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Discrete event systems in applications, such as industry and supply chain, may show a very complex behavior. For this reason, their
design and operation may be carried out by the application of optimization techniques for decision making in order to obtain their
highest performance. In a general approach, it is possible to implement these optimization techniques by means of the simulation
of a Petri net model, which may require an intensive use of computational resources. One key factor in the computational cost of
simulation-based optimization is the size of the model of the system; hence, it may be useful to apply techniques to reduce it. This
paper analyzes the relationship between two Petri net formalisms, currently used in the design of discrete event systems, where it
is usual to count on a set of alternative structural configurations. These formalisms are a particular type of parametric Petri nets,
called compound Petri nets, and a set of alternative Petri nets. The development of equivalent models under these formalisms and
the formal proof of this equivalence are the main topics of the paper. The basis for this formal approach is the graph of reachable
markings, a powerful tool able to represent the behavior of a discrete event system and, hence, to show the equivalence between
two different Petri net models. One immediate application of this equivalence is the substitution of a large model of a system by a
more compact one, whose simulation may be less demanding in the use of computational resources.

1. Introduction

A significant number of systems of technological, social, or
financial interest may present a high degree of complexity in
their composition, in the interrelation among their compo-
nents, in their behavior, or in all of these features [1, 2]. Many
of these systems can be considered as discrete event systems
(DES) [3, 4], such as manufacturing facilities, food industry,
supply chains, airports, or traffic networks [5–8].

The design of such systems can be a challenging task,
involving experts from a variety of knowledge fields [9].
In this context, an effective communication of the partial
and final results of the design process may be achieved,
when using a formal language to represent a model of the
system of interest. Additionally, the formal verification of

some specifications of the designed system, such as checking
the compliance of certain structural properties or assessing
the performance of the system, can be carried out before the
system itself has been built up [10, 11]. One effective strategy
for achieving this purpose with a certain degree of accuracy
consists of using a formal model of the system [10, 12].

A very popular paradigm to represent the model of a
DES is Petri nets [13]. This formalism has been applied to a
wide range of different fields [14, 15]. The Petri nets present
many favourable features, such as an important body of
knowledge referred to as subclasses of formalisms, structural
analysis techniques and properties, or methodologies for
implementing performance evaluation and simulation [16].
Petri nets are the paradigm chosen in this research to
represent models of DES.
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The research presented in this paper deals with Petri net
models applied to the design process of DES. In this design
process, the DES modeled by the Petri net has not been
completely specified yet; hence, the Petri net should model
the lack of concretion in some of the features of the original
DES. These nonspecified features of the DES in process of
being designed constitute a set of degrees of freedom, which
should be solved by decision making as long as the design
process is being completed. The mentioned decision-making
process can be carried out by means of different strategies,
such as “what-if” analysis or the statement of an optimization
problem. The formalisms presented in this paper, belonging
to the paradigm of the Petri nets, are particularly suited
for developing optimization processes. Nevertheless, they are
also appropriate for other strategies of decision making [17].

Usually, in the design process of a DES, some of the
degrees of freedom that should be solved by the designers
refer to structural features of the system [18], while some
others can be related to the system’s behavior. For example,
the layout of the components of the system is a feature related
to its structure. On the contrary, the dynamics or evolution
of some of these components, such as raw materials supply,
human resources, or communication packets, is associated
with its behavior [19]. In a Petri net model, the structural
features of a DES are explicitly represented in the so-called
incidence matrices. These structural features can be clearly
distinguished from the behavior of the system, which is
described by successive markings of the net. An introduction
of Petri nets can be found in [16, 20].

A large number of scientific reports on the application of
decision-making methodologies for solving certain stages of
the design process of a DES can be found in the literature.
However, most of them refer to themanagement or control of
the operation of such systems; hence, the methodologies they
present are aimed at solving behavioral degrees of freedom of
the DES.

The references presenting Petri net models of discrete
event systems with structural degrees of freedom usually fall
under one of the two following approaches:

(a) Each alternative configuration for the structural
degrees of freedom, in brief alternative structural
configuration, is represented by a different Petri net
model [7, 8, 21, 22]. These Petri nets can be called
alternative Petri nets.

