axis. Moreover, when (d3 − d2)(d4 − d2) > 0 the point OR is

in 1:1 resonance and the corresponding periodic solutions are linearly stable whereas

when (d3−d2)(d4−d2) < 0 the point OR is of saddle type and the associated periodic

solutions are unstable. The characteristic multipliers of the periodic solutions are

1, 1, 1±8πiε2
√

(d3 − d2)(d4 − d2)h+O(ε4), 1±8πiε2
√

(d3 − d2)(d4 − d2)h+O(ε4)

whereas their periods are T (ε) = 2π[1− 4ε2|d1 + d2|h] +O(ε4).

Proof It is trivially checked that OR is an isolated equilibrium of the vector

field (35). From the expressions of the invariants in rectangular variables, formu-

lae (30), it is easily inferred that OR corresponds to a family of periodic solutions

in T ∗R3 whose projections in configuration space Oxyz are rectilinear solutions in

the Oz-axis.
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To study the parametric stability of OR we should introduce adequate local

symplectic coordinates. In this case we cannot use the set (37), that was valid

for the circular-equatorial solutions, because now ρ1 = 0. So, following a similar

approach we have found a set of coordinates that works properly for this kind of

solutions. Concretely we introduce

(40) Q1 =
ρ6√
ρ2
, Q2 =

ρ4√
ρ2
, P1 =

ρ9√
ρ2
, P2 = − ρ7√

ρ2
,

that is not defined for ρ2 = 0. Note however that in this case we have ρ2 = 2h 6= 0.

The inverse transformation is

ρ1 = Q2
2 + P 2

2 , ρ2 = 2h− (Q2
1 +Q2

2 + P 2
1 + P 2

2 ), ρ3 = Q2
1 + P 2

1 ,

ρ4 = Q2

√
2h− (Q2

1 +Q2
2 + P 2

1 + P 2
2 ), ρ5 = Q1Q2 + P1P2,

ρ6 = Q1

√
2h− (Q2

1 +Q2
2 + P 2

1 + P 2
2 ), ρ7 = −P2

√
2h− (Q2

1 +Q2
2 + P 2

1 + P 2
2 ),

ρ8 = Q2P1 −Q1P2, ρ9 = P1

√
2h− (Q2

1 +Q2
2 + P 2

1 + P 2
2 ).

By construction the equilibriumOR has coordinates (0, 0, 0, 0) and Hamiltonian (34)

assumes the form

(41)

H̄ε(Q,P ) = 4d2h
2 + 2ω1h(Q2

1 +Q2
2) + 2ω2h(P 2

1 + P 2
2 )

−d3(Q2
1 +Q2

2)2 − d4(P 2
1 + P 2

2 )2 − (d3 + d4)(Q2
1P

2
1 +Q2

2P
2
2 )

−(d3 + d4 − d5)(Q2
1P

2
2 +Q2

2P
2
1 )− 2d5Q1Q2P1P2 +O(ε2),

with ω1, ω2 defined as

(42) ω1 = d3 − d2, ω2 = d4 − d2.

The eigenvalues related to the linearisation of H̄ε(Q,P ) evaluated at (0, 0, 0, 0) are

±4i
√
ω1ω2h with multiplicity two and the corresponding eigenvectors form a basis

of R4. Hence, when ω1ω2 6= 0 the equilibrium point OR is non-degenerate and

by Reeb’s Theorem [62], Hamiltonian (6) has one family (parametrised by h) of

periodic solutions in T ∗R3 whose projections in configuration space Oxyz are near

rectilinear trajectories in the Oz-axis. When ω1ω2 > 0, the equilibrium is stable of
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centre type and moreover it is in 1:1 resonance, therefore OR is a parametrically

stable point and the periodic solutions reconstructed from OR are linearly stable.

On the other hand for ω1ω2 < 0, the point OR is unstable with linearisation saddle

× saddle.

Proceeding as in the proof of Theorem 4.1 for the computation of the period of

the periodic solutions, we get T (ε) = 2π[1 − 4ε2|d1 + d2|h] + O(ε4). Finally, the

characteristic multipliers of the periodic solutions are obtained from the eigenvalues

of the linearisation of H̄ε(Q,P ) around the origin, yielding 1, 1, 1± 8πiε2
√
ω1ω2h+

O(ε4), 1± 8πiε2
√
ω1ω2h+O(ε4).

Remark 3. The change of linear stability observed in Theorem 4.2 will be analysed

in detail in Section 5, concretely in Theorem 5.5 where we will deal with bifurcations

of the singular points related to rectilinear motions on the OzZ-plane. Specifically,

we will prove that a Hamiltonian Hopf bifurcation takes place for this kind of mo-

tions and for some relations of the parameters ai, bj.

4.3. KAM tori of dimension 3 reconstructed from CP2
h. In this subsection

we prove the existence of KAM 3-tori associated to the equilibria O1
C , O2

C and OR.

We start with the tori related to the circular-equatorial solutions.

Theorem 4.3. When (2d2 + d3 + d4 − d5)d5 6= 0 and 2d2 + d3 + d4 6= 0, and for a

sufficiently small ε > 0, there are invariant KAM 3-tori for Hamiltonian system (6)

around the nearly circular-equatorial periodic solutions. These invariant tori form

a majority in the sense that the measure of the complement of their union is of

order O(εµ/2) for a pre-fixed constant 0 < µ < 1/5.

Proof Going back to Hamiltonian (38), we need to shift the origin to the equilib-

rium OjC and rescale conveniently to make the ordering of the terms in H̄ε explicit.

For that, we apply the change

Q1 = ε1/4Q1, Q2 = ε1/4Q2, P1 = ε1/4P 1, P2 = ε1/4P 2 ±
√
h,
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where the upper sign goes with O1
C whereas the lower sign goes with O2

C . The

transformation is symplectic with multiplier ε−1/2. After expanding in powers of ε,

Hamiltonian (38) is transformed into

(43) H̄ε(Q,P ) = H̄ε,0 + H̄2 + ε1/4H̄3 + ε1/2H̄4 +O(ε3/2),

where H̄ε,0 = ε−1/2d5h
2,

H̄2 = (2d2 + d3 + d4 − d5)h(Q
2

1 + P
2

1)− d5h(Q
2

2 + 4P
2

2)

whereas H̄3 and H̄4 contain terms of degree 3 and 4, respectively, in (Q,P ).

With the aim of diagonalising the quadratic part in (Q̄, P̄ ) of Hamiltonian (43),

we apply a complex symplectic change (Qj , P j)→ (qj , pj), given explicitly by

Q1 = 1−i
2 (q1 − p1), Q2 = 1+i√

2
(q2 − p2), P 1 = 1+i

2 (q1 + p1), P 2 = 1−i
2
√

2
(q2 + p2).

Then H̄2 is converted into i(α1q1p1 + α2q2p2), where α1 6= 0 and α2 6= 0 are given

in (39). Higher order terms are transformed accordingly.

Next, we normalise Hamiltonian H̄ε including terms of degree 4 in (q, p) obtaining

(44) H̄ε(q1, q2, p1, p2) = H̄ε,0 + i(α1q1p1 + α2q2p2) + ε1/2H̄4 +O(ε3/2),

and H̄4 contains terms of degree 4 in (q1, q2, p1, p2) that are in normal form with

respect to the quadratic terms. The transformation is not defined for 2d2+d3+d4 =

0 because this term appears in the denominators of the generating function. Indeed

when 2d2 + d3 + d4 = 0 the points OjC are in 2:−1 resonance.

At this point we should prepare the Hamiltonian to apply a KAM-type the-

orem. For achieving it, we introduce adequate action-angle variables (I, φ) =

(I1, I2, φ1, φ2) defined by the relations

q1 =
√
I1(cosφ1 − i sinφ1), q2 =

√
I2(cosφ2 − i sinφ2),

p1 =
√
I1(sinφ1 − i cosφ1), p2 =

√
I2(sinφ2 − i cosφ2).
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Now, recall that the full Hamiltonian is Hε given in (32). Then, by subtracting h,

multiplying by 2/ε2 and subtracting 4d1h
2 we arrived at H̄ε given in (34). Then,

we divided by ε1/2 to obtain H̄ε, see (43). So, we should undo these operations

at once. We identify h with the action J1, that has been already defined at the

beginning of the proof of Theorem 4.1. Then, we rescale time by multiplying the

resulting Hamiltonian by ε1/2, add 4d1J
2
1 , rescale time again by multiplying the

Hamiltonian by ε2/2 and add J1. We end up with

(45)

Hε(φ, θ1, I, J1) = h0(J1) + η4h1(J1) + η5h2(J1, I1, I2) + η6h3(J1, I1, I2) +O(η8),

where η = ε1/2 and

h0 = J1, h1 = 1
2 (4d1 + d5)J2

1 , h2 = 1
2 (α1I1 + α2I2),

h3 = ∆2I
2
1 + ∆1I1I2 + 2d5I

2
2 ,

with

∆1 =
2(d3 − d4)2

2d2 + d3 + d4
− 2d5,

∆2 = −d
2
3 + d3(6d4 − d5) + d4(d4 − d5) + 2d2[2(d3 + d4)− d5]

2(2d2 + d3 + d4)
.

Now, we are in a position to apply the Theorem by Han, Li and Yi [39]. By

using the notation in [39] we get n = 3, a = 3, m1 = 4, m2 = 5, m3 = 6,

n0 = n1 = 1, n2 = n3 = 3, yn0 = ŷn0 = yn1 = ŷn1 = J1, yn2 = yn3 = (J1, I1, I2),

ŷn2 = ŷn3 = (I1, I2). The vector of frequencies has dimension 6 and is given by

Ω(J1, I1, I2) =

(
∂h0

∂J1
,
∂h1

∂J1
,
∂h2

∂I1
,
∂h2

∂I2
,
∂h3

∂I1
,
∂h3

∂I2

)
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and the 6× 4 matrix whose columns are Ω, ∂Ω/∂J1, ∂Ω/∂I1 and ∂Ω/∂I2 reads as

Ω1
∂Ω1

∂J1

∂Ω1

∂I1

∂Ω1

∂I2

Ω2
∂Ω2

∂J1

∂Ω2

∂I1

∂Ω2

∂I2

Ω3
∂Ω3

∂J1

∂Ω3

∂I1

∂Ω3

∂I2

Ω4
∂Ω4

∂J1

∂Ω4

∂I1

∂Ω4

∂I2

Ω5
∂Ω5

∂J1

∂Ω5

∂I1

∂Ω5

∂I2

Ω6
∂Ω6

∂J1

∂Ω6

∂I1

∂Ω6

∂I2



=



1 0 0 0

(4d1 + d5)J1 4d1 + d5 0 0

α1

2

α1

2J1
0 0

α2

2

α2

2J1
0 0

2∆2I1 + ∆1I2 0 2∆2 ∆1

∆1I1 +
α2

J1
I2 0 ∆1

α2

J1



.

Taking into account that d5 6= 0, this matrix has rank≥ 3 = n. Note that conditions

2d2 + d3 + d4 − d5 6= 0 and 2d2 + d3 + d4 6= 0 are also needed. Then, Han-Li-Yi’s

Theorem applies and guarantees the existence of KAM tori of dimension 3 around

the circular-equatorial periodic solutions. Setting b =
∑a
j=1mj(nj − nj−1), we

obtain b = 10. The maximum order of the partial derivatives involved in the

computation of the 6×4 matrix is s = 1. As the perturbation is of order O(η8) and

ηsb+µ = η10+µ < η8, the excluding measure for the existence of the quasi-periodic

invariant tori is of order ηµ/s = ηµ = εµ/2 for a pre-fixed small positive constant

µ < 1/5.

Remark 4. We stress that the constant m introduced in (25) is related to the di

by m = 6(2d2 + d3 + d4) whereas the other conditions on Theorems 3.2 and 4.3 are

independent. We also emphasise that the excluding measure for the existence of the

quasi-periodic invariant tori is smaller for the KAM tori reconstructed from Mγ .

Now we deal with the invariant tori associated to rectilinear motions in the

OzZ-plane.

For (d3 − d2)(d4 − d2) 6= 0 we define

(46) ∆ =
d5

2
+

d2(d3 − d4)2

4(d3 − d2)(d4 − d2)
.
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Theorem 4.4. When (d3 − d2)(d4 − d2) > 0, ∆ 6= 0 and, for a sufficiently small

ε > 0, there are invariant KAM 3-tori for Hamiltonian system (6) around the peri-

odic solutions whose projections in configuration space Oxyz are nearly rectilinear

trajectories in the Oz-axis. These invariant tori form a majority in the sense that

the measure of the complement of their union is of order O(εµ/2) for a pre-fixed

constant 0 < µ < 1/5.

Proof Starting with Hamiltonian (41), we rescale coordinates and time adequately

to make the ordering of the terms in H̄ε explicit. For that, we divide H̄ε by ε1/2

and apply the transformation Qj = ε1/4Qj , Pj = ε1/4P j for j = 1, 2. Using this

change Hamiltonian (41) gets transformed into

(47) H̄ε(Q,P ) = H̄ε,0 + H̄2 + ε1/2H̄4 +O(ε3/2),

where H̄ε,0 = 4ε−1/2d2h
2,

H̄2 = 2ω1h(Q
2

1 +Q
2

2) + 2ω2h(P
2

1 + P
2

2)

and H̄4 contains terms of degree 4 in (Q,P ) and is independent of ε.

The next step is the diagonalisation of H̄2. For this aim we construct a symplectic

transformation (Q1, Q2, P 1, P 2) −→ (q1, q2, p1, p2) by means of the eigenvectors

attached to H̄2, see [45, 50]. This transformation is given by

Q1 = 1−i
2

(
ω2

ω1

)1/4

(q2 − p2), Q2 = 1−i
2

(
ω2

ω1

)1/4

(q1 − p1),

P 1 = 1+i
2

(
ω1

ω2

)1/4

(q2 + p2), P 2 = 1+i
2

(
ω1

ω2

)1/4

(q1 + p1).

Note that ω1ω2 > 0 because the equilibrium is a linear centre. Applying this change

of variables to (47) and normalising up to the inclusion of terms of degree 4 in (q, p)

by means of the Lie-Deprit process [18], we arrive at the Hamiltonian

(48) H̄ε(q, p) = H̄ε,0 + 4i
√
ω1ω2h(q1p1 + q2p2) + ε1/2H̄4 +O(ε3/2),
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where H̄4 contains terms of degree 4 in (q, p) that are in normal form with respect

to the quadratic part of H̄ε(q, p). The transformation is not defined for ω1ω2 = 0,

but we are assuming ω1ω2 > 0.

At this point we prepare the normalised Hamiltonian to apply Han-Li-Yi’s The-

orem. For that, we should reverse the operations that passed from Hε to H̄ε and

express the Hamiltonian in action-angle coordinates. Thus, we identify h with J1,

then rescale time by multiplying the resulting Hamiltonian by ε1/2, add 4d1J
2
1 ,

rescale time again by multiplying the Hamiltonian by ε2/2 and add J1. Due to

the fact that H̄2 is in 1:1 resonance, we choose planar Lissajous coordinates [19]

in order to express Hε conveniently. Specifically, this set of variables allows us to

eliminate the dependence of the angles in the Hamiltonian up to O(ε3/2). First, we

put (q1, q2, p1, p2) in rectangular coordinates (x1, x2, X1, X2) as

q1 = 1√
2
(x1−iX1), q2 = 1√

2
(x2−iX2), p1 = 1√

2
(X1−ix1), p2 = 1√

2
(X2−ix2).

