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Abstract

The goal of this paper is to investigate the e↵ects that the replacement of the Coulomb potential

by a soft-core Coulomb potential produces in the classical dynamics of a perturbed Rydberg hy-

drogen atom. As example, we consider a Rydberg hydrogen atom near a metal surface subjected

to a constant electric field in the electron-extraction regime. Thence, the dynamics of the real

perturbed Coulomb system, studied by applying the Levi-Civita regularization, is compared with

that of the softened one. The results of this study show that the global behavior of the system is

significantly altered when the original Coulomb potential part is replaced by a soft-core potential.
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I. INTRODUCTION

The behavior of Rydberg atoms exposed to external fields is one of the fundamental

problems in physics. Except for the hydrogen atom, where the atomic potential is given

by a pure Coulomb potential, the interaction between the outer electron and the ionic

core in nonhydrogenic Rydberg atoms is frequently described by means of Coulomb-like

pseudopotentials. In general, these pseudopotentials are made of a pure Coulomb poten-

tial amended with suitable angular-dependent terms (see e.g. [1–5]), whose parameters are

fitted to reproduce the field-free energy levels of the atom and thence the corresponding

empirical quantum defect. A quite di↵erent approach to nonhydrogenic atoms is based on

the so-called soft-core Coulomb potentials [6–9]. These potentials are built by introducing a

parameter a in the pure Coulomb potential 1/r, such that it becomes 1/
p
r2 + a2, and where

the value of the softening parameter a is adjusted to described the particular atom under

investigation [10, 11]. Although soft-core Coulomb potentials have been applied to study

diverse physical phenomena as inverse bremsstrahlung heating in laser-matter interactions

[12] or plasma excitations of a Coulomb gas [13], its most frequent application has been

in strong field physics [14, 15]. Indeed, soft-core Coulomb potentials are used to construct

one-dimensional atomic models to study single [15, 16] and double [17–21] photoinduced

ionization processes. A similar approach to soft-core Coulomb potentials was presented in

[22]. In that paper, the ionic core was modeled by adding a suitable term to the Coulomb

potential that was appropriately adjusted to reproduce the corresponding quantum defect.

Using this modified potential and the semiclassical closed-orbit theory [23–25], the authors

were able to reproduce with accuracy the photoabsorption spectra of helium in a magnetic

field.

From the point of view of the nonlinear dynamics, several classical studies [10, 11, 26]

using soft-core Coulomb potentials have obtained a remarkable success in the explanation

of the experimental behavior of the double ionization probability versus the field intensity

of atoms in the presence of linearly or circularly polarized laser fields [27–29]. In particular,

Kamor et al. [26] and Mauger et al. [10] showed that the remarkable di↵erences encountered

in those experimental results, which depend on the atom used, can be explained by a suitable

selection of the value of the softening parameter a.

As a result of the success of the combined used of nonlinear mechanics and a soft-core
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Coulomb potential, we address in this paper the study of the possible e↵ects that the appli-

cation of the later can produce in the global classical dynamics of a hydrogenic system. In

other words, we investigate the e↵ects of the soft-core approximation when it is applied be-

yond one-dimensional atoms. In addition, this investigation is also motivated by the results

of Santoprete and Stoica in their study on the phase space flow in smoothed central field

problems 1/r↵, ↵ > 0 [30]. Indeed, these authors showed that, outside the collision manifold

and for ↵ < 2 which includes the Coulomb case, the system dynamics given by both the real

and the soft-core potentials are equivalent. With these conclusions in mind, in the present

work we focus on the study of the e↵ect that a soft-core potential can produce in the global

dynamics of a perturbed Coulomb system. In particular, we concentrate on the dynamics of

a Rydberg hydrogen atom near a metal surface subjected to a constant electric field in the

electron-extraction regime [31, 32]. Thence, we compare the results obtained in the study of

the classical dynamics of this perturbed Rydberg system when the atom is modeled using a

pure Coulomb term, to the results when a soft-core approximation for the atomic potential

is used. When dealing with the pure Coulomb term, we apply the Levi-Civita regularization

technique [33] in order to elude the numerical troubles related to the potential divergence

at the origin.