(b) The incidence matrix representing the structure of
the Petri net model contains a number of parameters.
Giving diverse feasible values to these parameters, it
is possible to specify different alternative structural
configurations of the DES. These Petri nets can be
called parametric, parameterized, parameterized, or
compound Petri nets [6].

Many of these works, dealing with structural degrees of free-
dom, lack formal and systematic approach to the definition
and implementation of the structural degrees of freedom.
In fact, they mainly focus on the decision-making process
to select one alternative structural configuration of the DES
[6, 8, 21, 22].

Some previous works have advanced an equivalence
relation between both formalisms, a set of alternative Petri
nets and a compound Petri net, without providing a rigorous
proof.

The main contribution of this paper consists of formally
proving that both formalisms, a set of alternative Petri net
and a compound Petri net, can be equivalent and describing
the conditions for achieving this equivalence.This result leads
to some consequences of interest, since from this result it is
possible to do the following:

(a) Apply appropriate algorithms to transform a com-
pound Petri net into a set of alternative Petri nets,
detailed in this paper, and vice versa.

(b) Use any of both formalisms for modeling in different
stages of the design process of a DES, profiting from
the advantages of each one of them. For example,
depending on the particular case, the development of
the original Petri net model of a discrete event system
with structural degrees of freedommay be easier with
one of the two formalisms.

(c) Reduce the amount of data required to describe a Petri
netmodel with an associated set of feasible alternative
structural configurations by its transformation into a
compact compound Petri net. It has to be considered
that there are virtually infinite compound Petri nets,
of different sizes, that are equivalent to a given set
of alternative Petri nets. Moreover, in the design
of a discrete event system, the alternative structural
configurations may share a large amount of data. If
this redundant data is removed, significant reductions
in the size of the simulation model of the system
might be achieved.

(d) Accelerate the simulation-based optimization of a
Petri net model with an associated set of feasi-
ble alternative structural configurations by using an
appropriate implementation of distributed comput-
ing profiting from the advantages of using compact
models.

The rest of the paper is organized as follows. Section 2 is
devoted to formally define a set of alternative Petri nets and
a compound Petri net. Section 3 focuses on proving that a
certain transformation on a compound Petri net, based on
the concept of partition of a set, leads to a set of alternative
Petri nets. Section 4 presents some definitions related to the
graphs of reachability and themarking of a Petri net. Section 5
describes a methodology to construct the reachability graph
of a set of alternative Petri nets and of a compound Petri net.
Section 6 uses the concept of reachability graph to prove the
equivalence between a compound Petri net and the set of
alternative Petri nets that results from the application of the
transformation algorithm presented in Section 3. Section 7
illustrates the concepts, definitions, proposition, and theo-
rems from previous sections by means of an example of
application. Last section details the conclusions and future
research lines.
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2. Alternative Petri Nets and
Compound Petri Net

One possible definition of a Petri net system is based on a
weighted flow relation through two incidence functions [16,
20]. A Petri net system is also called marked Petri net or just
Petri net for simplicity.

Definition 1 (Petri net). A (generalized) Petri net is a five-
tuple:

𝑁 = ⟨𝑃, 𝑇, pre, post,m0⟩ , (1)

where𝑃 and𝑇 are disjoint, finite, nonempty sets of places and
transitions, respectively. Pre: 𝑃 × 𝑇 → 𝑁 is the preincidence
or input function. Post: 𝑇 × 𝑃 → 𝑁 is the postincidence or
output function.m0 is a marking of the set of places 𝑃, where
m0 = (𝑚1, 𝑚2, . . . , 𝑚𝑛)𝑇 ∈ Nn, whose 𝑖th component is the
marking of place 𝑝𝑖 ∈ 𝑃.
The first four elements of the Petri net define its structure of
a Petri net, which is a static feature, while the fifth one, the
marking, represents the behavior of the system, that is, the
system state and its changes.

It is possible to describe the structure of a Petri net by
using the incidence matrices W− and W+. These matrices
represent the incidence functions given in Definition 1 and
can be called pre- and postincidence matrices, respectively.