Now we apply the Lissajous transformation through the symplectic change:

x1 =
√

1
2 (L1 + L2) cos(`1 + `2)−

√
1
2 (L1 − L2) cos(`1 − `2),

x2 =
√

1
2 (L1 + L2) sin(`1 + `2) +

√
1
2 (L1 − L2) sin(`1 − `2),

X1 = −
√

1
2 (L1 + L2) sin(`1 + `2) +

√
1
2 (L1 − L2) sin(`1 − `2),

X2 =
√

1
2 (L1 + L2) cos(`1 + `2) +

√
1
2 (L1 − L2) cos(`1 − `2).

The interesting feature of this transformation in our setting is that the action L2 is

proportional to N , in fact N = ε1/2L2. Thence, since the whole system is axially

symmetric, Hamiltonian Hε written in Lissajous coordinates is independent of `2

and has L2 as an integral, thus one can use L2 as one of the actions needed in the

application of Han-Li-Yi’s Theorem. Moreover the normalisation performed before

leading to Hamiltonian (48) has the effect of making Hε, after transforming it into

Lissajous coordinates, independent of `1 at least up to terms of order O(ε4). After
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some simplifications, we end up with the Hamiltonian

(49)

Hε(`1, θ1, L1, L2, J1) = h0(J1) + η4h1(J1) + η5h2(J1, L1) + η6h3(J1, L1, L2)

+O(η8),

where

h0 = J1, h1 = 2(d1 + d2)J2
1 , h2 = 2

√
ω1ω2J1L1,

h3 = −
[
ω1 + ω2 + d2

(
1

2
+

3ω1

4ω2
+

3ω2

4ω1

)]
L2

1 + ∆L2
2,

with η = ε1/2 and ∆ given in (46). In the notation of Han-Li-Yi’s Theorem, we

have n = 3, a = 3, m1 = 4, m2 = 5, m3 = 6, n0 = n1 = 1, n2 = 2, n3 = 3,

yn0 = ŷn0 = yn1 = ŷn1 = J1, yn2 = (J1, L1), yn3 = (J1, L1, L2), ŷn2 = L1,

ŷn3 = L2 and the 4-dimensional vector of frequencies is given by

Ω(J1, L1, L2) =

(
∂h0

∂J1
,
∂h1

∂J1
,
∂h2

∂L1
,
∂h3

∂L2

)
.

The 4× 4 matrix whose columns are Ω, ∂Ω/∂J1, ∂Ω/∂L1 and ∂Ω/∂L2 reads as

Ω1
∂Ω1

∂J1

∂Ω1

∂L1

∂Ω1

∂L2

Ω2
∂Ω2

∂J1

∂Ω2

∂L1

∂Ω2

∂L2

Ω3
∂Ω3

∂J1

∂Ω3

∂L1

∂Ω3

∂L2

Ω4
∂Ω4

∂J1

∂Ω4

∂L1

∂Ω4

∂L2


=



1 0 0 0

4(d1 + d2)J1 4(d1 + d2) 0 0

2
√
ω1ω2J1 2

√
ω1ω2 0 0

2∆L2 0 0 2∆


.

This matrix has rank 3 when ∆ 6= 0, thus Han-Li-Yi’s Theorem guarantees the exis-

tence of KAM tori of dimension 3 around the periodic solutions whose projections in

configuration space are of rectilinear type. In this case b =
∑a
j=1mj(nj−nj−1) = 11

and the maximum order of the partial derivatives involved in the computation of the

4×4 matrix is s = 1. As the perturbation is of order O(η8) and ηsb+µ = η11+µ < η8,

for a pre-fixed small positive constant µ < 1/5, the excluding measure for the

existence of the quasi-periodic invariant tori is of order ηµ/s = ηµ = εµ/2 for

0 < µ < 1/5.
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5. Second reduction

5.1. Reduction by the axial symmetry. In order to get the twice reduced space,

first we have passed from T ∗R3 to Mγ by means of the axial symmetry, and then

reduce by the oscillator symmetry or, alternatively, reduce from T ∗R3 to CP2
h and

as a second step reduce the axial symmetry.

If we choose the first approach we take into account that the space Mγ is de-

scribed by the invariants of the axial symmetry, that is, the ik and its relations

or constraints (8). The normalisation carried out in Section 4 together with the

truncation of higher order terms allow us to make the resulting Hamiltonian system

symmetric with respect to the flow generated by H0 in (3), that is, the oscillator

symmetry. This symmetry is the responsible of the second reduction. For achiev-

ing this second reduction we find the combinations of the invariants ρj that remain

invariants under rotations with respect to the Oz-axis. From these combinations

one obtains the invariants of the second reduction. After that, the reduced space,

that we denote by TL,N (where L = h), has dimension 2 in the 3-dimensional space

defined by three of these new invariants that we choose as the main invariants.

Proposition 5.1. The twice reduced space TL,N is described by the three invariants

(50) τ1 = ρ2
4 + ρ2

6 − ρ2
7 − ρ2

9 , τ2 = ρ1 + ρ3 , τ3 = 2(ρ4ρ7 − ρ6ρ9),

with the restrictions 2|N | ≤ τ2 ≤ 2L and

(51) τ2
1 + τ2

3 = (2L− τ2)2(τ2
2 − 4N2) ,

for every value of L and N such that 0 ≤ |N | < L.

Proof First we will find which of the polynomials ρj , or combinations of them,

given in (7) remain invariant under the axial symmetry, that is, which of them can

be written as combinations of the polynomials ij defined in (30). The fundamental



AXIALLY SYMMETRIC PERTURBED HAMILTONIANS IN 1:1:1 RESONANCE 37

relations between the invariants ρj and ik are the following:

ρ2 = i25 + i26, ρ8 = i3, ρ1 + ρ3 = i1 + i2, ρ2
4 + ρ2

6 = i1i
2
5 + 2i4i5i6 + i2i

2
6,

ρ2
4 + ρ2

6 − ρ2
7 − ρ2

9 = (i1 − i2)(i25 − i26) + 4i4i5i6,

ρ4ρ7 − ρ6ρ9 = i5i6(i1 − i2)− i4(i25 − i26).

Through the previous expressions we introduce the polynomials τj in terms of ρj

as follows

(52)
τ1 = ρ2

4 + ρ2
6 − ρ2

7 − ρ2
9, τ2 = ρ1 + ρ3, τ3 = 2(ρ4ρ7 − ρ6ρ9),

τ4 = ρ8, τ5 = ρ2, τ6 = ρ2
4 + ρ2

6,

noting that these combinations of the ρj remain invariant under the axial symmetry.

Taking into account that ρj ≥ 0 for j = 1, 2, 3, it follows that

(53) τ2 + τ5 = 2L = 2h.

Thus, we get the upper bound τ2 ≤ 2L. From (52) it is deduced that

(54) 2τ6 = τ1 + τ2τ5

and

(55) τ2
1 + τ2

3 = τ2
5 (τ2

2 − 4τ2
4 ).

Using (53) and observing that τ4 = N , it follows from (55) the relation (51). Also,

since the left hand side of the equation (55) is non-negative, we must have that

2|N | ≤ τ2.

The algebra of the new invariants is determined by the Poisson structure. Ex-

pressing the invariants τj as functions of ρj , computing the Poisson brackets in

terms of them by making use of Table 2 and returning to the τk, we end up with

Table 3.
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{τj , τk} τ1 τ2 τ3

τ1 0 −4τ3 8(τ2 − 2L)[(L− τ2)τ2 + 2N2]
τ2 4τ3 0 −4τ1
τ3 8(2L− τ2)[(L− τ2)τ2 + 2N2] 4τ1 0

Table 3. Poisson brackets on the invariants τi.

Remark 5. When |N | = h = L the reduced space TL,±L is merely a point, since

then τ2 = L and τ1 = τ3 = 0. It implies that the motions that are at the same time

of circular and equatorial type cannot be studied in the twice reduced space. This is

the reason of studying these type of solutions either in CP2
h or in Mγ .

Remark 6. The different symplectic reductions performed in the paper are sketched

in the diagram of Fig. 1.

Dimension Reductions and Spaces

6 T ∗R3

L
vv

N
((

4 CP2
h

N ((

Mγ

Lvv
2 TL,N

Figure 1. Scheme of reductions with the corresponding reduced
spaces and integrals. The dimension of each space is shown in the
left column.

5.2. Geometrical interpretation. Fixing the values h and γ of L and N , the

twice reduced space is defined by (51) together with the restriction 2|N | ≤ τ2 < 2L.

To study this space, we consider the auxiliary function f : R3 → R defined by

f(τ) = τ2
1 + τ2

3 − (2L− τ2)2(τ2
2 − 4N2),

where τ = (τ1, τ2, τ3). By the implicit function theorem, the set defined by f−1(0)

is regular in all the points where the gradient is non-null. In fact, ∇f(τ) =
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(2τ1,−4(2L − τ2)[(L − τ2)τ2 + 2N2], 2τ3) is null at the points: (i) S1 = (0, 2L, 0)

where N 6= 0; (ii) S2 = (0, 0, 0) with N = 0 and (iii) S3 = (0, 2L, 0) also with

N = 0. When we fix N 6= 0 the twice reduced space TL,N has one singularity corre-

sponding to S1. When we make N = 0, there are two singularities that correspond

to S2 and S3.

In order to get a geometrical representation of the twice reduced space, we fix

the parameters N and L, distinguishing two situations, either N 6= 0 or N = 0.

In case (i) the twice reduced space is topologically a pinched sphere named

balloon, or turnip, as it is labelled in [16] and [31]). In cases (ii) and (iii) it is a

sphere with two singularities called lemon, see for example [16, 31].

At this point we introduce the set of action-angle coordinates devised for the

3-dimensional isotropic harmonic oscillator, the so called nodal-Lissajous variables

(`, g, ν, L,G,N) proposed by Ferrer and Gárate [30] as a generalisation of the Lis-

sajous coordinates of Deprit [19] for the 1:1:1 resonance, see also [70, 32, 33, 31].

The actions L and N are completed by the total angular momentum G noticing

that |N | ≤ G ≤ L. The conjugate angles, namely, `, g and ν help to place the

orbital ellipses of the oscillator in the 3-dimensional space. Specifically, the angle

` describes the position of the point q on this ellipse in the Oxyz-space, measured

from the semi-minor axis; g is the angle from the nodal line to this semi-minor axis

and ν represents the ascending node of the orbital plane. Finally the inclination of

the orbit is given by cos I = N/G.

Our goal now is to understand which families of solutions are represented in each

point of the twice reduced space for all possible values of N and L. All families

of solutions for the harmonic oscillator are represented in the balloons and lemons,

excepting when L = |N |. We stress that in each balloon or lemon, all the families

of trajectories have the same energy and the same third component of the angular

momentum. We briefly describe the location of the most representative:

• Polar motions satisfy N = 0 and are represented in the lemons. The rest

of families are depicted in different balloons.
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• Rectilinear motions passing through the origin have null angular momentum

vector. These motions correspond to a part of the lemon, represented by

the generating curve of the lemon given by τ1 = τ2(2L−τ2). The singularity

S2 corresponds to (τ1, τ2, τ3) = (0, 0, 0), which accounts for the rectilinear

trajectories with x = y = X = Y = 0. The point τ2 = 2L represents the

family of rectilinear-equatorial motions and it is the singularity S3.

• Equatorial motions (prograde and retrograde) are those trajectories with

G = |N |. In the invariants τi one has τ2 = 2L whereas N takes any value

in [0, L). For N = 0 we get rectilinear-equatorial trajectories and this case

corresponds to S3. On the other hand the point (0, 2L, 0) corresponds to

S1 in the balloon.

• Circular motions satisfy G = L. It can be proved that circular motions

in the reduced space TL,N are represented either in the balloon or in the

lemon by the point (τ1, τ2, τ3) = (−2(L2 − N2)2/L2, (L2 + N2)/L, 0), see

details in [70].

τ2

τ1

e

c

2|N| 2L
0 τ2

τ1

r

r-e

c-p

r-Oz
2L

0

Figure 2. Sections τ3 = 0 of a balloon and a lemon, showing
special types of trajectories. On the left, c stands for the fam-
ily of circular trajectories while e denotes the family of equatorial
motions. On the right, r represents the arc corresponding to recti-
linear trajectories, while r-Oz are the trajectories in the Oz-axis,
r-e denotes rectilinear motions in the equatorial plane and c-p are
circular polar trajectories.

Remark 7. To perform the reconstruction from the twice reduced space to T ∗R3

through CP2
h (or through Mγ), one has to take into account that the regular points

of the balloon and lemon give rise to families of 2-tori. The same happens with the
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singularities S1 and S3. However, from the singularity S2 one reconstructs families

of periodic solutions, those in the OzZ-plane. The reason for this is that even

when passing from TL,0 to M0, to the singularity corresponding to the origin of

the lemon one attaches an S1, leading to a family of (rectilinear) motions, when

reconstructing from M0 to T ∗R3, this family gets transformed into the same family

since this type of rectilinear motions is in the singular subspace of M0. See more

details in [16, 31].

5.3. Twice reduced Hamiltonian and equations of motion. At this stage we

need to express Hamiltonian (34) as a function of the invariants defined in (52). To

achieve this we build a Gröbner basis from the polynomials relating the τj with the

ρk including the fundamental constraints of both sets of invariants. The Gröbner

basis is computed with respect to the ρk. Then we apply the division algorithm for

multivariate polynomials and divide (34) with respect to the Gröbner basis. The

resulting remainder in this operation is the twice reduced Hamiltonian in terms of

the invariants (50), which after simplifying the expressions and dropping constant

terms can be written as

(56) K = ατ1 + βτ2 + δτ2
2 ,

where α, β and δ are parameters given by

(57)

α = 1
8 [a5(a10 − 2a5) + b10],

β = − 1
12 (4a2

5 + 18a5a10 − 45a2
10 − 6b10 + 18b15)L,

δ = 1
16 (a2

5 + 12a5a10 − 15a2
10 + 6b1 − 4b10 + 6b15).

Alternatively, a rotation in the (τ1, τ3)-plane can be performed to remove the linear

term in τ3 and obtain a polynomial like (56). This polynomial is, in fact, the most

general expression attainable from a fourth-order Hamiltonian on T ∗R3.
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The associated differential system is

(58)

τ̇1 = −4(β + 2δτ2)τ3,

τ̇2 = 4ατ3,

τ̇3 = 4[(β + 2δτ2)τ1 − 2α(2L− τ2)(τ2
2 − Lτ2 − 2N2)].

For the sake of simplifying the calculations and decreasing the number of parameters

of the system we perform the following scaling

τ1 = L2τ̃1, τ2 = Lτ̃2, τ3 = L2τ̃3, δ = δ̃/(2L), α = α̃/(2L), σ = N/L.