The paper is organized as follows. In Sec. II, the system object of study is described. The

main features of the real potential and its soft-core approximation are also provided. The

next section is devoted to study, in a comparative way and as a function of the parameters of

the system, the dynamics of the Rydberg hydrogen atom using both versions of the potential.

To this end, we use Poincaré surfaces of section in the low energy regime. Sec. IV is focussed

on the ionization dynamics of the Rydberg atom in the high energy regime. Finally, the

conclusions are presented in Sec. V. Atomic units are used throughout the paper.

II. RYDBERG HYDROGEN ATOM NEAR A METAL SURFACE

We consider the classical motion of an electron in a Coulomb field created by an infinitely

massive nucleus of charge e > 0 located at the origin of a reference frame XY Z. A plane

metal surface perpendicular to the Z-axis is located at z = �d. Besides, a uniform constant

electric field of strength f is applied along the Z-axis. As the system has axial symmetry

around the Z-axis, the use of cylindrical variables (⇢, z,�, P⇢, Pz, P�) is convenient. The

3



Hamiltonian H (i.e. the energy E) of the electron expressed in these variables and in atomic

units is given by

E ⌘ H =
P 2
⇢ + P 2

z

2
+ U(⇢, z), (1)

where

U(⇢, z) =
P 2
�

2⇢2
� 1p

⇢2 + z2 + a2
+ fz +

1p
⇢2 + (2d+ z)2

� 1

4(d+ z)
. (2)

The second term of the e↵ective potential U(⇢, z) stands for the Coulomb interaction between

the electron and the nucleus. For the sake of completeness, in this term we have introduced

the soft-core parameter a, such that, when a = 0, we have the real Coulomb potential.

When the soft-core model is considered, the typical values for a are in the range 0.8  a  2

[15]. In particular, we use in this paper the value a = 2. The last two terms of the potential

(2) account for the electric image model describing the interaction of the electron with the

metal surface. For more details on the model, we refer the reader to [34].

Due to the axial symmetry of the system, the z component P� of the angular momentum

is conserved and (1) defines a two-degree-of-freedom dynamical system. Then, the dynamics

of the electron depends on four parameters: the energy of the system E = H, P�, and the

external parameters d and f . In this paper, we restrict ourselves to the case P� = 0, so that

the number of parameters reduces to three: E = H, d and f . We restrict to the case P� = 0

because for P� 6= 0 the infinite well of the real e↵ective potential located at the origin no

longer exists. Instead of it, the real e↵ective potential presents a finite potential well located

outside the origin. Therefore, in the case P� 6= 0 there is no need to apply any softening

to the potential. In this study we are interested in the e↵ects that softening can create on

the dynamics of this system. This model has already been studied by the authors applying

regularization to the real Coulomb potential, a = 0 [31, 32].
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A. Particular solutions: Rectilinear orbits along the Z-axis

The equations of motion of Hamiltonian (1) for P� = 0 are

d⇢

dt
= P⇢,

dz

dt
= Pz,

dP⇢

dt
=

⇢

((2d+ z)2 + ⇢2)3/2
� ⇢

(⇢2 + z2 + a2)3/2
, (3)

dPz

dt
=

2d+ z

((2d+ z)2 + ⇢2)3/2
� 1

4(d+ z)2
� f � z

(⇢2 + z2 + a2)3/2
,

It is straightforward to show that rectilinear orbits along the Z-axis are particular solutions

of the equations of motion (3). For historical reasons, we name these rectilinear orbits as

Iz [35]. There is a significant di↵erence in the nature of Iz depending upon the system is

whether or not softened. Indeed, when a = 0 it is well known that solutions Iz are made

of two disjoint families of trajectories along the positive Z-axis (I+z ) and along the negative

Z-axis (I�z ), respectively (see e.g.[32]). These two families are kept apart by the Coulomb

singularity. However, when a 6= 0, the Coulomb singularity is removed and the electron can

pass through the origin, such that the solutions Iz belong to a unique family of trajectories

along the Z-axis. As we will see shortly, this di↵erence in the nature of Iz will have an

important impact on the global dynamics of the system.