A pair of place 𝑝 and transition 𝑡 is called a self-loop if𝑝 is both an input and output place of 𝑡. A Petri net is said
to be pure if it has not any self-loop. Moreover, pure nets are
completely characterized by a single incidence matrix W =
W+ −W−.

As it has been stated in the Introduction, a Petri net
associated with a set of alternative structural configurations
can be presented as a set of alternative Petri nets. Every Petri
net of the mentioned set consists of the complete Petri net
model of the original DES, particularized with one of the
alternative structural configurations.

Given a set of alternative Petri nets, any pair of these Petri
nets verifies a property called mutually exclusive evolution,
meaning that only one of the alternative Petri nets can be
active at a given time, since all of them are exclusive models
of the same DES. This property allows characterizing a set of
alternative Petri nets as shown in the following.

Definition 2 (mutually exclusive evolution). Given two Petri
nets 𝑅 and 𝑅󸀠, they are said to have mutually exclusive
evolutions if the following is verified:

(i) ifm(𝑅) ̸= m0(𝑅) ⇒ m(𝑅󸀠) = m0(𝑅󸀠),
(ii) ifm(𝑅󸀠) ̸= m0(𝑅󸀠) ⇒ m(𝑅) = m0(𝑅).
Once this property has been stated, it is possible to carry

out the definition of a couple of Petri nets and a set of
alternative Petri nets, as it is stated below.

Definition 3 (pair of alternative Petri nets). Given two Petri
nets 𝑅 and 𝑅󸀠, they are said to be alternative Petri nets if it is
verified that

(i) R and 𝑅󸀠 have mutually exclusive evolution;

(ii) W(𝑅) ̸= W(𝑅󸀠), where W(𝑅) ̸= W(𝑅󸀠) are the
incidence matrices of 𝑅 and 𝑅󸀠, respectively.
Definition 4 (set of alternative Petri nets). Given a set of Petri
nets 𝑆𝑅 = {𝑅1, . . . , 𝑅𝑛}, 𝑆𝑅 is said to be a set of alternative Petri
nets if it verifies that

(i) 𝑛>1;
(ii) ∀𝑖, 𝑗 ∈ N, such that 𝑖 ̸= 𝑗 and 1 ≤ 𝑖, 𝑗 ≤ 𝑛; then 𝑅𝑖 and𝑅𝑗 are a pair of alternative Petri nets.𝑅𝑖 is called the 𝑖th alternative Petri net of 𝑆𝑅.
The second formalism, belonging to the paradigm of

the Petri nets, which will be considered in this research
document, is the compound Petri nets. It is a particular case
of parametric Petri net, containing parameters in any of the
two incidence matrices. It is associated with a set containing
all the feasible combinations of values that can be assigned to
these parameters.

Definition 5 (parameter of a Petri net). Any variable in a
Petri net model, associated with a set of feasible values, its
cardinality is greater than 1. A value can be assigned to this
variable as a consequence of a decision. The outcome of this
decision is a choice from a set of feasible values. Once a
decision has been made, the value assigned to the parameter
is unique.

Definition 6 (structural parameter of a Petri net). Any param-
eter of an incidence matrix of a Petri net.

Definition 7 (compound Petri net). A compound Petri net is
a 7-tuple 𝑅𝑐 = ⟨𝑃, 𝑇, pre, post,m0, 𝑆𝛼, 𝑆val𝛼⟩, where

(i) 𝑆𝛼 is the set of parameters of 𝑅𝑐;
(ii) 𝑆val𝛼 is the feasible combination of values for the

parameters, meaning that not all the combinations of values
for the parameters of the Petri net lead to a valid structural
configuration;

(iii) additionally,∃ 𝑆str𝛼 ⊆ 𝑆𝛼, set of structural parameters
of𝑅𝑐, such that 𝑆str𝛼 ̸= ⌀, meaning that a compound Petri net
should contain at least one structural parameter among all its
parameters.