Next, after rescaling time (t→ (L/2) t), Hamiltonian (56) is transformed into

(59) K = α̃τ̃1 + 2βτ̃2 + δ̃τ̃2
2 ,

and system (58) becomes

(60)

τ̃ ′1 = − 8
L (β + δ̃τ̃2)τ̃3,

τ̃ ′2 = 4
L α̃τ̃3,

τ̃ ′3 = 8
L [(β + δ̃τ̃2)τ̃1 − α̃(2− τ̃2)(τ̃2

2 − τ̃2 − 2σ2)],

where the primes denote derivation with respect to the rescaled time (a different

time compared to the previous equations of motions given in (1), (12) and (35)).

Constraint (51) results in

(61) τ̃2
1 + τ̃2

3 = (2− τ̃2)2(τ̃2
2 − 4σ2),

with 2|σ| ≤ τ̃2 ≤ 2 and the orbit space Tσ is given by

(62) Tσ =
{

(τ̃1, τ̃2, τ̃3) ∈ R3 | τ̃2
1 + τ̃2

3 = (2− τ̃2)2(τ̃2
2 − 4σ2), 2|σ| ≤ τ̃2 ≤ 2

}
.

Remark 8. When α̃ = β = δ̃ = 0 then K = 0 and trivially the whole orbit space

Tσ are relative equilibria. The system is not structurally stable. Nevertheless, these

degeneracies disappear when the normal form computation (32) is pushed to order
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four in ε.

Lemma 5.1. If P ∗ = (τ̃∗1 , τ̃
∗
2 , τ̃
∗
3 ) is an equilibrium solution of system (60) with

parameters (β, δ̃, α̃, σ, L), then P ∗ is also an equilibrium solution of (60) with pa-

rameters (−β,−δ̃,−α̃, σ, L). Moreover, if λ is an eigenvalue corresponding to the

linearisation of (60) around P ∗ with parameters (β, δ̃, α̃, σ, L), then −λ is an eigen-

value corresponding to the linearisation of P ∗ with parameters (−β,−δ̃,−α̃, σ, L).

Proof The first part of the lemma follows by simple inspection of the vector

field (60). For the second part notice that the matrix associated to the linearised

system around equilibrium P ∗ is

(63) A = A
(

(β, δ̃, α̃, σ, L), (τ̃∗1 , τ̃
∗
2 , τ̃
∗
3 )
)

=


0 v12 v13

0 0 4
L α̃

−v13 v32 0

 ,

with

v12 = − 8
L δ̃τ̃

∗
3 , v13 = − 8

L (β + δ̃τ̃∗2 ), v32 = 8
L

{
δ̃τ̃∗1 + α̃[2− 2σ2 + 3(τ̃∗2 − 2)τ̃∗2 ]

}
.

Thence,

A
(

(−β,−δ̃,−α̃, σ, L), (τ̃∗1 , τ̃
∗
2 , τ̃
∗
3 )
)

= −A
(

(β, δ̃, α̃, σ, L), (τ̃∗1 , τ̃
∗
2 , τ̃
∗
3 )
)
,

and the second part of the lemma follows immediately.

Lemma 5.2. System (60) with parameters (β, δ̃, α̃, σ, L) is transformed under

the reflection (τ̃1, τ̃2, τ̃3) → (−τ̃1, τ̃2, τ̃3) into the same system with parameters

(−β,−δ̃, α̃, σ, L). In particular, if P ∗ = (τ̃∗1 , τ̃
∗
2 , τ̃
∗
3 ) is an equilibrium of (60) with

parameters (β, δ̃, α̃, σ, L), then P̄ ∗ = (−τ̃∗1 , τ̃∗2 , τ̃∗3 ) is also an equilibrium of (60)

with parameters (−β,−δ̃, α̃, σ, L). Moreover, both have the same stability charac-

ter.
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Proof The first part of the lemma follows directly by inspection of vector field (60).

For the second part, according to Lemma 5.1, if A((β, δ̃, α̃, σ, L), (τ̃∗1 , τ̃
∗
2 , τ̃
∗
3 )) is the

matrix associated to the linearisation around the equilibrium P ∗ = (τ̃∗1 , τ̃
∗
2 , τ̃
∗
3 ),

then, the matrix associated to P̄ ∗ = (−τ̃∗1 , τ̃∗2 , τ̃∗3 ) is given by

A
(

(−β,−δ̃, α̃, σ, L), (−τ̃∗1 , τ̃∗2 , τ̃∗3 )
)

=


0 −v12 −v13

0 0 4
L α̃

v13 v32 0

 .

It can be checked that both matrices share the characteristic polynomial

(64) p(λ) = −λ3 +
(

4
L α̃v32 − v2

13

)
λ− 4

L α̃v12v13.

5.4. The equilibria at the singular points. The singular point P1 with coordi-

nates (τ̃1, τ̃2, τ̃3) = (0, 2, 0) is at an equilibrium for all the values of the parameters.

When σ = 0 the point P2 with coordinates (τ̃1, τ̃2, τ̃3) = (0, 2|σ|, 0) is also singular

and then is at an equilibrium. In this subsection we analyse the stability of both

points. For that, we perform a blowup of the singularities in an analogous way as

was done in [31].

Proposition 5.2. The stability of the equilibrium point P1 changes for |α̃|
√

1− σ2

= |β + 2δ̃|, what corresponds to a bifurcation. More precisely, when |α̃|
√

1− σ2 <

|β + 2δ̃| then P1 is stable, when |α̃|
√

1− σ2 > |β + 2δ̃| it is unstable whereas for

|α̃|
√

1− σ2 = |β + 2δ̃| it is degenerate.

Proof To study the local behaviour of P1 we pass to the 2:1 covering given by

τ̃1 = 1
4 (u2 − v2), τ̃2 = 1 + w, τ̃3 = 1

2uv.

The constraint (61) defining the twice reduced space is transformed into

(65) 1
16

(
u2 + v2

)2 − (1− w)2
[
(1 + w)2 − 4σ2

]
= 0.
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Notice that u, v are not symplectic coordinates. Since we are interested in the

analysis around (τ̃1, τ̃2, τ̃3) = (0, 2, 0), then w . 1 and in order to obtain the correct

time scale we replace (65) by the equivalent relation

(66) Qσ(u, v, w) = 1
4

(
u2 + v2

)
− (1− w)

√
(1 + w)2 − 4σ2 = 0.

Hamiltonian (59) turns into

(67) K(u, v, w) = α̃
4 (u2 − v2) + 2β(1 + w) + δ̃(1 + w)2.

Next, we use (66) to express w = wσ(u, v). We replace w in (67) and develop in

Taylor series around (u, v) = (0, 0) to get

(68)

K(u, v) = 4(β + δ̃) +
α̃
√

1− σ2 − β − 2δ̃

4
√

1− σ2
u2 − α̃

√
1− σ2 + β + 2δ̃

4
√

1− σ2
v2

−β + δ̃(1 + σ2)

64(1− σ2)2
(u2 + v2)2 − 4(β + δ̃) + (β + 6δ̃)σ2

2048(1− σ2)7/2
(u2 + v2)3 + · · · ,

where ... means higher order terms in the variables u, v. Note that by construction

the system is equivariant with respect to the π-rotation (u, v, w) → (−u,−v, w),

i.e., the system on the 2:1 covering is Z2-symmetric.

Now, we arrive at the following cases:

(1) When |α̃|
√

1− σ2 < |β + 2δ̃| then, the sign of the coefficients of u2 and v2

is the same. Thus, (0, 0) is a centre and therefore, P1 is a centre.

(2) When |α̃|
√

1− σ2 > |β + 2δ̃| then, the sign of the coefficients of u2 and

v2 are opposite. Thus, (0, 0) is a saddle. Due to the 2:1 covering P1 will

appear as “half a saddle”, i.e. a cone-like point.

(3) When |α̃|
√

1− σ2 = |β + 2δ̃| then, either the coefficient of u2 or the coeffi-

cient of v2 or both of them are 0. Thus, (0, 0) is degenerate, and we have

to analyse the fourth-order terms in (u, v). For this relation of the param-

eters a bifurcation takes place as (0, 0) changes from stable to unstable.
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In Theorem 5.1 we will prove that when α̃ = 0 this bifurcation is degen-

erate and P1 is stable. In Theorem 5.2 we will see that the cases α̃ 6= 0

and (β, δ̃, σ) ∈ {(−1/α̃, 1/α̃, 0), (1/α̃,−1/α̃, 0)} also correspond to degen-

erate bifurcations. In the rest of the cases P1 undergoes a Hamiltonian flip

bifurcation, as it will be shown in Theorem 5.4.

Proposition 5.3. The stability of the point P2 = (0, 0, 0) on T0 changes when

|α̃| = |β|. More precisely, when |α̃| < |β| then P2 is stable, and when |α̃| > |β|, it

is unstable. For |α̃| = |β| the point P2 undergoes a bifurcation.

Proof For the proof of this lemma we use the same change of variables as the one

given in the proof of Proposition 5.2. As in this case we are concerned with the

analysis around (τ̃1, τ̃2, τ̃3) = (0, 0, 0), then w & −1 and

(69) Q0(u, v, w) = 1
4 (u2 + v2)− (1− w2) = 0.

Now, we use (69) to express w as a function of (u, v), we substitute it into the

expression of Hamiltonian (68) and compute the Taylor expansion around (0, 0) to

get

(70) K(u, v) = 1
4 (α̃+ β)u2 − 1

4 (α̃− β)v2 + 1
64 (β + δ̃)(u2 + v2)2 + · · · .

If |α̃| < |β| the sign of the coefficients of u2 and v2 is the same, then (0, 0) is a centre

and P2 is also a centre. When |α̃| > |β| we get a saddle point on the (u, v)-space.

Since these coordinates represent a 2:1 covering, it follows that P2 is a cone-like

point. When |α̃| = |β|, either the coefficient of u2 or the coefficient of v2 or both

vanish and (0, 0) is degenerate. Thus, we have to analyse the next term in the

Taylor series. For this relation of the parameters a bifurcation involving P2 takes

place, as its stability character changes. In Theorem 5.1 we will prove that when

α̃ = β = 0 this bifurcation is degenerate although P2 is stable. In Theorem 5.2 we

will prove that when α̃ 6= 0 and (β, δ̃, σ) ∈ {(−1/α̃, 1/α̃, 0), (1/α̃,−1/α̃, 0)} we get
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degenerate bifurcations. In the rest of the cases P2 undergoes Hamiltonian Hopf

bifurcations, as it will be shown in Theorem 5.5. The degenerate cases will be

discussed in Subsection 5.6.

Note 5.1. The stability of P2 analysed in (5.3) agrees with the stability of the point

OR studied in Theorem 4.2 as both points represent the same type of solutions, which

is apparent by using the relationships between the parameters given in (57). Notice

in particular that condition ω1ω2 > 0 in Theorem 4.2 is equivalent to condition

|α̃| < |β|. Indeed the reduction process from CP2
h to TL,N carries the point OR into

P2.

5.5. The equilibria at the regular points. In this subsection we analyse the

stationary solutions of system (60) together with the constraint (61). As the twice

reduced space is different for σ = 0 and σ 6= 0 we will distinguish between the two

cases. Recall that when σ = 0 the two singularities, P1 and P2, are equilibrium

points and for σ 6= 0 the unique singularity P1 is also an equilibrium.

From the second equation of system (60) there are two possibilities, either α̃ = 0

or τ̃3 = 0.

5.5.1. Case α̃ = 0. System (60) reads

(71)

τ̃ ′1 = − 8
L (β + δ̃τ̃2)τ̃3,

τ̃ ′2 = 0,

τ̃ ′3 = 8
L (β + δ̃τ̃2)τ̃1,

For convenience we define the following parametric sets:

Yσ = {(β, δ̃, σ) ∈ R3 |β = δ̃ = 0, −1 ≤ σ ≤ 1},

Aσ = {(β, δ̃, σ) ∈ R3 | 2|σ| < −β/δ̃ < 2, −1 ≤ σ ≤ 1, δ̃ 6= 0},

Lσ = {(β, δ̃, σ) ∈ R3 | − β/δ̃ = 2|σ|, −1 ≤ σ ≤ 1, δ̃ 6= 0},

Nσ = {(β, δ̃, σ) ∈ R3 | − β/δ̃ = 2, −1 ≤ σ ≤ 1, δ̃ 6= 0}.
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We denote Y0 = Yσ ∩ {σ = 0}, A0 = Aσ ∩ {σ = 0}, L0 = Lσ ∩ {σ = 0} and

N0 = Nσ ∩ {σ = 0}. We also indicate with Y, A, L, N the projections of Yσ, Aσ,

Lσ, Nσ onto their first two components, respectively.

Theorem 5.1. When α̃ = 0 the two-parameter family defined by K = 2βτ̃2 + δ̃τ̃2
2

on Tσ is structurally stable in the parametric region R3 \ (Y ∪ A ∪ L ∪ N ). In

R3 \ (Yσ ∪ Aσ ∪ Lσ ∪ Nσ) there are two stable equilibria given by P1 = (0, 2, 0)

and P2 = (0, 2|σ|, 0). In Yσ all the points in Tσ are equilibria. In Aσ, apart

from the stable equilibria P1 = (0, 2, 0) and P2 = (0, 2|σ|, 0), there is a curve of

equilibria given by (τ̃1,−β/δ̃, τ̃3) where τ̃2
1 + τ̃2

3 = (2 + β/δ̃)2(β2/δ̃2 − 4σ2). In Lσ

the equilibrium P2 undergoes a degenerate bifurcation and in Nσ it is the equilibrium

P1 that undergoes a degenerate bifurcation.

Proof From system (71) one clearly has either β + δ̃τ̃2 = 0 or τ̃1 = τ̃3 = 0.

(1) When τ̃1 = τ̃3 = 0, taking into account (61) it is immediate to conclude

that for any value of the parameters we end up with the point P1 = (0, 2, 0) and

P2 = (0, 2|σ|, 0). The points P1 and P2 = (0, 0, 0) correspond to the singularities

considered in the previous subsection.

(2) For β + δ̃τ̃2 = 0 we distinguish between two possibilities:

• When δ̃ = 0 then β = 0 and, since α̃ is also zero, we are in the case of

Remark 8 where all the points in the twice reduced space are equilibria

and the system is not structurally stable. This is the parametric set Yσ,

that corresponds to the vertical line through the origin in Fig. 3. The orbit

space for Y0 is represented in Fig. 4.

• If δ̃ 6= 0 then τ̃2 = −β/δ̃ and, taking into account (61), we end up with the

following description:
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(i) When 2|σ| < −β/δ̃ < 2, i.e. in Aσ, the points (τ̃1, −β/δ̃, τ̃3) with

τ̃2
1 + τ̃3

3 = (2 + β/δ̃)2(β2/δ̃2 − 4σ2) are equilibria. The set Aσ is the region

enclosed by the red and blue surfaces in Fig. 3. It corresponds to the yellow

region in Fig. 4.

(ii) When 2|σ| = −β/δ̃, i.e. in region Lσ, then this set of equilibria

gets reduced to the point P2 = (0, 2|σ|, 0), that we know is already an

equilibrium. Thus, the parametric relation β + 2δ̃|σ| = 0 corresponds to a

degenerate bifurcation related to P2, see the blue surface in Fig. 3. Notice

that, when σ = 0, this is the bifurcation mentioned in Proposition 5.3 for

α̃ = 0 and is represented in blue in Fig. 4.