B. The critical points of the e↵ective potential U(⇢, z)

When the electric field is directed to the metal surface (f < 0), the e↵ective potential

U(⇢, z) presents two saddle points in both the real Coulomb potential (a = 0) and its soft-

core approximation (a 6= 0). One of these saddle points is located in the negative part of the

Z-axis, S� ⌘ (⇢, z) = (0, z�sp) with z�sp 2 R�, and the other one is located in positive part of

the Z-axis, S+ ⌘ (⇢, z) = (0, z+sp) with z+sp 2 R+. Theses saddle points are the two possible

ionization channels of the atom for high enough values of the energy. The saddle point S� is

the potential barrier that the electron must overcome to be captured by the metal surface.

On the other hand, the saddle point S+ is the opposite potential barrier through which the

electron can be dragged to the vacuum by the applied electric field.

Fig. 1 shows the curves of the e↵ective potential U(⇢, z) along the direction ⇢ = 0,

for several values of the metal-nucleus distance d and for a fixed electric field strength
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f = �5⇥ 10�6 a.u. In this figure, the solid lines correspond to the real Coulomb potential

(a = 0), and the dashed lines stand for the soft-core potential approximation (a = 2). As

it can be seen in this figure, for each metal-nucleus distance d, the curves of both versions

of the e↵ective potential do not present significant di↵erences for intermediate and large

values of z. Nevertheless, these curves start to di↵er for small values of ⇢ and z. Indeed,

Fig. 2 shows the curves of both versions of U(⇢ = 0, z) in the vicinity of the origin for

f = �5⇥ 10�6 a.u. and d = 300 a.u. In this figure it is clear that both potential curves are

di↵erent for |z| . 5 a.u.

d = 600 a.u. RP
d = 600 a.u. SP
d = 300 a.u. RP
d = 300 a.u. SP
d = 100 a.u. RP
d = 100 a.u. SP

U
(ρ

=
0,
z)

[a
.u

.]

z [a.u.]
800

FIG. 1. E↵ective potential curves U(⇢ = 0, z) corresponding to both versions of the potential for

several values of the metal-nucleus distance d. The labels RP and SP stand for real and soft-core

potentials, respectively. The electric field strength is fixed f = �5⇥ 10�6 a.u.

Fig. 1 also shows that, for a fixed value of the electric field strength, the metal surface

potential barrier decreases as the metal-nucleus distance d decreases. The opposite occurs

with the other potential barrier located at the positive side of the Z-axis. This behavior can

be seen in Fig. 3 which shows the evolution of the energies of the saddle points as a function

of the distance d for both versions of the e↵ective potential. It is worth to note that there is

no di↵erence between the evolution of the saddle energies in both versions of the potential.
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FIG. 2. E↵ective potential curves U(⇢ = 0, z) corresponding to both versions of the potential in

the vicinity of the origin for d = 300 a.u. and f = �5⇥ 10�6 a.u.
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FIG. 3. Evolution of the energies of the saddle points of both versions of the e↵ective potential

U(⇢, z) as a function of the distance d for f = �5⇥ 10�6 a.u.

III. PHASE SPACE STRUCTURE

As it is well known, the phase space structure provides most of the information about

the dynamics of a Hamiltonian system. In our case, the phase space of the two-degree-of-

freedom Hamiltonian (1) is four-dimensional, leading to a three-dimensional energy shell,
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such that we can use Poincaré surfaces of section (PSOS) to uncover its phase space structure.

Because we are considering the case P� = 0, the motion in Cartesian coordinates is planar

and equivalent to that on any plane containing the Z-axis. Thence, in order to cover the

motion on the whole orbital plane, we allow the coordinate ⇢ to take negative values. In our

problem a convenient plane for the Poincaré map is given by the intersection of the phase

space trajectories with the plane (z, Pz) for ⇢ = 0 and P⇢ � 0. Thus, the PSOS are limited

by the curves

Pz = ±
s

2

✓
1

4(d+ z)
� 1

2d+ z
+ E � fz +

1p
z2 + a2

◆
. (4)

Note that the rectilinear orbits Iz along the Z-axis are tangent to the phase flow in this

map. For a = 0, the curves (4) are singular when |z| ! 0, such that, the branch with z > 0

and the branch with z < 0 of (4) correspond to the families I+z and I�z , respectively. For

a 6= 0, the two branches (4) define a closed curve which corresponds to the (single) family

Iz.

In order to visualize the impact of the softening in the phase space structure of the

system, we compute PSOS by fixing the nucleus-metal distance d = 200 a.u. and the energy

E = �0.02 a.u., while the electric field value f is used as an external parameter ranging in

the interval �2 ⇥ 10�6 a.u.  f  0. When f = 0 and d ! 1, this energy corresponds

to the energy of an unperturbed hydrogen atom with principal quantum number n = 5.

Because the computation of PSOS requires the numerical integration of phase trajectories,

we elude the numerical problems involved with the Coulomb singularity when a = 0, by

applying the so-called Levi-Civita regularization [33]. This procedure consists in a change

of coordinates from the cylindrical ones (⇢, z) to a new set of (semiparabolic) coordinates

(u, v),

⇢ = u v, z = (u2 � v2)/2,

u = ±p
r + z, v = ±p

r � z.

(5)

Then, a new scaled time ⌧ , defined by d⌧ = dt/(u2 + v2), is introduced such that, after an

overall multiplication by u2 + v2, Hamiltonian (1) converts to the new Hamiltonian K,

K = 2 =
P 2
u + P 2

v

2
�E (u2+v2)+

2(u2 + v2)p
4d u2 v2 + (4 + u2 � v2)2

� u2 + v2

2(2d+ u2 � v2)
+
f

2
(u4�v4),

(6)
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where

Pu = vP⇢ + uPz, Pv = uP⇢ � vPz.

Thence, the regularized Hamiltonian (6) takes the constant value 2, the energy E appears

as a parameter in K, and the Coulomb singularity is avoided. Furthermore, when only the

electric field interaction is considered (d ! 1), we clearly observe in Hamiltonian K the

well known integrability behavior of the Stark e↵ect due to its separability in semiparabolic

coordinates. Note that this integrability is lost when a soft-core Coulomb potential is used

instead of the real one. The regularized equations of motion of Hamiltonian (6) are given

by

du

d⌧
= Pu,

dv

d⌧
= Pv,

dPu

d⌧
= �@K

@u
,

dPv

d⌧
= �@K

@v
, (7)

For more details about this change of variables, we refer the reader to [32, 33]. In this way,

once the numerical integration in semiparabolic variables (u, Pu, v, Pv) of a given trajectory is

performed, the trajectory in the original cylindrical coordinates is obtained by applying the

inverse transformation. Using the transformations (5), the Poincaré map ⇢ = 0 is equivalent

to the conditions u = 0 and/or v = 0 in regularized coordinates. Then, for the sake of

completeness, we will show the surface of section v = 0 in regularized coordinates when we

use the real Coulomb potential. On the other hand, when the soft-core approximation of the

Coulomb potential (a 6= 0) is used, the e↵ective potential U(⇢, z) no longer exhibits singular

points, so that, cylindrical coordinates are used during the numerical integration.

In Fig. 4 the surfaces of section ⇢ = 0 and v = 0 are depicted in cylindrical and regularized

coordinates respectively for the real (left panel) and for the softened (right panel) Coulomb

potentials when the electric field is zero. We observe that, in cylindrical coordinates, both

panels show the same qualitative structure. Indeed, the branch with z > 0 and the branch

with z < 0 of the limit (4) of the PSOS of Fig. 4(a) in cylindrical coordinates correspond

to the linear orbits I+z and I�z , respectively. In the regularized Poincaré map v = 0 of the

inset in Fig. 4(a), these rectilinear orbits I+z and I�z along the positive and the negative

Z-axis correspond to the limit of that regularized section and to its central stable fixed

point, respectively. On the other side, the limit of the section in Fig. 4(b) represents the

rectilinear orbit Iz. The KAM tori around these periodic orbits are filled in with librational
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FIG. 4. Poincaré surfaces of section (PSOS) ⇢ = 0 for f = 0: (a) Real Coulomb potential, (b)

soft-core potential (a = 2). The inset in the left figure is the Poincaré section v = 0 in regularized

coordinates. All sections are calculated for a nucleus-metal distance d = 200 a.u. and for an energy