(iii) When −β/δ̃ = 2, i.e. in region Nσ, then the set of equilibria gets

reduced to P1, that we already know is an equilibrium. Thus, the paramet-

ric relation β + 2δ̃ = 0 corresponds to a degenerate bifurcation related to

P1, see the red surface in Fig. 3. Note that it is the relation appearing in

Proposition 5.2 when α̃ = 0 and is represented in red in Fig. 4.

In summary, when 2|σ| < −β/δ̃ < 2 there are two isolated equilibria, P1 and P2,

and a curve of equilibria given by (τ̃1,−β/δ̃, τ̃3) with τ̃2
1 + τ̃3

3 = (2 + β/δ̃)2(β2/δ̃2−

4σ2), see a sketch of the phase space for σ = 0 together with the equilibria in

the yellow region appearing in Fig. 4. When −β/δ̃ = 2|σ| the curve of equilibria

collides with P2, and only P1 and P2 remain as equilibria for −β/δ̃ ≤ 2|σ|, see the

reduced space for σ = 0 corresponding to the blue line and the white region next

to it in Fig. 4. Finally, when −β/δ̃ = 2 the curve of equilibria collides with P1, and

only P1 and P2 remain as equilibria for −β/δ̃ ≥ 2, see the reduced space for σ = 0

corresponding to the red line and the white region next to it in Fig. 4.

Let us prove that the isolated equilibria are always stable points, as we can see

in Fig. 4.

• As the Poincaré index of Tσ is 2, in the case where there are only two equi-

libria, both have index 1, so they are stable (centres). This occurs when
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δ̃ 6= 0 and −β/δ̃ ≥ 2 and also when δ̃ 6= 0 and −β/δ̃ ≤ 2|σ|.

• In region Aσ, applying Proposition 5.2 we know that P1 is stable when

|α̃|
√

1− σ2 < |β + 2δ̃|. Since α̃ = 0, we trivially conclude that P1 is stable.

For P2 we get the following:

(i) When σ = 0 by Proposition 5.3, we know that P2 = (0, 0, 0) is stable

when |α̃| < |β|. As α̃ = 0, it is immediate to conclude that P2 is stable.

(ii) When σ 6= 0, P2 is a regular point. Thus, its stability is given by the

matrix (63) associated to the linearisation of system (60) around P2. The

non-trivial eigenvalues are ±8i(β + 2δ̃|σ|)/L. So, in region Aσ with σ 6= 0,

P2 is stable.

Figure 3. Bifurcation diagram for α̃ = 0. The vertical line
through the origin corresponds to Yσ; the blue surface is Lσ (a
degenerate bifurcation of P2) and the red surface is Nσ (a degen-
erate bifurcation of P1); the region enclosed by the red and blue
surfaces stands for the set Aσ.

The analysis of the case α̃ = 0 is collected in Figs. 3 and 4. Fig. 4 is the

intersection with the plane σ = 0 of the bifurcation diagram contained in Fig. 3.
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Figure 4. Intersection with the plane σ = 0 of the bifurcation
diagram in the case α̃ = 0. The origin corresponds to Y0; the
yellow region stands for the set A0; the blue line is L0 (a degenerate
bifurcation of P2) and the red line is N0 (a degenerate bifurcation
of P1). A sketch of the twice reduced space projected over τ̃3 = 0
together with the equilibria is represented for each parametric set.
Black dots correspond to stable equilibria (Poincaré index 1). At
the origin the whole phase space are equilibria. In the yellow region
there is a curve of equilibria with constant τ̃2.

The blue (red) line in Fig. 4 is the intersection with σ = 0 of the blue (red) surface

in Fig. 3. The yellow region in Fig. 4 corresponds to the surface enclosed by the red

and blue surfaces in Fig. 3. A sketch of the twice reduced phase space together with

the equilibria and stability is given for each region in Fig. 4. In the case σ 6= 0 the

same sketches apply for the corresponding regions except for the shape of the twice

reduced space, if σ = 0 the point P2 = (0, 0, 0) is singular whereas when σ 6= 0 the

equilibrium P2 = (0, 2|σ|, 0) is regular.

5.5.2. Case α̃ 6= 0. As it has been noticed before, from system (60) we infer that

in this case all the equilibria satisfy τ̃3 = 0. Thus, constraint (61) gets transformed
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into

(72) τ̃2
1 = (2− τ̃2)2(τ̃2

2 − 4σ2).

We can reduce the number of parameters of the system by one defining

(73) β = β̂α̃, δ̃ = δ̂α̃.

Rescaling time (t→ α̃t) Hamiltonian (59) is transformed into Hamiltonian

(74) K = τ̃1 + 2β̂τ̃2 + δ̂τ̃2
2 ,

and taking also into account that τ̃3 = 0 system (60) is transformed into

(75)

˙̃τ1 = 0,

˙̃τ2 = 0,

˙̃τ3 = 8
L [(β̂ + δ̂τ̃2)τ̃1 + (2− τ̃2)(2σ2 + τ̃2 − τ̃2

2 )],

where (by an abuse of notation) the dots indicate derivation with respect to the new

time. Then, the relative equilibria satisfy ˙̃τ3 = 0 and (72). Thus, we compute the

resultant of both polynomials with respect to τ1 and get the sixth-degree polynomial

in τ2 given by

P6(τ̃2) = 64
L2 (τ̃2 − 2)2P4(τ̃2),

where

P4(τ̃2) = 4σ2(β̂2 + σ2) + 4σ2(1 + 2β̂δ̂)τ̃2 + [1− β̂2 − 4σ2(1− δ̂2)]τ̃2
2

−2(1 + β̂δ̂)τ̃3
2 + (1− δ̂2)τ̃4

2 .

The relative equilibria are the admissible solutions of P6(τ̃2) = 0. The case τ̃2 = 2

is discarded as it corresponds to P1 and has been considered in Subsection 5.4. As

we are treating regular points, we have to analyse the roots of P4(τ̃2) such that

0 < τ̃2 < 2 and σ = 0 or 2|σ| ≤ τ̃2 < 2 and 0 < |σ| < 1. By convenience we define
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the sets:

Lσ = {(β̂, δ̂, σ) ∈ R3 | Q6(σ) = 0},

L′σ = {(β̂, δ̂, σ) ∈ R3 | Q6(σ) = 0, δ̂(β̂ + 2δ̂) > 1},

L1
0 = {(β̂, δ̂) ∈ R2 | β̂ = −1, δ̂ 6= 1},

L2
0 = {(β̂, δ̂) ∈ R2 | β̂ = 1, δ̂ 6= −1},

N 1
σ =

{
(β̂, δ̂, σ) ∈ R3 \ {(1,−1, 0)} | β̂ + 2δ̂ = −

√
1− σ2, −1 ≤ σ ≤ 1

}
,

N 2
σ =

{
(β̂, δ̂, σ) ∈ R3 \ {(−1, 1, 0)} | β̂ + 2δ̂ =

√
1− σ2, −1 ≤ σ ≤ 1

}
,

C1
0 = {(β̂, δ̂) ∈ R2 | β̂ + 2δ̂ < −1, β̂ < −1},

C2
0 = {(β̂, δ̂) ∈ R2 | β̂ + 2δ̂ > 1, β̂ > 1},

D0 =

{
(β̂, δ̂) ∈ R2 | 0 < 1 + β̂

1− δ̂
< 2, 0 <

1− β̂
1 + δ̂

< 2

}
,

E1
0 = {(β̂, δ̂) ∈ R2 | |β̂ + 2δ̂| < 1, |β̂| > 1},

E2
0 = {(β̂, δ̂) ∈ R2 | |β̂ + 2δ̂| > 1, |β̂| < 1},

where Q6(σ) is obtained as the relevant factor of the resultant between P4(τ̃2) and

P ′4(τ̃2) with respect to τ̃2 and is explicitly given by

(76)

Q6(σ) = (1− β̂2)3 + 3[(5 + β̂2)(1 + 5β̂2) + 36β̂(1 + β̂2)δ̂ + 4(1 + 7β̂2 + β̂4)δ̂2]σ2

+48(1− β̂2)(δ̂2 − 1)2σ4 + 64(δ̂2 − 1)3σ6.

For j = 1, 2 we denote by N j
0 = N j

σ ∩ {σ = 0} and N j the projection onto the

first two components. We also indicate with L′ the projection of L′σ onto the plane

defined by β̂, δ̂. We establish the following result.

Theorem 5.2. When α̃ 6= 0 and σ = 0 the two-parameter family defined by (74)

on T0 is structurally stable in the parametric region R2 \ {(∪2
j=1L

j
0) ∪ (∪2

j=1N
j
0 ) ∪

(−1, 1) ∪ (1,−1)} = (∪2
j=1C

j
0) ∪ D0 ∪ (∪2

j=1E
j
0). The equilibria and their stability

character is as follows.
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• In the regions ∪2
j=1C

j
0; L1

0 with δ̂ ≤ 0; L2
0 with δ̂ ≥ 0; N 1

0 with β̂ ≤ −1 and

N 2
0 with β̂ ≥ 1 there are two stable equilibria, P1 and P2 = (0, 0, 0).

• In D0 there are four equilibria, i.e. P1, P2,

P3 =

(
(1 + β̂)(1− β̂ − 2δ̂)

(1− δ̂)2
,

1 + β̂

1− δ̂
, 0

)
, P4 =

(
− (1− β̂)(1 + β̂ + 2δ̂)

(1 + δ̂)2
,

1− β̂
1 + δ̂

, 0

)
.

(i) When |δ̂| > 1 the points P1, P2, P3 are stable and P4 is unstable (a

saddle).

(ii) When |δ̂| < 1 the points P1 and P2 have index 0 and P3 and P4 are

stable (centres).

• In the following situations there are three equilibria, specifically:

(i) In E1
0 ∪N 2

0 with β̂ < −1 and in L1
0 with 0 < δ̂ < 1 the points P2 and

P4 are stable and P1 has index 0.

(ii) In E1
0 ∪N 1

0 with β̂ > 1 and in L2
0 with −1 < δ̂ < 0 the points P2 and

P3 are stable and P1 has index 0.

(iii) In E2
0 with β̂ + 2δ̂ < −1; in N 1

0 with |β̂| < 1; in L2
0 with δ̂ < −1 the

points P1 and P3 are stable and P2 has index 0.

(iv) In E2
0 with β̂ + 2δ̂ > 1; in N 2

0 with |β̂| < 1; in L1
0 with δ̂ > 1 the

points P1 and P4 are stable and P2 has index 0.

• The set (∪2
j=1L

j
0) ∪ (∪2

j=1N
j
0 ) ∪ (−1, 1) ∪ (1,−1) is a bifurcation set.

(i) ∪2
j=1L

j
0 is a bifurcation associated to P2.

(ii) ∪2
j=1N

j
0 is a bifurcation associated to P1.

(iii) When (β̂, δ̂) = (−1, 1) there is an isolated stable equilibrium with co-

ordinates P4 = (1, 1, 0) and a continuum of equilibria given by ((2− τ̃2)τ̃2,

τ̃2, 0) with τ̃2 ∈ (0, 2). For these values of the parameters a degenerate

bifurcation associated to P1 and P2 takes place.
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(iv) When (β̂, δ̂) = (1,−1) there is an isolated stable equilibrium, namely,

P3 = (−1, 1, 0) and a continuum of equilibria given by (−(2− τ̃2)τ̃2, τ̃2, 0)

with τ̃2 ∈ (0, 2). For these values of the parameters P1 and P2 undergo a

degenerate bifurcation.

Proof When σ = 0 we get

P4(τ̃2;σ = 0) = τ̃2
2R2(τ̃2),

where

R2(τ̃2) = [1 + β̂ − (1− δ̂)τ̃2][1− β̂ − (1 + δ̂)τ̃2].

The results are summarised in Fig. 5, where we have sketched the equilibria with

their stability in each region of the parametric plane (β̂, δ̂). White circles stand

for saddles, equilibria with Poincaré index -1; black circles correspond to centres

(index 1) and black and white circles stand for equilibria with index 0.

The case τ̃2 = 0 has been already analysed. Thus, we are interested in the roots

of R2(τ̃2) such that 0 < τ̃2 < 2.

(a) From the first factor of R2(τ̃2) we infer that

• τ̃2 = (1 + β̂)/(1 − δ̂) is a valid root of R2(τ̃2) when δ̂ 6= 1 and 0 <

(1+ β̂)/(1− δ̂) < 2, i.e. in D0; in E1
0 ∪N 1

0 with β̂ > 1; E2
0 with β̂+2δ̂ < −1;

in N 1
0 with |β̂| < 1; in L2

0 with δ̂ < 0; at (1,−1). In this case, after replacing

this value of τ̃2 in ˙̃τ3 = 0 in (75) we get the equilibrium

P3 =

(
(1 + β̂)(1− β̂ − 2δ̂)

(1− δ̂)2
,

1 + β̂

1− δ̂
, 0

)
.

The stability of this equilibrium is given by the non-trivial eigenvalues of

matrix (63) which, once evaluated at P3 are

±4
√

2i

L

√
(1 + β̂)(β̂ + 2δ̂ − 1)

δ̂ − 1
.

So, P3 is a saddle in D0 with β̂ < −1 and a centre otherwise.
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Figure 5. Bifurcation diagram when σ = 0 and α̃ 6= 0. White re-
gions correspond to ∪2

j=1C
j
0; pink regions represent D0; the orange

ones stand for E1
0 and the yellow ones for E2

0 . Blue lines are ∪2
j=1L

j
0

(bifurcations of P2) and the red ones are ∪2
j=1N

j
0 (bifurcations of

P1). A sketch of the twice reduced space projected over τ̃3 = 0
together with the equilibria is represented for each parametric set.
Black dots are stable points (index 1), white dots stand for saddles
(index -1) and black and white circles represent equilibria with in-
dex 0. At the point (−1, 1) the whole upper arc of the projection
of T0 on τ3 = 0 are equilibria and at (1,−1) it is the lower arc.

• When (1 + β̂)/(1 − δ̂) = 0, i.e. β̂ = −1, and δ̂ 6= 1 (region L1
0) then,

the equilibrium P3 collides with P2. Thus, there is a bifurcation associated

to P2 that corresponds to the one appearing in Proposition 5.3 for α̃ 6= 0.

• When (1 + β̂)/(1 − δ̂) = 2, i.e. β̂ + 2δ̂ = 1, and δ̂ 6= 1 (region N 2
0 )

then, the equilibrium P3 collides with P1. Hence, there is a bifurcation
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associated to P1 that corresponds to the one appearing in Proposition 5.2

for α̃ 6= 0.

• When δ̂ = 1 and β̂ 6= −1 then, the first factor of R2(τ̃2) does not give

any root for the polynomial.

• When δ̂ = 1 and β̂ = −1 then R2(τ̃2) trivially vanishes and there is

a continuum of equilibria given by ((2− τ̃2)τ̃2, τ̃2, 0) with τ̃2 ∈ (0, 2). The

point (β̂, δ̂) = (−1, 1) is the intersection of the lines β̂ = −1 (region L1
0, see

Proposition 5.3 with α̃ 6= 0) and β̂+2δ̂ = 1 (region N 2
0 , see Proposition 5.2

with α̃ 6= 0) and corresponds to a degenerate bifurcation associated to P1

and P2.

(b) We analyse the second factor of R2(τ̃2) in the same way.