E = �0.02 a.u.

quasiperiodic orbits mainly localized along the Z-axis. Note that these quasiperiodic orbits

connect, separately, the core with the distant phase space regions located at the positive

and the negative Z-axis. Moreover, in both sections in Fig. 4(a)-(b) two stable fixed points

appear located at the Pz = 0 axis, e.g. at the Pu = 0 axis in the regularized Poincaré map

of the inset of Fig. 4(a). We name these periodic orbits as C and they are almost circular

orbits travelled in opposite directions. The invariant tori around these elliptic points (stable

periodic orbits) are filled in with rotational quasiperiodic orbits with the same symmetry

pattern as C. The Poincaré map in regularized coordinates [see the inset in Fig. 4(a)]

also shows a separatrix passing through two unstable (hyperbolic) fixed points located at

the u = 0 axis. We name these hyperbolic points as I+⇢ and I�⇢ and they correspond to

(almost) rectilinear periodic orbits mainly aligned along the positive and the negative ⇢-axis

respectively. These hyperbolic points I±⇢ as well as the separatrix cannot be observed in

the cylindrical representation of the PSOS in Fig. 4(a) because the fixed points I±⇢ would

be located at z = 0, and when z ! 0 the Poincaré map in cylindrical variables becomes

singular. However, when the soft-core potential is used, the origin (⇢, z) = (0, 0) is not

singular and the periodic orbits I±⇢ appear as a single hyperbolic fixed point I⇢ at the origin
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FIG. 5. Periodic orbits: (a) Real Coulomb potential and (b) soft-core potential (a = 2). Dashed

lines indicate instability. All orbits are calculated for zero electric field, nucleus-metal distance

d = 200 a.u. and energy E = �0.02 a.u. The outer black lines correspond to the equipotential

curves with energy E = �0.02 a.u.

that corresponds to a single periodic orbit along the ⇢ axis. This unstable structure is

observed in the zoom of the inset of Fig. 4(b). All these periodic orbits I±z , C and I±⇢ , Iz

and I⇢ are depicted in Fig. 5. It is worth noting that, as a consequence of the softening most

of the phase space is filled in with rotational quasiperiodic orbits around the stable periodic

orbits C [see Fig. 4(b)]. In other words, the softened potential pushes most of the vibrational

orbits around Iz out of the phase space. Then, the aforementioned existing connection in

the real Coulomb potential between the core and the distant phase space regions along the

Z-axis is lost.

Now, when the electric field f is turned on, we study its impact on the structure of

the phase spaces of Fig. 4. Indeed, in Fig. 6 the Poincaré maps for decreasing values of

the electric field f = �1 ⇥ 10�6 a.u., f = �1.2 ⇥ 10�6 a.u. and f = �2 ⇥ 10�6 a.u.

are shown in the soft (right column) and in the real cases (left column). When the real

Coulomb potential is used, we observe in the surfaces of section ⇢ = 0 of the left column

of Fig. 6 that, for decreasing field values, the elliptic fixed point C located at the negative

part of the Z-axis moves towards the limit of the surface, while the fixed point C at the

positive part of the Z-axis tends to the origin. This behavior becomes clear in the surfaces

of section in regularized coordinates of Fig. 6(a), where a migration of the elliptic fixed
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points C towards the central fixed point of the surface of section, e.g. the fixed point I�z , is

observed. Moreover, in the regularized sections we observe that the hyperbolic fixed points

I±⇢ tend also to the central point I�z . As a consequence, the regions of KAM tori around the

periodic orbits corresponding to the fixed points C shrink. Then, the former shape of the

periodic orbits associated to C and I±⇢ for f = 0 [see Fig. 5] is lost and, as we can observe

in Fig. 7 for f = �1 ⇥ 10�6 a.u., they gradually adapt to the shape of I�z . For decreasing

values of the field strength, the migration of the families I±⇢ and C towards I�z continues,

such that at f ⇡ �1.202 ⇥ 10�6 a.u. a subcritical pitchfork bifurcation occurs when the

unstable families I±⇢ and the stable periodic orbit I�z collide. From this collision, only I�z ,

which becomes unstable, survives [see Fig. 6(c)]. At f ⇡ �1.578⇥ 10�6 a.u. a supercritical

pitchfork bifurcation takes place when the stable families C and the (unstable) I�z orbit

come into coincidence. From this second bifurcation only I�z survives, becoming stable, see

Fig. 6(e). After passing this bifurcation, the rotational orbits disappear, and the phase space

is made of librational orbits around I�z and I+z , such that the nearer the librational orbit

is to I�z (I+z ), the greater its orientation along the negative (positive) Z-axis is. Roughly

speaking, the atom is polarized by the electric field because most of the orbits are aligned

along the Z direction.

However, the presence of the electric field has a very di↵erent impact in the smooth

system. As we observe in the Poincaré maps of the right column of Fig. 6, the phase space

structure of the softened system is only slightly distorted by the field, such that it remains

almost unchanged as the electric field decreases. In other words, none of the two bifurcations

described in the real system takes place, which results in that the softening prevents the

atom to be polarized by the field. The reason why the field is not able to polarize the atom

is not completely clear. It may be related to the fact that softening prevents the existence

of quasiperiodic orbits around the periodic orbit Iz for f = 0. So that, for f 6= 0, the

quasiperiodic orbits around C that fill most of the phase space can not be polarized by

the electric field. Roughly speaking, there is no place in the phase space for quasiperiodic

motions oriented along the Z-axis.

So far, we have studied the evolution of the phase space for fixed metal-nucleus distance

d = 200 a.u. and decreasing values of the electric field strength. Now, we analyze the e↵ect

of the metal-nucleus distance d on the structure of the phase space for a fixed value of the

electric field strength f = �5⇥ 10�6 a.u. The results of this study for decreasing distances
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FIG. 6. Evolution of the Poincaré surfaces of section (PSOS) ⇢ = 0 for: (a)-(b) f = �1⇥10�6 a.u.,

(c)-(d) f = �1.2⇥ 10�6 a.u. and (e)-(f) f = �2⇥ 10�6 a.u. Left column: real Coulomb potential.

Right column: soft-core potential (a = 2). All sections are calculated for a metal-nucleus distance

d = 200 a.u. and energy E = �0.02 a.u.
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FIG. 7. Periodic orbits for the real Coulomb potential. Dashed lines indicate instability. All orbits

are calculated for the electric field value f = �1 ⇥ 10�6 a.u., a nucleus-metal distance d = 200

a.u. and energy E = �0.02 a.u. The outer black curve corresponds to the equipotential curve with

energy E = �0.02 a.u.

d = 200 a.u., d = 125 a.u. and d = 75 a.u. are shown in Fig. 8. In the real Coulomb

potential case, the Poincaré maps depicted in the left column of Fig. 8 indicate that the

phase space shows an inverse evolution of that appearing in the left column of Fig. 6. In

particular, the aforementioned two pitchfork bifurcations occur in the reverse order between

the situations shown in Fig. 8(a) and Fig. 8(c). In this way, decreasing the metal-nucleus

distance d with a fixed value of the field strength f is equivalent to increasing f while

keeping fixed the distance d. This equivalent behavior is due to the scaling property that

enjoys Hamiltonian (1) for a = 0. Indeed, in the real Coulomb potential case, it is possible

to scale the cylindrical variables r = (⇢, z) and P = (P⇢, Pz) in the form

r

0 = r/d, P

0 = P d2,

such that the dynamics of the system only depends on the scaled energy E 0 = E d and on

the scaled electric field F = f d2 [31]. On the other hand, in the soft-core potential case, for

f = �5⇥ 10�6 a.u., when the metal-nucleus distance d decreases, the almost circular stable

periodic orbits C centered in the origin, su↵er a supercritical pitchfork bifurcation. From

this bifurcation, two new families of stable periodic orbits, named as CR and CL, are born

from C, which becomes unstable. In Fig. 9 the new families of orbits CR and CL are depicted

14



in the ⇢ � Z plane. As we can observe, CR and CL are almost circular periodic orbits not

centered at the origin. It is worth to notice that, in the soft-core potential case for d = 75

a.u., the surface of section of Fig. 8(f) shows a large region of chaotic dynamics. However, in

the real Coulomb potential case, the corresponding Poincaré map of Fig. 8(e) shows regular

behavior, as it is can be clearly seen in the Poincaré map in regularized variables.