• The value τ̃2 = (1− β̂)/(1 + δ̂) is a valid root of R2(τ̃2) when δ̂ 6= −1

and 0 < (1 − β̂)/(1 + δ̂) < 2, i.e. in region D0; in E1
0 ∪ N 2

0 with β̂ < −1;

in E2
0 with β̂ + 2δ̂ > 1; in N 2

0 with |β̂| < 1; in L1
0 with δ̂ > 0; and at

(β̂, δ̂) = (−1, 1). In all cases, after substituting this value of τ̃2 in ˙̃τ3 = 0

in (75) we get the equilibrium with coordinates

P4 =

(
− (1− β̂)(1 + β̂ + 2δ̂)

(1 + δ̂)2
,

1− β̂
1 + δ̂

, 0

)
.

The stability of this equilibrium is given by the non-null eigenvalues of

matrix (63) which, once evaluated at P4 are

±4
√

2i

L

√
(1− β̂)(β̂ + 2δ̂ + 1)

1 + δ̂
.

Thus, P4 is a saddle in D0 with β̂ > 1 and a centre otherwise.

• When (1 − β̂)/(1 + δ̂) = 0, i.e. β̂ = 1 and δ̂ 6= −1 (region L2
0), the

equilibrium P4 collides with P2. So, there is a bifurcation associated to P2

that corresponds to the one appearing in Proposition 5.3 for α̃ 6= 0.
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• When (1 − β̂)/(1 + δ̂) = 2, i.e. β̂ + 2δ̂ = −1 and δ̂ 6= −1 (region N 1
0 )

the equilibrium P4 collides with P1. Thus, there is a bifurcation associated

to P1 that corresponds to the one appearing in Proposition 5.2 for α̃ 6= 0.

•When δ̂ = −1 and β̂ 6= 1 the second factor of R2(τ̃2) does not give any

root.

• When δ̂ = −1 and β̂ = 1 then R2(τ̃2) trivially vanishes and there

is a continuum of equilibria given by (−(2− τ̃2)τ̃2, τ̃2, 0) with τ̃2 ∈ (0, 2).

The point (β̂, δ̂) = (1,−1) is the intersection of the lines β̂ = 1 (region

L2
0, see Proposition 5.3 with α̃ 6= 0) and β̂ + 2δ̂ = −1 (region N 1

0 , see

Proposition 5.2 with α̃ 6= 0) and corresponds to a degenerate bifurcation

associated to the points P1 and P2.

At this point the following sets are introduced:

C1
σ = {(β̂, δ̂, σ) ∈ R3 | β̂ + 2δ̂ < −

√
1− σ2, β̂ < 1},

C2
σ = {(β̂, δ̂, σ) ∈ R3 | β̂ + 2δ̂ >

√
1− σ2, β̂ > −1},

Eσ = {(β̂, δ̂, σ) ∈ R3 | |β̂ + 2δ̂| <
√

1− σ2}.

Theorem 5.3. When α̃ 6= 0 and σ 6= 0 the two-parameter family defined by (74)

on Tσ is structurally stable in the parametric region R2 \ {(∪2
j=1N j) ∪ L′} (with

N j and L′ given in the paragraph before Theorem 5.2). There are three different

situations:

• In the regions ∪2
j=1Cjσ and ∪2

j=1N j
σ with δ̂(β̂+ 2δ) ≤ 1, there are two stable

equilibria, namely, P1 and a regular one.

• In these two cases there are three equilibria with the following stability fea-

tures:
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(i) In the parametric sets ∪2
j=1N j

σ with δ̂(β̂ + 2δ) > 1 and Eσ, the point

P1 has Poincaré index zero and there are two stable equilibria at regular

points.

(ii) In the region L′ the point P1 is stable, there is another stable equi-

librium at a regular point and a third one with index 0.

• Otherwise there are four equilibria. The point P1 is stable and there are two

other stable equilibria at regular points and one saddle at a regular point.

Furthermore, the set L′ corresponds to a bifurcation of a regular equilibrium and

∪2
j=1N j represents a bifurcation of P1.

Proof We need to analyse the roots of P4(τ̃2) such that 2|σ| ≤ τ̃2 < 2 and σ 6= 0.

For that, we determine the values of the parameters where the number of valid

roots of P4(τ̃2) changes. Two possibilities arise:

(i) When a valid root of P4(τ̃2) reaches the value τ̃2 = 2 then there is a collision

of P1 (that is always at an equilibrium) with the equilibrium coming from

the root of P4(τ̃2). Thence, when

P4(2) = 4(1− σ2)[1− σ2 − (β̂ + 2δ̂)2] = 0

there is a bifurcation involving P1. Recall that when |σ| = 1, the space

Tσ is a point, i.e. T−1 = T1 = {(0, 2, 0)}. So, we consider |σ| < 1 and

then, the parametric relation determining the bifurcation is 1− σ2 − (β̂ +

2δ̂)2 = 0, which defines ∪2
j=1N j

σ and corresponds to the one appearing in

Proposition 5.2 for α̃ 6= 0. It is the red surface in Fig. 6 whose intersection

with the plane σ = 0 are the red lines in Fig. 5.

(ii) When there is a multiple root of P4(τ̃2) associated to the same equilibrium

then, there is a collision of equilibria coming from two valid roots of P4(τ̃2).

The occurrence of multiple roots of P4(τ̃2) is given by Q6(σ) in (76). Hence,

when Q6(σ) = 0 there is a multiple root of P4(τ̃2). We discard the values

of τ̃2 that do not lie in the interval [2|σ|, 2) and those values corresponding
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Figure 6. Bifurcation diagram for α̃ 6= 0. The red surface is
∪2
j=1N j

σ and represents a bifurcation associated to P1. The blue
surface is L′σ and stands for a bifurcation at a regular point of Tσ.

to more than one equilibrium. This gives us the blue surface appearing in

Fig. 6 that corresponds to L′σ. In other words, L′σ represents a bifurcation

associated to an equilibrium at a regular point of Tσ. The expression δ̂(β̂+

2δ̂) = 1 comes from the intersection ofQ6(σ) = 0 and the relation appearing

in (i), 1 − σ2 − (β̂ + 2δ̂)2 = 0, which is derived from P4(2) = 0. It is

represented by the yellow curve in Fig. 6. Note that the intersection of

Q6(σ) = 0 with the plane σ = 0 is (β̂2 − 1)3 = 0, that is, the set ∪2
j=1L

j
0

corresponds to the blue lines in Fig. 5.
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In summary, ∪2
j=1N j

σ and L′σ divide the parametric space (β̂, δ̂, σ) into regions

where the number of equilibria and the stability is maintained. An intersection of

the bifurcation space with a plane σ 6= 0 is presented in Fig. 7. The picture presents

for each region a sketch of Tσ projected over τ̃3 = 0 containing the equilibria and

their stability.

-2 -1 0 1 2

-2

-1

0

1

2

β

δ

Figure 7. Intersection of the bifurcation diagram in the case α̃ 6=
0 with the plane σ 6= 0 (the values in the picture are for σ ∼ 0).
A sketch of Tσ projected over τ̃3 = 0 together with the equilibria
is represented for each parametric set. Black dots correspond to
stable equilibria (index 1), white dots stand for saddles (index -1)
and black and white circles represent equilibria with index 0. The
red lines correspond to ∪2

j=1N j
σ (a bifurcation of P1). The blue

lines account for L′ (a bifurcation of a regular equilibrium). The
white regions represent ∪2

j=1Cjσ and the orange region is Eσ. The
points of intersection of the blue and red lines correspond to the
yellow curve in Fig. 6.
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5.6. Bifurcations of equilibria. In this subsection we characterise the bifurca-

tions appearing in the previous subsections. Basically we get

• Bifurcations of P1. They are given by the equation appearing in Proposi-

tion 5.2, that is,

|α̃|
√

1− σ2 = |β + 2δ̃|.

In Theorem 5.1 we have proved that when α̃ = 0 this is a degenerate bifur-

cation. It corresponds to the set Nσ, that is represented by the red surface

in Fig. 3 and by the red lines in Fig. 4. In Theorem 5.2 we have proved

that the case α̃ 6= 0 and (β, δ̃, σ) ∈ {(−1/α̃, 1/α̃, 0), (1/α̃,−1/α̃, 0)} also

corresponds to degenerate bifurcations of P1. So, here we consider α̃ 6= 0,

(β, δ̃, σ) 6∈ {(−1/α̃, 1/α̃, 0), (1/α̃,−1/α̃, 0)}, in which case the bifurcation

is represented by the set ∪2
j=1N j

σ , that corresponds to the red surface in

Fig. 6 and the red lines in Fig. 7. See Theorem 5.4 below for a more detailed

description on the bifurcations occurring in ∪2
j=1N j

σ .

• Bifurcations of P2 = (0, 2|σ|, 0). On the one hand they are given by the

equation appearing in Proposition 5.3, that is,

|α̃| = |β|.

In Theorem 5.1 we have proved that when α̃ = 0 this bifurcation is degen-

erate. It corresponds to the set Lσ, that is represented by the blue surface

in Fig. 3 and by the blue line in Fig. 4. In Theorem 5.2 we have proved that

the case α̃ 6= 0 and (β, δ̃, σ) ∈ {(−1/α̃, 1/α̃, 0), (1/α̃,−1/α̃, 0)} also corre-

sponds to degenerate bifurcations of P2. So, here we consider α̃ 6= 0, σ = 0,

(β, δ̃, σ) 6∈ {(−1/α̃, 1/α̃, 0), (1/α̃,−1/α̃, 0)}, in which case the bifurcation is

represented by the set ∪2
j=1L

j
0, that corresponds to the blue lines in Fig. 5.

On the other hand, when σ = 0 and −1 < β̂ < 1, the point P2 = (0, 0, 0)

corresponds to an equilibrium solution that disappears when σ 6= 0. This

also occurs in [31], see for instance the passage through lines A and G of
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Fig. 3 in p. 342 of [31] with λ fixed and µ passing from positive to negative.

• Bifurcations of regular equilibria. The set L′σ corresponds to a centre-saddle

or Hamiltonian saddle-node bifurcation of a regular equilibrium, see [16].

It is the blue surface appearing in Fig. 6 or the blue lines in Fig. 7. On the

blue surface an equilibrium with Poincaré index zero appears; in the pink

region in Fig. 7 (and its associated in Fig. 6) it is transformed into a saddle

and a centre; in the white region it disappears. See the evolution in Fig. 7.

Let us establish a result accounting for the bifurcations of the point P1. We intro-

duce the Hamiltonian Kε as

(77) Kε = K +O(ε2),

where K is given in (74).

Theorem 5.4. Given the two-parameter family defined by Hamiltonian Kε intro-

duced in (77) on the space Tσ, the set ∪2
j=1N j

σ corresponds to a Hamiltonian flip

bifurcation of P1 and (∪2
j=1N j

σ) ∩ L′σ corresponds to a degenerate Hamiltonian flip

(i.e. a Z2-symmetric A+
5 ) bifurcation of P1.

Proof We go back to the normal form around the blowup of P1 appearing in the

proof of Proposition 5.2, that is formula (68) which, after rescaling and introducing

the parameters (β̂, δ̂) yields that

K(u, v) = e21u
2 + e22v

2 + e4(u2 + v2)2 + e6(u2 + v2)3 + · · · ,

where

e21 =

√
1− σ2 − β̂ − 2δ̂

4
√

1− σ2
, e22 = −

√
1− σ2 + β̂ + 2δ̂

4
√

1− σ2
,

e4 = − β̂ + δ̂(1 + σ2)

64(1− σ2)2
, e6 = −4(β̂ + δ̂) + (β̂ + 6δ̂)σ2

2048(1− σ2)7/2
.

• When e22 = 0 then e21 > 0. If e4 > 0 a Hamiltonian flip bifurcation

in the τ -space associated to P1 takes place. Because of the 2:1 covering,
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this bifurcation is seen as a supercritical reversible Hamiltonian pitchfork

bifurcation in the (u, v)-space. The same bifurcation appeared in [31]. This

occurs on the part of the left half of the red surface in Fig. 6 that is not

covered by the blue surface. This is the part of N 1
σ where e4 > 0. In Fig. 7

it corresponds to the part of the bottom red line such that β̂ < 1. We

observe that e21 and e4 do not change sign when e22 ≈ 0. The coefficient

e22 > 0 outside the red surface and e22 < 0 inside the red surface. So,

outside the red surface and on the red surface (0, 0) is stable and becomes a

saddle and bifurcates giving rise to two centres when inside the red surface.

In Fig. 7 we see that P1 is stable in the white region and on the red line, it

becomes a cusp in the orange region and a new stable equilibrium appears.

The same bifurcation occurs in the part of N 2
σ where e4 < 0, that is, in

the part of the right half red surface in Fig. 6 that is not covered by the

blue surface or the top red line in Fig. 7 with β̂ > −1. In this case when

e21 = 0, e22 < 0 and e4 < 0.

• When e22 = 0 and e4 < 0 then, a Hamiltonian flip bifurcation occurs in

the τ -space. This time P1 becomes stable and gives rise to an unstable

equilibrium. Due to the 2:1 covering, it is seen as a subcritical reversible

Hamiltonian pitchfork bifurcation associated to (0, 0) that takes place in

the (u, v)-space. This occurs on the part of the left half of the red surface

in Fig. 6 that is covered by the blue surface. This is the part of N 1
σ where

e4 < 0. In Fig. 7 it corresponds to the part of the bottom red line such that

β̂ > 1. Again, e21 and e4 do not change sign when e22 ≈ 0. The coefficient

e22 > 0 outside the red surface and e22 < 0 inside the red surface, as we

noticed before. So, inside the red surface and on this part of the red line,

(0, 0) is a saddle with two associated centres. Once outside the red surface

and below the blue one, it changes to a centre and two new saddles appear.

In Fig. 7 we see that P1 is stable in the pink region and there is also a
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saddle on a regular point. On the red line and in the orange region, P1

becomes a cusp and the saddle disappears.

The bifurcation just described happens in the part of N 2
σ with e4 > 0,

i.e. in the part of the right half red surface in Fig. 6 that is covered by the

blue surface or the top red line in Fig. 7 with β̂ < −1. In this case when

e21 = 0, one has e22 < 0 and e4 > 0.

• When e22 = 0 and e4 = 0 then P1 undergoes a degenerate Hamiltonian

flip bifurcation, see also [40] p. 36. In the (u, v)-space it is seen as a Z2-

symmetric A+
5 bifurcation of (0, 0). The diagram of the universal unfolding

of this bifurcation can be seen in Fig. 2.6, p. 36 of [40]. In [64] this bifurca-

tion is called a butterfly A5 with reflection symmetry (see the sequence of

bifurcations in Fig. 2, p. 4173). Here, this bifurcation occurs on the yellow

line appearing in Fig. 6 that corresponds to the points (1,−1) and (−1, 1)

in Fig. 7. It represents the intersection of the red (Hamiltonian flip) and

blue (centre-saddle) surfaces. This bifurcation also appears in [44]; see the

intersection of lines A and B and around in Fig. 2, p. 94 for a representa-

tion in the τ -space and compare with neighbourhoods of the points (1,−1)

and (−1, 1) in Fig. 7 here. In Fig. 8 we have depicted the flow of the re-

duced Hamiltonian around the point (β̂, δ̂) = (1,−1), where the degenerate

Hamiltonian flip bifurcation occurs.