We conclude this section highlighting that, although the potential is only distorted in the

neighborhood of the origin, the introduction of the softening parameter has a great impact

in the global dynamics of the system.

IV. DYNAMICS IN THE IONIZATION REGIME

As the atom ionization is the most relevant dynamical phenomenon that may occur in

the high energy regime, in this section we focus on the dynamics of the electron when its

energy is high enough to escape from the nucleus’ attraction. It has been pointed out in

Sec. II that, for negative values of the electric field (f < 0), the e↵ective potential U(⇢, z)

presents two saddle points located in the Z-axis at both sides of the nucleus. Therefore,

for high enough energy values, the ionization of the atom can occur through two opposite

channels. Thence, the electron can be either captured by the metal surface through the

channel corresponding to the negative saddle point, or pulled out by the electric field to the

vacuum through the channel located at the positive saddle point.

Our goal is to study the structure and evolution of the ionization basins corresponding

to each escape channel as a function of the nucleus-metal distance d for both versions of

the e↵ective potential. Then by the numerical integration of the equations of motion, we

have calculated the electron trajectories corresponding to initial conditions included in the

phase space plane ⇢ = 0 with P⇢ � 0. This subspace is the same used to compute the

Poincaré surfaces of section studied in the previous section. All the trajectories considered

in this study have been calculated for a constant energy E = �3.472 ⇥ 10�3 a.u. which

corresponds to a principal quantum number n = 12, for a fixed value of the electric field

strength f = �5⇥ 10�6 a.u., and for increasing values of the nucleus-metal distance d.

The color maps in Fig. 10 show, in a comparative way, the evolution of the ionization

basins in the ⇢ = 0 planar subspace (z, Pz) for both cases: the real Coulomb potential and

the soft-core potential approximation (a = 2). The number of trajectories computed in every
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FIG. 8. Evolution of the Poincaré surfaces of section (PSOS) ⇢ = 0 for: (a)-(b) d = 200 a.u.,

(c)-(d) d = 125 a.u. and (e)-(f) d = 75 a.u. Left column: real Coulomb potential. Right column:

soft-core potential (a = 2). All sections are calculated for an electric field f = �5⇥ 10�6 a.u. and

energy E = �0.02 a.u.
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FIG. 9. Periodic orbits in the soft-core potential (a = 2), for the electric field value f = �5⇥ 10�6

a.u., metal-nucleus distance distance d = 75 a.u. and energy E = �0.02 a.u. Dashed line indicates

instability. The black line corresponds to the equipotential curve with energy E = �0.02 a.u.

plot is around 15000. The cut-o↵ integration time used in these calculations is tf = 105 a.u.

Red color stands for those initial conditions that lead to the atom ionization through the

negative channel, that is, when the electron is captured by the metal surface. Green color

represents the initial conditions of ionization trajectories through the positive channel, i.e.,

when the electron is dragged to the vacuum by the electric field. Blue color accounts for

non-ionization initial conditions. In this way, as the metal-nucleus distance d increases,

the ionization dynamics evolves through three di↵erent regimes. For short distances up to

d ⇡ 140 a.u., the influence of the metal surface dominates over the electric field, so that

only the negative channel is accessible for the electron to escape towards the metal [see

Figs. 10(a)-(b)]. On the contrary, for large values of the surface-atom distance, d > 330

a.u., the e↵ect of the applied electric field is predominant, and only the positive ionization

channel is open [see Figs. 10(g)-(h)]. Finally, for intermediate values of the distance d, both

channels are accessible for the electron [see Figs. 10(c)-(f)].

As we observe in the color maps of Fig. 10, the ionization features of the electron are

di↵erent depending on whether the real (left column of Fig. 10) or the soft-core Coulomb

potential (right column of Fig. 10) is used. In the former case, the negative and the positive
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ionization basins as well as the non-ionization basin, are separated by smooth curves, without

any mixing among them. On the contrary, in the soft-core potential case, there are large

regions of initial conditions where the three di↵erent basins are strongly mixed, without well

defined limits among them.

When the soft-core potential is considered, up to the cut-o↵ time tf = 105 a.u. and

for any distance d, it is always possible to find initial conditions leading to trapped orbits.

Nevertheless, it is important to point out that computations performed with di↵erent cut-o↵

integration times tf have shown that the number of those non-ionization initial conditions

decreases as the tf increases. This decrease of the non-ionization initial conditions with the

tf does not happen for the real Coulomb potential. In fact, there always exist sets of initial

conditions with a persistent non-ionization behavior. We think this disagreement is due to

the di↵erent dynamical connection between the core and distant phase space regions for

either the real potential and the softened one. On one hand, in the soft-core potential case,

most of the phase space is filled in with quasiperiodic orbits around C, so that all initial

conditions lead to trajectories that can access to any point of the phase space and therefore,

they can reach either of the ionization channels. On the other hand, for the real Coulomb

potential and for energy values above the energy of the saddle points, the quasiperiodic orbits

around I±z oriented along the Z-axis lead to ionization, whereas some KAM tori persist in

the phase space because they are filled in with quasiperiodic orbits around C that are not

able to reach none of the ionization channels. Note that in the Poincaré surfaces of section

corresponding to the real Coulomb potential appearing in Fig. 6(b) of Ref. [32] there are

many orbits that persist. Nevertheless, the Poincaré surfaces of section corresponding to

the soft-core potential would appear mostly empty because all trajectories would eventually

escape.

V. CONCLUSIONS

In this paper we have studied the e↵ects that the application of a soft-core potential

produces in the dynamics of a perturbed Coulomb atomic system. In particular, we have

taken a Rydberg hydrogen atom near a metallic surface subjected to a constant electric field

in the electron-extraction regime. After stating the Hamiltonian of the problem, we have

analyzed the particular solutions of the system, as well as the critical points of the e↵ective
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FIG. 10. Evolution of the ionization basins in the ⇢ = 0 planar subspace (z, Pz) for f = �5⇥ 10�6

a.u., E = �3.472 ⇥ 10�3 a.u. and increasing distances d. Left column: real Coulomb potential.

Right column: soft-core potential (a = 2). Red color: ionization towards the metal surface. Green

color: ionization towards the vacuum. Blue color: no ionization.
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potential. From this study we have found that, in the real Coulomb potential, the rectilinear

solutions along the Z-axis are made of two families, I+z and I�z , that are kept apart by the

Coulomb singularity. However, for the soft-core potential, the electron can pass through the

origin and the Iz solutions belong to a unique family. This di↵erence in the nature of the

rectilinear Z solutions has a crucial e↵ect in the global behavior of the system.

In order to analyze the impact of the softening in the dynamics, we have studied the phase

space structure of both, the real and the softened systems, by means of Poincaré surfaces of

section. When the energy is fixed well below the ionization channels and when the metal-

nucleus distance d or the electric field strength f is varied, we have found bifurcations of

periodic solutions that appear in the real system and not in the softened one, and vice-

versa. Moreover, the onset of chaos is made evident in the soft-core Hamiltonian, while the

dynamics in the real potential remains regular.

The softening also has a deep influence in the ionization dynamics. Considering the real

potential the ionization basins are well defined and there are initial conditions that lead to

trajectories that never ionize. However, for the softened potential all initial conditions lead

to escape and the ionization and non-ionization regimes are not clearly separated.

We conclude by saying that, although soft-core Coulomb potentials play a relevant role in

the study of di↵erent processes in strong field physics, the results of this paper indicate that

the global dynamics of the perturbed Rydberg hydrogen atom considered in this study is

strongly modified when the Coulomb potential is replaced by a soft-core Coulomb potential.

In this sense, it is expected that discrepancies will also be found when other perturbations

are considered.
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