We analyse the coefficients of the normal form on the yellow line with

β̂ > 0. An analogous analysis applies for the yellow line in Fig. 6 with β̂ < 0.

(i) On the yellow line we get e21 > 0, e22 = 0, e4 = 0, e6 > 0. Hence,

(0, 0) is a non-linear centre; see the sketch of Tσ corresponding to the point

(1,−1) in Fig. 7.
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Figure 8. Zoom of Fig. 7 centered at (β̂, δ̂) = (1,−1).

(ii) On the red surface that is not covered by the blue one the only

change is that e4 > 0. So, (0, 0) stays as a centre; see the sketch of Tσ

corresponding to the part of the red bottom line with β̂ < 1 in Fig. 7.

(iii) On the part of the red surface that is covered by the blue one one

has e21 > 0, e22 = 0, e4 < 0, e6 < 0. Thus, (0, 0) is now unstable and
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two centres bifurcate from it. This is the pitchfork bifurcation in the (u, v)-

space that has already been seen. In the sketch of Tσ corresponding to the

part of the red bottom line with β̂ > 1 in Fig. 7, the pitchfork bifurcation

becomes a Hamiltonian flip bifurcation, therefore we see one centre while

the saddle is a cusp point.

(iv) Inside the red surface we have e21 > 0, e22 < 0 and the signs of

e4 and e6 are not relevant. Then, (0, 0) continues to be a saddle with two

associated centres; see the sketch of Tσ corresponding to the orange region

in Fig. 7.

(v) Outside the red surface and below the blue one one gets e21 > 0,

e22 > 0, e4 < 0 and e6 < 0. So, (0, 0) is now a centre and has two saddles

associated to it to which two centres are attached. In the sketch of Tσ

corresponding to the pink region in Fig. 7, apart from the peak, there is

one centre and one saddle associated to it.

(vi) On the blue surface we see a bifurcation of the satellites which has

been already studied, it is indeed the centre-saddle bifurcation analysed

before. On this surface, e2
4 − 3e21e6 ≈ 0. It is exactly zero when we

compute the Taylor series around the satellites. The centres and the saddles

associated to the peak, which is stable, collide and form two degenerate

equilibria. In the sketch of Tσ corresponding to the blue line in Fig. 7 we

only see one degenerate point, i.e. the point which is being bifurcating.

(vii) Outside the blue surface the degenerate equilibria disappear. The

peak is a centre as the coefficients e21, e22 are positive.

Now we deal with the bifurcations of P2. Specifically, we study the Hamiltonian

Hopf bifurcations in the twice reduced space Tσ occurring for the singular equi-

librium point P2 = (0, 0, 0). This bifurcation was analysed for the first time by

Meyer and Schmidt [59], see also [54], in the setting of the planar circular restricted

three body problem in the neighborhood of the equilibrium point L4. Further
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studies applying singular reduction theory were developed by van der Meer [52].

More recently, Hanßmann and van der Meer [41, 42] have undertaken the study of

the Hamiltonian Hopf bifurcation in the context of three-degrees-of-freedom sys-

tems, with special emphasis in the 1:1:1 resonance, see also [40]. Here we use an

approach similar to Hanßmann and van der Meer but applying the symplectic co-

ordinates introduced in Section 4 that are valid in the neighborhood of the point

OR = (0, 2h, 0, 0, 0, 0, 0, 0, 0) of Theorem 4.2. This is the point of the first reduced

space CP2
h that corresponds to the point P2 = (0, 0, 0) in the twice reduced space.

We have to distinguish between non-degenerate and degenerate bifurcations.

Theorem 5.5. Given the two-parameter family defined by Hamiltonian (77) on

the space Tσ, the set ∪2
j=1L

j
0 corresponds to a Hamiltonian Hopf bifurcation of P2.

When δ̂ = ±1 then, for ε sufficiently small, there is a smooth function β̂(ε) close

to ∓1 such that Hamiltonian Kε = K+ ε2K2 +O(ε4) with K2 corresponding to the

normalised Hamiltonian of order 4 in ε once it has been twice reduced, undergoes a

Hamiltonian Hopf bifurcation of P2 for certain combinations of the parameters.

Proof First of all, we consider the set ∪2
j=1L

j
0, thus either β̂ = −1 or β̂ = 1. This

is a bifurcation of the singular equilibrium point P2 = (0, 0, 0) which is equivalent

to a bifurcation of the point OR in CP2
h. Thus, we return to the reduced Hamil-

tonian given in (41) which is of course axially symmetric. Now, the four invariants

associated with the axial symmetry written in terms of the regular coordinates Qi,

Pi introduced in Theorem 4.2 are just

(78) Γ1 = Q1P2−Q2P1, Γ2 = 1
2 (Q2

1+Q2
2), Γ3 = 1

2 (P 2
1 +P 2

2 ), Γ4 = Q1P1+Q2P2,

with the constraint

Γ2
1 + Γ2

4 = 4Γ2Γ3.

Notice that Γ1 = −N .
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The non-zero Poisson brackets are

{Γ2,Γ3} = −{Γ3,Γ2} = Γ4, {Γ2,Γ4} = −{Γ4,Γ2} = 2Γ2,

{Γ4,Γ3} = −{Γ3,Γ4} = 2Γ3.

In these invariants the reduced Hamiltonian (41) takes the simple form

(79)

H̄ε = 2α̃(β̂ + 1)Γ2 + 2α̃(β̂ − 1)Γ3 +
2α̃

h

[
(δ̂ − 1)Γ2

2 + 2δ̂Γ2Γ3 + (δ̂ + 1)Γ2
3

]
− 1

9h

[
3α̃(β̂ + 2δ̂ + 2) + 2a2(2a2 − 3a4)h

]
Γ2

1 +O(ε2),

with α̃, β̂ and δ̂ introduced in (56). This expression has been obtained using the

Gröbner basis relating the Γi with Q, P , and replacing the coefficients di, ωi of (41)

in terms of α̃, β̂, δ̂ and aj .

For (β̂, δ̂) ∈ L1
0, that is, when β̂ = −1 and δ̂ 6= 1 the coefficient of Γ2 is zero

while the coefficients of Γ3 and Γ2
2 are non-null. Then by virtue of Definition 2.24

of [40] we conclude that a Hamiltonian Hopf bifurcation takes place. Here, the signs

of these coefficients determine the type of bifurcation. More precisely, Hamilton-

ian (77) with K introduced in (74) and obtained from (41) as it was described in

the previous subsections of Section 5, undergoes a supercritical Hamiltonian Hopf

bifurcation when δ̂ < 1 and a subcritical Hamiltonian Hopf bifurcation when δ̂ > 1.

A supercritical bifurcation means that two families of periodic solutions emanate

from the origin when β̂ < −1. These families persist when β̂ = −1 as two distinct

families of periodic solutions. As β̂ > −1, the two families detach from the origin

as a single family and move away from the origin. On the other hand, a subcriti-

cal Hamiltonian Hopf bifurcation means that two families emanate from the origin

when β̂ + 1 is small and negative, and the families are globally connected. This

global family shrinks to the origin as β̂ tends to zero. Finally when β̂ + 1 becomes

positive, there are no periodic solutions close to the origin. See also [54] and [41].

Proceeding in a similar way for the set L2
0 it is verified that Hamiltonian Kε

undergoes a supercritical Hamiltonian Hopf bifurcation when δ̂ > −1 and a sub-

critical Hamiltonian Hopf bifurcation when δ̂ < −1. In this case the coefficient of
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Γ3 in (79) becomes zero and one readily checks that the coefficients of Γ2 and Γ2
3

do not vanish.

We remark that the centre-saddle bifurcations of periodic solutions emanating

from the subcritical Hamiltonian Hopf bifurcations correspond to the centre-saddle

bifurcations of relative equilibria already studied in Theorem 5.2.

When δ̂ = 1 or δ̂ = −1, a degenerate Hamiltonian Hopf bifurcation associated to

P2 takes place. In order to analyse if the degeneration can be removed, we consider

the next order in the reduced Hamiltonian(41), that is, we compute the normal

form Hamiltonian of (6) up to sextic terms in the rectangular coordinates. After

truncating higher order terms, putting the normalised Hamiltonian in terms of the

ρi and writing the resulting expression as a function of the rectangular coordinates

Q and P of Theorem 4.2, we need to express it in terms of the Γj . After some

manipulations, the reduced Hamiltonian is written as

(80) H̄ε = ∆1
εΓ2 + ∆2

εΓ3 + 1
h (∆3

εΓ
2
2 + ∆4

εΓ2Γ3 + ∆5
εΓ

2
3 + ∆6

εΓ
2
1) +O(ε4),
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where

∆1
ε = 2α̃(β̂ + 1)− ε2

432h
2
[
268a4

5 + 6852a3
5a10 + 18a5a10(957a2

10 − 485b10 − 762b15)

+ 3a2
5(1005a2

10 − 692b10 − 552b15)− 27
(
2115a4

10 + a2
10(242b10 − 2700b15)

−17(b210 + 4b10b15 − 12b215)
)]
,

∆2
ε = 2α̃(β̂ − 1)− ε2

432h
2
[
76a4

5 − 1020a3
5a10 + 18a5a10(1203a2

10 + 43b10 − 1110b15)

− 27
(
2115a4

10 + a2
10(238b10 − 2700b15)− b210 − 28b10b15 + 204b215

)
+9a2

5

(
167a2

10 + 4(b10 + 30b15)
)]
,

∆3
ε = 2α̃(δ̂ − 1)− ε2

144h
2
[
672a4

5 − 4166a3
5a10 − 6a5a10(1914a2

10 + 138b1 − 797b10

−1524b15)− 3a2
5(99a2

10 + 1016b1 − 46b10 − 160b15) + 9
(
2115a4

10

+4a2
10(121b10 − 675b15) + 17(4b1b10 − b210 − 8b10b15 + 12b215)

)]
,

∆4
ε = 4α̃δ̂ − ε2

24

[
100a4

5 − 588a3
5a10 + a2

5(189a2
10 − 480b1 + 52b10 − 240b15)

− 18a5a10(240a2
10 + 24b1 − 29b10 − 208b15) + 9

(
705a4

10 + 20a2
10(8b10 − 45b15)

+16b1b10 − 3b210 − 32b10b15 + 68b215

)]
,

∆5
ε = 2α̃(δ̂ + 1) + ε2

144h
2
[
72a4

5 − 638a3
5a10 + 6a5a10(2406a2

10 + 294b1 + 275b10

−2220b15)− 3a2
5(477a2

10 + 56b1 + 58b10 − 640b15)− 9
(
2115a4

10

+4a2
10(119b10 − 675b15) + 28b1b10 − b210 − 56b10b15 + 204b215

)]
,

∆6
ε = − 1

9 [3α̃(β̂ + 2δ̂ + 2) + 2a5(2a5 − 3a10)h] + ε2

432h
2
[
220a4

5 − 1044a3
5a10

+9a2
5(43a2

10 − 160b1 + 12b10 − 16b15)− 18a5a10(72b1 − 35b10)

+27b10(16b1 + b10)] .

We have to look carefully at the coefficient ∆1
ε , checking when it vanishes. When

ε = 0 the unique solution to the equation ∆1
ε(β̂; 0) = 0 is β̂ = −1 and for this value

it is verified that

∆1
ε(−1; 0) = 0,

∂∆1
ε

∂β̂
(−1; 0) = 2α̃ 6= 0.
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Therefore, by the implicit function theorem there exists a unique solution β̂(ε) of

the equation ∆1
ε(β̂; ε) = 0 satisfying β̂(0) = −1. Next, in order to prove the non-

degenerate condition, we compute β̂(ε) in terms of ε up to order 2. After putting

b1, b10 and b15 in terms of a5, a10, h, α̃, β̂ and δ̂ we end up with

β̂(ε) = −1− ε2h

54α̃
(2a5 − 3a10) [108(a5 + 16a10)α̃

+35(2a3
5 + 15a2

5a10 − 9a5a
2
10 + 54a3

10)h
]

+O(ε4).

Next, replacing this value in the coefficients ∆2
ε and ∆3

ε , the relevant factor reads

as

∆2
ε∆

3
ε = −16ε4α̃2

h
(δ̂ − 1) +

16ε6α̃

27h

[
549α̃2(δ̂ − 1)

−3α̃
(

27(31− 2δ̂)a2
10 + 18(14δ̂ − 69)a5a10 + (80δ̂ + 127)a2

5

)
h

−5
(

567a4
10 − 9(δ̂ − 36)a2

5a
2
10 − 27(δ̂ + 20)a5a

3
10 + 4(2δ̂ + 5)a4

5

+3(8δ̂ − 85)a3
5a10

)
h2
]

+O(ε8).

Since the product ∆2
ε∆

3
ε is generically non-zero for δ̂ = 1, by virtue of Definition

2.24 of [40] it follows that Hamiltonian K+O(ε2) with K given in (74) undergoes a

Hamiltonian Hopf bifurcation at the value β̂(ε). The bifurcation is of supercritical

type when ∆2
ε∆

3
ε > 0 and subcritical when the ∆2

ε∆
3
ε < 0. We cannot conclude the

occurrence of this bifurcation for the combinations of the parameters that make

∆2
ε∆

3
ε vanish.

In the second case, proceeding similarly to the previous paragraphs, we have

that

∆2
ε(1; 0) = 0,

∂∆2
ε

∂β̂
(1; 0) = 2α̃ 6= 0.

Thus, by the implicit function theorem there exists a unique solution β̂(ε) of the

equation ∆2
ε(β̂; ε) = 0 satisfying β̂(0) = 1. The Taylor expansion of β̂(ε) up to

order 2 in ε is

β̂(ε) = 1 +
ε2h

54α̃
(2a5 − 21a10)(a5 − 3a10)[12α̃+ 5(2a2

5 − 9a5a10 + 18a2
10)h] +O(ε4).
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Replacing this value in the coefficients ∆2
ε and ∆3

ε we obtain

∆1
ε∆

5
ε =

16ε4α̃2

h
(δ̂ + 1)− 16ε6α̃

27h

[
279α̃2(δ̂ + 1)

+3α̃
(

9(6δ̂ + 13)a2
10 − 6(52δ̂ + 55)a5a10 + (28δ̂ + 27)a2

5

)
h

+5
(

567a4
10 − 9(δ̂ − 30)a2

5a
2
10 − 27(δ̂ + 26)a5a

3
10 + 4(2δ̂ + 3)a4

5

+3(8δ̂ − 9)a3
5a10

)
h2
]

+O(ε8).

Now, since the above expression does not vanish generically, even for δ = −1, by

virtue of Definition 2.24 of [40], Hamiltonian Kε = K + ε2K2 + O(ε4) undergoes

a Hamiltonian Hopf bifurcation at the value β̂(ε). As before, the bifurcation is

supercritical for ∆1
ε∆

5
ε positive and subcritical when it is negative.

Remark 9. Specifying the values a5 = 3λa10 and b1 = b10 = b15 = 0 in system (5),

we obtain the axially symmetric Hamiltonian handled in [31]. Besides, it particu-

larises to the 3D Hénon-Heiles Hamiltonian when λ = −1, see [32] and [33]. The

resulting twice reduced Hamiltonian is as (79) with α̃, β̂ and δ̂ given by

(81) α̃ = − 3
4a

2
10λ(6λ− 1)h, β̂ =

4λ2 + 6λ− 5

λ(6λ− 1)
, δ̂ = −3λ2 + 12λ− 5

2λ(6λ− 1)
.

In this context the sets L1
0 and L2

0 with α̃, β̂ and δ̂ as in (81) correspond to

supercritical Hamiltonian Hopf bifurcations of P2 in the situations considered in [31]

at the values λ = 1/2 and λ = 5/2; see [41] and [42] for more information.

When λ = −1 in (81) then β̂ = −1 and δ̂ = 1 and the Hamiltonian Hopf

bifurcation becomes degenerate if only the normal form is considered up to terms

in O(ε2). The degeneracy is resolved by computing terms of order 4 in ε. Instead

of working with β̂ and δ̂ one works with λ, obtaining, in a similar way as we had

proceeded, a curve of the form λ = −1 + ε2λ∗ + O(ε4). Then one concludes that a

subcritical Hamiltonian Hopf bifurcation of P2 occurs for values of λ close to −1.

It corresponds to a particular case of our treatment performed above. See [41] and

references therein.
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Remark 10. The case β̂ = 1, δ̂ = −1 and a5 = 3a10 corresponds to degenerate

Hamiltonian Hopf bifurcations and we have checked that the degeneration remains

adding higher order terms in the normal form (41) up to degree 10 in the rectangular

coordinates Q, P . Moreover, using (81) it is easy to prove that this case has as

a particular subcase the integrable family of axially symmetric Hamiltonians with

a5 = 3a10 and b1 = b10 = b15 = 0, see [31] and references therein, because β̂ = 1,

δ̂ = −1 imply λ = 1.

Some studies [20, 28, 29, 70, 34] have pointed out the relationship between inte-

grability and the existence of a continuum of equilibria in the normal form. Indeed,

the persistence of non-isolated equilibria through all the normal forms may be con-

sidered as an indicator of integrability, although there is not a rigorous proof of

this fact. In this context, we conjecture that when (β̂, δ̂) = (1,−1) and a5 = 3a10,

the family of Hamiltonians given by (5) is integrable. More specifically, this family

becomes

H1(q) = a10z
[
3(x2 + y2) + z2

]
, H2(q) = b15

[
(x2 + y2)2 + 6z2(x2 + y2) + z4

]
.

6. Reconstruction from the twice reduced space

6.1. Invariant 3-tori related with elliptic points of TL,N . In this subsection

we reconstruct the KAM tori of Hamiltonian (6) associated to the relative equilibria

of the twice reduced system that are non-degenerate centres. For each relative

equilibrium of the system defined by Hamiltonian (56) there is a Cantor family

of KAM 3-tori for Hamiltonian function (6) provided the relative equilibrium is

of elliptic type and non-degenerate. These equilibria can correspond to regular or

singular points in the surface TL,N . As an example of a regular point, we choose

P2 = (0, 2|σ|, 0), with 0 < |σ| < 1. This point is a relative equilibrium when

α̃ = 0 and is of centre type except for 2|σ|δ̃ + β = 0. An example of a singular

point is P1 = (0, 2, 0), which is a stable point for |α̃|
√

1− σ2 < |β + 2δ̃|. In both

cases we establish the existence of families of 3D KAM tori for the full system
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defined from (6). We do not consider the rest of the cases because the treatment is

analogous.

Theorem 6.1. The following holds for the points P1 and P2:

(i) Regarding the relative equilibrium P2 = (0, 2|σ|, 0) with 0 < |σ| < 1, when

α̃ = 0, 2|σ|δ̃ + β 6= 0 and βd5 6= 0, there are families of KAM 3-tori

that are filled up by quasi-periodic solutions of Hamiltonian (6). These

motions have an argument of pericentre g near 0, inclination with re-

spect to the Oxy-plane near arccos(
√
|σ|/(2− |σ|)) and eccentricity near√

2(1− |σ|)/(2− |σ|).

(ii) Regarding the relative equilibrium P1 = (0, 2, 0), when |β + 2δ̃| 6= |α̃| and

d5 6= 0 then if |α̃|
√

1− σ2 < |β + 2δ̃|, there are families of KAM 3-tori

filled up by near equatorial quasi-periodic solutions of the full system defined

through Hamiltonian (6). When N ≈ 0 these quasi-periodic motions are of

near rectilinear-equatorial type.

In both cases the measure of the excluded set of the KAM tori is of order O(εµ)

with 0 < µ < 1/5.

Proof (i) As a set of action-angle coordinates to study the point P2 we choose

nodal-Lissajous variables (`, g, ν, L,G,N), see [30]. Then, we start by expressing

Hamiltonian (59) in these variables. The Hamiltonian depends on the coordinate g

and the momenta (L,G,N). The coordinates of the equilibrium in the (g,G) vari-

ables are (g0, G0) = (0,
√

(2L− |N |)|N |). Then, in order to perform a local study

of the Hamiltonian function around this equilibrium we introduce new coordinates

(ḡ, Ḡ) and apply the symplectic transformation with multiplier ε:

g = ε1/2ḡ, G =
√

(2L− |N |)|N |+ ε1/2Ḡ.

Then, we expand the Hamiltonian in powers of ε, ending up with

εK(ḡ, Ḡ) =
4|N |
L

(β + 2δ|N |) + εK0(ḡ, Ḡ) +O(ε2),
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where

K0(ḡ, Ḡ) =
8(β + 4δ|N |)(L− |N |)2

(2L− |N |)L
ḡ2 +

2(β + 4δ|N |)(2L− |N |)
(L− |N |)2L

Ḡ2.

Now we define convenient action-angle variables (φ, J) with the aim of making

K0(ḡ, Ḡ) proportional to the action J . We set

ḡ =

√
J
√

2L− |N |
L− |N |

sinφ, Ḡ =
2
√
J(L− |N |)√
2L− |N |

cosφ,

getting

εK(φ, J) =
4|N |
L

(β + 2δ|N |) + 8ε
J

L
(β + 4δ|N |) +O(ε2).

At this step we should reverse the operations that made possible the transforma-

tion from Hε to K. First, we have rescaled time to pass from Hamiltonian (56)

to Hamiltonian (59). So, we undo the rescaling by multiplying K(φ, J) by L/2.

Now, Hamiltonian (56) is the expression of the twice reduced Hamiltonian after

simplification of the constant terms and rescaling. So, we add these constant terms

and rescale conveniently, arriving at

εHε = L+ ε2

2 [4(d1 + d2)L2 + d5N
2] + ε3

4 LK(φ, J).

Next, we rescale time again getting

Hε = L+ ε2

2

[
4(d1 + d2)L2 + d5N

2 + 2|N |(β + 2δ|N |)
]

+ 2ε3(β+ 4δ|N |)J +O(ε4).

In terms of the di, taking into account that α̃ = 0 implies d4 = d3, Hamiltonian Hε

reads as

Hε = h0(L) + ε2h1(L,N) + ε3h2(L,N, J) +O(ε4)

where

h0 = L,

h1 = 1
2

[
4(d1 + d2)L2 − (2d3 − d5)N2 − 2(d2 − d3)L|N |

]
,

h2 = −2 [(d2 − d3)L+ 2d3|N |] J.
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Now, we apply Han, Li, Yi’s Theorem with a = 2, n0 = 1, n1 = 2, n2 = 3, m1 =

2, m2 = 3, yn0 = L, yn1 = (L,N), yn2 = (L,N, J). The vector of frequencies has

dimension 3 and is given by

Ω(L,N, J) =
(
1, 2(2d3 − d5)N ∓ 2(d2 − d3)L,−2(d2 − d3)L− 4d3|N |

)
.

Now we construct the 3 × 4 matrix whose columns are Ω, ∂Ω/∂L, ∂Ω/∂N and

∂Ω/∂J . When (d2− d3)d5 6= 0 the rank of the matrix is 3. (We stress that d2 6= d3

is equivalent to β 6= 0.) Therefore, Han-Li-Yi’s Theorem guarantees the existence

of KAM tori of dimension 3. Setting b =
∑a
j=1mj(nj−nj−1), we obtain b = 5. The

maximum order of the partial derivatives involved in the computation of the 3× 4

matrix is s = 1. As the perturbation is in an order O(ε4) and εsb+µ = ε5+µ < ε4,

(for a pre-fixed small positive constant µ < 1/5), the excluding measure for the

existence of the quasi-periodic invariant tori is of order εµ/s = εµ.

In order to obtain the geometric features of the quasi-periodic motions we take

into account that the equilibrium point in nodal-Lissajous coordinates is g0 = 0

and G0 =
√

(2L− |N |)|N |, from where one deduces the inclination angle and the

eccentricity of the trajectories. See more details in [30, 70].

(ii) Invariant 3-tori related with equatorial motions. Our goal is to establish the

existence of KAM tori of dimension three associated to the singular equilibrium

point (0, 2L, 0) (or P1 = (0, 2, 0) in the coordinates τ̃1, τ̃2 and τ̃3) in the twice-

reduced TL,N . This point represents a family of equatorial orbits when N 6= 0

and a family of rectilinear equatorial orbits when N = 0. In what follows we will

proceed as in[56], first we find symplectic coordinates x, y such that the normal form

Hamiltonian (56) is written in terms of the new variables (and in terms of L and

N) and we can apply Han-Li-Yi’s Theorem. As we are working in a neighborhood

of the point (0, 2L, 0) we introduce functions f1(x, y, L,N), and f2(x, y, L,N) to be
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determined such that the transformation

τ1 = f1(x, y, L,N), τ2 = f2(x, y, L,N), τ3 =
√

(2L− f2)2(f2
2 − 4N2)− f2

1 ,

where we have used the constraint of (51) to put τ3 in terms of f1 and f2, be

symplectic. Replacing the Poisson brackets between the τi given in Table 3 in

terms of x and y and taking into account that we are imposing {x, y} = 1 we build

three partial differential equations (one for each Poisson bracket) whose unknowns

are f1 and f2. Out of the three equations there is an essential expression that has

to be zero, the other equations being redundant. The relevant equation is

4
√

(2L− f2)2(f2
2 − 4N2)− f2

1 +
∂f1

∂x

∂f2

∂y
− ∂f1

∂y

∂f2

∂x
= 0.

Next, we select a convenient value for f2. In fact we take f2 = 2L − x2 − y2 and

solve for f1, getting

f1(x, y, L,N) = 2xy
√

(2L− x2 − y2)2 − 4N2.

We note that x = y = 0 implies f1 = 0, f2 = 2L and τ1 = τ3 = 0 while τ2 = 2L.

Once f1 and f2 are calculated the final change is

(82)

τ1 = 2xy
√

(2L− x2 − y2)2 − 4N2,

τ2 = 2L− x2 − y2,

τ3 = (y2 − x2)
√

(2L− x2 − y2)2 − 4N2.

The equation τ2 = 2L − x2 − y2 represents the local regular surface around the

equilibrium x = y = 0 in the space xyτ2, which means that (0, 2L, 0) is a regular

point in this chart. In particular when N = 0 the above transformation reduces to

τ1 = 2xy(2L− x2 − y2), τ2 = 2L− x2 − y2, τ3 = (y2 − x2)(2L− x2 − y2).

Now, Hamiltonian (56) is put in terms of x and y using (82). Next we scale x and

y by doing (x, y) = ε1/2(x̄, ȳ), multiply K by the multiplier ε−1 and Taylor expand
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the result around ε = 0. One obtains

εK(x̄, ȳ) = 4(β + 2δL)− 2ε

L

[
(β + 4δL)(x̄2 + ȳ2)− 4α

√
L2 −N2x̄ȳ

]
+O(ε).

At this point we should prepare the Hamiltonian to apply a KAM-type theorem.

For this purpose, we introduce adequate action-angle variables (ϕ, J). After some

manipulations we define the transformation:

x̄ = −21/2

√
|β + 4δL|J√

β2 + 8βδL+ 4[4δ2L2 + α2(N2 − L2)]
cosϕ,

ȳ = ∓23/2α

√
(L2 −N2)J

|β + 4δL|
√
β2 + 8βδL+ 4[4δ2L2 + α2(N2 − L2)]

cosϕ

+21/2

√√
β2 + 8βδL+ 4[4δ2L2 + α2(N2 − L2)]J

|β + 4δL|
sinϕ,

where the upper sign applies for β+4δL > 0 and the lower sign applies for β+4δL <

0. Since the restriction |α̃|
√

1− σ2 < |β+2δ̃| is equivalent to β2 +8βδL+4[4δ2L2 +

α2(N2 − L2)] > 0, this change is well defined. Thus the Hamiltonian (56) in the

action-angle coordinates becomes

εK(φ, J) = 4(β + 2δL)∓ 4ε
J

L

√
β2 + 8βδL+ 4[4δ2L2 + α2(N2 − L2)] +O(ε2).

In the next step we should reverse the operations that passed from Hε to K and

express the Hamiltonian in action-angle type coordinates. So, we undo the rescaling

by multiplying K(φ, J) by L/2, add 4(d1 + d2)L2 + d5N
2 and rescale time by

multiplying the Hamiltonian by ε2/2 and add L. The resulting Hamiltonian is

εHε = L+ ε2

2 [4(d1 + d2)L2 + d5N
2] + ε3

4 LK(φ, J)

Finally, we rescale time again and replace the values of the parameters α, β and δ

in terms of the di, getting

Hε = h0(L) + ε2h1(L,N) + ε3h2(L,N, J) +O(ε4)
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where

h0 = L,

h1 = 1
2

[
2(2d1 + d2)L2 + d5N

2
]
,

h2 = ∓ 1
2

√
4(d2 + d3)(d2 + d4)L2 + (d3 − d4)N2J.

Now we apply Han-Li-Yi’s Theorem with a = 2, m1 = 2, m2 = 3, n0 = 1, n1 = 2,

n2 = 3, yn0 = ŷn0 = L, yn1 = (L,N), yn2 = (L,N, J), ŷn1 = N and ŷn2 = J . One

gets

Ω(L,N, J) =
(

1,−d5N,∓ 1
2

√
4(d2 + d3)(d2 + d4)L2 + (d3 − d4)2N2

)
,

and for d5 6= 0, d2 + d3 6= 0 and d2 + d4 6= 0, the matrix of order 3× 4 whose rows

are Ω, ∂Ω/∂L, ∂Ω/∂N and ∂Ω/∂J has rank three, leading to the existence of the

invariant tori of dimension three. According to [39] the excluding measure for the

existence of these invariant tori is of order O(εµ) with 0 < µ < 1/5. Notice that

(d2+d3)(d2+d4) = α̃2−(β+2δ̃)2 from where one deduces that (d2+d3)(d2+d4) 6= 0

is the same as |α̃| 6= |β + 2δ̃|.

The computations carried out are valid for all N , thus we can conclude that the

KAM 3-tori also exist for N near zero.

6.2. Dynamics on the full Hamiltonian obtained from TL,N . Some informa-

tion on the dynamics of Hamiltonian system associated to (6) has been obtained

from the analyses performed in the spaces Mγ and CP2
h, in particular about the

existence of periodic solutions and KAM 3-tori. Now we state a result regarding

the dynamics of (6) related with the reconstruction from the twice reduced space.

Theorem 6.2. Given the parametric Hamiltonian (6), for a sufficiently small ε >

0, we get:

(i) The relative equilibria of the system defined by Hamiltonian (56) give rise

to families of invariant 2-tori in T ∗R3 of the Hamiltonian system associ-

ated to (6) except the equilibrium point (0, 0, 0) which leads to families of

periodic solutions that are close to rectilinear in the OzZ-plane. In case of
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non-degeneracy the linear stability character of the 2-tori (or the rectilinear

periodic solutions) coincides with the stability of the equilibria they come

from.

(ii) The bifurcations of the relative equilibria of Hamiltonian (56) give rise to

bifurcations involving families of invariant 2-tori (and some periodic solu-

tions when the equilibrium point is P2 = (0, 0, 0)) for the system related to

Hamiltonian (6).

(iii) The elliptic relative equilibria of the system defined by Hamiltonian (56)

give rise to Cantor families of KAM 3-tori for Hamiltonian function (6)

provided they are of non-degenerate nature.

Proof

(i) We could have performed the normalisation process of Section 4 working

directly in Mγ with the invariants ij , transforming Hamiltonian (10) into

normal form and reducing it again, after truncation of higher order, leading

also to Hamiltonian (56) since the diagram 1 commutes. This was indeed

done in [31]. Then, by Reeb’s Theorem [62, 71], non-degenerate critical

points of TL,N are reconstructed as families of periodic solutions in Mγ

provided the non-degeneracy conditions on the relative equilibria in Section

5 hold. This is also satisfied for the origin of the lemon, i.e. the point P2 =

(0, 0, 0), which is reconstructed as a family of periodic solutions of rectilinear

polar type, which is realised in the points of the form (0, 0, 0, i5, i6) ofM0.

Note that indeed it is the subspace of singular points of Mγ . Finally, in

all cases, the linear stability character of the periodic solutions is inherited

from the (linear) stability of the critical points when the eigenvalues of their

corresponding linearisations do not vanish.

Next, by undoing the axial symmetry reduction, each family of periodic

solutions in Mγ , except for the ones related to (0, 0, 0, i5, i6) (where in
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addition γ = 0), is transformed into a family of tori of dimension 2 in

T ∗R3. The linear stability of the invariant 2-tori is the same as the linear

stability of the periodic solution in Mγ . On the other hand, the points in

the singular subspace ofMγ are reconstructed to rectilinear motions in the

OzZ-plane in the space T ∗R3. In this case one obtains periodic solutions

nearly rectilinear for Hamiltonian (6), because of the truncation of higher

order terms due to the normal form computation.

Alternatively we can reconstruct the point P2 = (0, 0, 0) passing firstly

to the space CP2(h). Indeed its antiimage of the axial symmetry map is

the point OR since the passage from CP2(h) to TL,N fixes the OzZ-plane.

Thus, we apply Reeb’s Theorem to OR, getting families of periodic solu-

tions that are nearly rectilinear for the Hamiltonian (6). This is indeed

Theorem 4.2.

(ii) There is only one bifurcation that exclusively involves regular points in

TL,N . It is the centre-saddle or Hamiltonian saddle-node bifurcation corre-

sponding to the blue surface in Figure 6, see Section 5.5). A centre-saddle

bifurcation associated to non-degenerate critical points of TL,N is recon-

structed to a centre-saddle bifurcation of families of periodic orbits in Mγ

and to a quasi-periodic centre-saddle bifurcation of families of 2-tori in

T ∗R3, see [16, 57].

The Hamiltonian flip bifurcations established in Theorem 5.4 are re-

constructed as period-doubling bifurcations in CP2(h): a periodic solution

becomes unstable (or stable) and gives rise to a stable (or unstable) periodic

solution of twice its period. They are quasi-periodic Hamiltonian flip (or

frequency halving) bifurcations involving invariant 2-tori in T ∗R3 for the

full system. The description of them is the same as the one made in [31].

The degenerate case of this bifurcation, that we have found in the region
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(∪2
j=1N j

σ)∩L′σ, is reconstructed as a degenerate quasi-periodic Hamiltonian

flip bifurcation of invariant 2-tori in T ∗R3, see more details in [40].

Supercritical and subcritical non-degenerate and degenerate Hamilton-

ian Hopf bifurcations take place in TL,N , see Theorem 5.5. When recon-

structing to the full Hamiltonian (6), for the interpretation of the occurring

bifurcations, one replaces the families of periodic solutions and their sta-

bility by families of invariant 2-tori and periodic solutions (when they are

related to the point P2) and their stability. See also the descriptions made

in [41, 42]. We stress that the last step to recover the bifurcations involving

the 2-tori is straightforward because the axial symmetry is exact and no

truncation of higher-order terms is needed at this point. This makes its

analysis a bit easier than that made by Broer et al [5].

(iii) This is indeed Theorem 6.1 and we have proved the existence of KAM 3-tori

in two cases, the remaining cases being similar.

7. On the dynamics of non-axially symmetric Hamiltonian systems

So far we have studied the case of an isotropic 3D Hamiltonian with axially

symmetric perturbations. However we can apply some of the results of the previous

sections to perturbations of the type (4) provided the parameters ai, bi satisfy some

conditions. The main result in this direction is collected in the following theorem,

where we establish the existence of many quasi-periodic solutions for non-axially

symmetric perturbations of Hamiltonian systems in 1:1:1 resonance.

Theorem 7.1. Given the parametric Hamiltonian (6) where the higher order terms

are (4), for a sufficiently small ε > 0:

(i) Whenever the parameters ai and bi satisfy the conditions of Table 4, then

Hamiltonian Hε can be reduced by the oscillator and the axial symmetries
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up to terms of order 2 in ε and the corresponding twice reduced Hamiltonian

can be written as

(83) Kε = α∗τ1 + β∗τ2 + δ∗τ2
2 +O(ε2)

for some coefficients α∗, β∗ and δ∗ that depend on L, N , aj and bk. Thus,

the results established in Section 5 apply to Hamiltonian system (83) after

replacing α by α∗, β by β∗ and δ by δ∗.

(ii) Associated to each relative equilibrium of the system defined by Hamilton-

ian (83) there is a family of KAM 3-tori for Hamiltonian function (6) with

perturbation (4) provided the relative equilibrium is of elliptic type and non-

degenerate.

Proof To prove (i) one starts by normalising the Hamiltonian related to (6) and (4)

up to quartic terms in the coordinates q = (x, y, z) and p = (X,Y, Z), that is, by

performing two steps in the Lie-Deprit method. The resulting Hamiltonian does

not enjoy the axial symmetry, in general. Then we compute the Poisson bracket

of the normalised quartic terms and xY − yX, yielding a homogeneous polynomial

of degree four in q and p. Next we impose this expression to be zero, resulting

in 28 conditions that the coefficients ai and bj have to verify. All these equations

are linear in bi, quadratic in aj and homogeneous. Thus, we can treat them as an

overdetermined linear system with 28 equations in the 15 unknowns bi whereas the

quadratic terms in the ai are treated as the independent terms. One checks that

the rank of the (numeric) matrix involving the coefficients of the bi is 12 whereas

the rank of the augmented matrix involving the independent terms can be 12 or 13.

Applying Gaussian elimination we put the system in row echelon form concluding

that the rank of the augmented matrix is 12 if and only if three relations among

the ai hold. In addition, one can put twelve of the fifteen bi in terms of the aj and

the three remaining bk. The resulting conditions appear in Table 4.
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b1 = 1
18

(
45a2

1 + 5a2
2 − 5a2

3 − 45a2
4 + 5a2

5 − 5a2
7 + 18b5

)
,

b2 = 5
9 (6a1a2 + 2a2a3 + a5a6),

b3 = 1
18

(
30a1a3 + 20a2

2 + 30a2a4 + 10a2
3 − 90a2

4 + 10a5a7 + 5a2
6 − 10a2

7 + 36b5
)
,

b4 = 5
9 (2a2a3 + 6a3a4 + a6a7),

b6 = 5
9 (6a1a5 + a2a6 + 2a5a8),

b7 = 5
3 (2a2a5 + a3a6 + a6a8),

b8 = 5
3 (2a3a5 + 3a4a6 + 2a7a8),

b9 = 5
9 (a3a6 + 6a4a7 + 2a7a9),

b11 = 5
3 (2a2a8 + 2a3a9 + 3a6a10),

b12 = 1
3

(
−5a2

5 + 5a2
7 − 5a2

8 + 5a2
9 + 3b10

)
,

b13 = 5
9 (2a5a8 + a6a9 + 6a8a10),

b14 = 5
9 (a6a8 + 2a7a9 + 6a9a10),

3a1a6 − 2a2a5 + 2a2a7 − a3a6 + 2a5a9 − a6a8 = 0,

a2a6 − 2a3a5 + 2a3a7 − 3a4a6 − 2a7a8 + a6a9 = 0,

2a2a8 + 2a3a9 − a5a6 − a6a7 + 3a6a10 − 2a8a9 = 0.

Table 4. The relations among the parameters aj , bj to obtain the
normal form with axial symmetry. There are fifteen independent
constraints out of the 25 coefficients.

Table 3 of reference [34] also provides conditions to get a normal form Hamil-

tonian which is axially symmetric up to terms of degree four in q and p. However,

these conditions that were obtained using nodal-Lissajous coordinates are a bit

more involved than the ones of Table 4.

The twice reduced Hamiltonian Kε is obtained as follows. First, we reduce the

normal form Hamiltonian by the oscillator symmetry using the method described

in Section 4, that is, performing the division algorithm for multivariate polynomials

with respect to the Gröbner basis of the invariants ρi together with their relations,

arriving at a Hamiltonian written exclusively in terms of the ρi. This step is

achieved for arbitrary ai, bj . The second reduction process can be carried out

only when the combinations of the parameters appearing in Table 4 hold. From

this table, it is readily deduced that the bi can be put in terms of the aj and b5,

b10 whereas b15 is free. The three equations involving the ai but not the bj are
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now solved, getting six solutions. This leads to six different possibilities for the

Hamiltonian function in CP2
h. For each of the six possible reduced Hamiltonians

we apply the method of Section 5 to reduce them by the axial symmetry, ending

up with six Hamiltonians written always in terms of τ1, τ2 and τ2
2 with coefficients

α∗, β∗ and δ∗ depending on the parameters ai, bj , L and N .

The results on the equilibrium points, stability and bifurcations obtained in Sec-

tion 5 apply now to Hamiltonian (83) if one replaces α, β and δ by α∗, β∗ and δ∗

for the six possible situations. Thus, one obtains information of the dynamics of

Hamiltonian (6) with the perturbation given in (4) and the coefficients satisfying

the conditions of Table 4 using the information on the dynamics from the twice

reduced Hamiltonian Kε. Two exceptions to this are the degeneracies observed

in (60) when α̃ = β = δ̃ = 0 and the degenerate Hamiltonian Hopf bifurcations of

Theorem 5.5 since then higher order terms of the normal form are used. In this case

one should carry out the calculations of this section to order four in ε, imposing

more conditions on the coefficients ai, bj to get axially symmetric normal forms

with the aim of resolving the existing degeneracies.

To achieve the proof of (ii), we select all possible equilibria in TL,N that are

elliptic points (non-degenerate centres) and apply the results of Subsection 6.1

where instead of considering the parameter α, β and δ one uses α∗, β∗ and δ∗ for

the six different versions of them.

Remark 11. The previous theorem is also satisfied if the conditions of Table 4 are

only approximately true. Notice that in this case one can arrange the Hamiltonian

so that up to terms of order ε2 it is axially-symmetric while the higher-order terms

break this symmetry. Then the class of Hamiltonians that satisfies the previous

theorem concerns a large open subset of the parameters’ set.

Remark 12. Apparently, the restrictions given in Table 4 are not equivalent to

those appearing in [34]. It is not easy to establish a connection between them.
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Perhaps one could build a Gröbner basis trying to reduce the conditions of Table 3

in [34] to the ones we have obtained here but it is not immediate and is out of the

scope of this paper.

8. Conclusions

In this paper we generalise the work on the 1:1:1 resonance initiated in [16]

and [31] applying singular reduction theory and the invariants of the different reduc-

tions. Preliminary studies indicate that the results obtained here can be extended

to the 1:−1:1 resonance [66].

We perform a detailed analysis in three different reduced spaces, reconstruct-

ing the dynamics of the full problem in the three cases. In this respect our study

presents novelties compared to previous approaches on the same topic, both re-

garding the conclusions on the dynamics of the full system and the methodology

applied.

We introduce two sets of rectangular symplectic coordinates in CP2
h that allow

us to make a local study of the relative equilibria straightforwardly, shortening the

treatments of previous works. Similarly we have defined new sets of symplectic

coordinates in Mγ and in TL,N . In general, the use of these variables simplifies

considerably previous approaches whose purposes were the analysis of the neigh-

bourhoods of different types of relative equilibria.

The study of the flow in TL,N involves three parameters and this leads to a

reduced system with a rich dynamics where the parametric bifurcations are two-

dimensional surfaces. The reconstruction of the dynamics from the twice-reduced

space accounts for the existence of invariant 2-tori and KAM 3-tori for the full

Hamiltonian. Besides, the parametric bifurcations associated to the relative equi-

libria translate to bifurcations of 2-tori in T ∗R3.

The analysis carried out in Section 5 can be applied to systems that are not

axially-symmetric but whose second order normal form in ε enjoys this symmetry.

For these Hamiltonians the existence of the KAM tori that has been established for
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the axially-symmetric Hamiltonians remains valid, enlarging therefore the KAM-

type analysis performed in the paper to a large class of Hamiltonians enjoying the

1:1:1 resonance.

Hamiltonian Hopf bifurcations have been determined in Section 5. The degen-

erate cases of this bifurcation are related to the integrability of some families of

potentials in 1:1:1 resonance. In this respect we have found a family of systems

that could be integrable. This family contains the integrable case studied in [31].

The application of the KAM theorem by Han, Li and Yi is crucial to prove the

existence of the different types of KAM 3-tori due to the high degeneracy of the

Hamiltonian system. Moreover, an interesting issue to deal with in future is the

proof of the persistence of lower dimensional tori in this context of high degeneracy.

Finally, the use of tools from computer algebra, such as the Gröbner bases and

the division algorithm for multivariate polynomials, has been essential in order to

handle the large symbolic expressions appearing in the computations.
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tive equilibria on the example of a tetrahedral four atom molecule, SIAM J. Appl. Dyn. Syst.

3 (3) (2004), 261–351.

[25] J. Egea, S. Ferrer, and J.-C. van der Meer, Hamiltonian fourfold 1:1 resonance with

two rotational symmetries, Regul. Chaotic Dyn. 12 (6) (2007), 664–674.

[26] J. Egea, S. Ferrer, and J.-C. van der Meer, Bifurcations of the Hamiltonian fourfold 1:1

resonance with toroidal symmetry, J. Nonlinear Sci. 21 (6) (2011), 835–874.

[27] A. Elipe, Extended Lissajous variables for oscillators in resonance, Math. Comput. Simula-

tion 57 (3-5) (2001), 217–226.

[28] D. Farrelly, J. Humpherys, and T. Uzer, Normalization of resonant Hamiltonians, in

Hamiltonian Mechanics, J. Seimenis, ed., Plenum Press, New York, 1994, pp. 237–244.

[29] D. Farrelly, and T. Uzer, Normalization and the detection of integrability: The generalized

van der Waals potential, Celestial Mech. Dynam. Astronom. 61 (1) (1995), 71–95.
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