In the previous definitions, two different Petri-net-based
formalisms able to represent a discrete event system with
alternative structural configurations have been formally pre-
sented. Two numerical examples of these two formalisms can
be found in Figures 1 and 2. In the following section, an
algorithm will be developed to transform a compound Petri
net into a set of alternative Petri nets.

3. Partitions

In this section, it is proven that any partition of the set of
feasible combinations of values for the structural parameters
of a compound Petri net leads to a set of alternative Petri nets.
A numerical example of the definition and results presented
in this section can be found in Stage 1 of Section 7.

Definition 8 (partition of the set of feasible combina-
tion of values for the set of structural parameters of a
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Figure 1: Compound Petri net 𝑅𝑐.
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Figure 2: Petri nets obtained from a compound Petri net.

compound Petri net). Given a compound Petri net 𝑅𝑐
and a set 𝑆valstr𝛼(𝑅𝑐), containing the feasible combinations
of values for the structural parameters of 𝑅𝑐, a parti-
tion of 𝑆valstr𝛼(𝑅𝑐), denoted by ∏𝑞(𝑆valstr𝛼(𝑅𝑐)), can be
defined as the collection of subsets ∏𝑞(𝑆valstr𝛼(𝑅𝑐)) ={𝑆valstr𝛼(𝑅1), 𝑆valstr𝛼(𝑅2), . . . , 𝑆valstr𝛼(𝑅𝑚𝑟)} such that

(i) 𝑆valstr𝛼(𝑅𝑐) = 𝑆valstr𝛼(𝑅1) ∪ 𝑆valstr𝛼(𝑅2) ∪ ⋅ ⋅ ⋅ ∪𝑆valstr𝛼(𝑅𝑚𝑟);
(ii) 𝑆valstr𝛼(𝑅𝑖) ̸= ⌀, 1 ≤ 𝑖 ≤ 𝑚𝑟;
(iii) 𝑆valstr𝛼(𝑅𝑖) ∩ 𝑆valstr𝛼(𝑅𝑗) = ⌀, ∀𝑖, 𝑗 ∈ N, such that1 ≤ 𝑖, 𝑗 ≤ 𝑚𝑟.
The next Algorithm 9 describes a procedure to obtain a

set of Petri nets from the following elements:
(a) a compound Petri net, 𝑅𝑐;
(b) a partition of the set of feasible combinations of values

for their structural parameters,∏𝑞(𝑆valstr𝛼(𝑅𝑐)).
Some properties of the resulting set of Petri nets are

proven in Proposition 10.

Algorithm 9 (construction of a set of Petri nets from a pair
(𝑅𝑐,∏𝑞(𝑆valstr𝛼(𝑅𝑐)))).
Inputs: 𝑅𝑐 = ⟨𝑃, 𝑇, pre, post,m0, 𝑆𝛼, 𝑆val𝛼⟩, ∏𝑞(𝑆valstr𝛼(𝑅𝑐)),
which are, respectively, a compound Petri net and a partition
of the set of feasible values for the structural parameters of
the compound Petri net.

Start
Repeat Steps 1 and 2 ∀𝑖 ∈ N, such that 1 ≤ 𝑖 ≤ 𝑚𝑟, where𝑚𝑟 = |∏𝑞(𝑆valstr𝛼(𝑅𝑐))|.
Step 1 (construction of 𝑆val𝛼(𝑅𝑖))𝑆val𝛼(𝑅𝑖) =⌀.

Repeat ∀𝑗 ∈ N, such that 1 ≤ 𝑗 ≤ 𝑞𝑖, where 𝑞𝑖 =
card(𝑆valstr𝛼(𝑅𝑐)𝑖) {

Let us consider 𝑐V𝑠𝑗 = (𝑏1, . . . , 𝑏𝑟𝑠) ⊆𝑆valstr𝛼(𝑅𝑐)𝑖, where 𝑏1, . . . , 𝑏𝑟𝑠 are feasible values
for the structural parameters 𝛼1, . . . , 𝛼𝑟𝑠 respec-
tively. Notice that 𝑐V𝑠 stands for “combination of
values for the structural parameters.”
Repeat ∀𝑘 ∈ N, such that 1 ≤ 𝑘 ≤ 𝑞, where𝑞 = card(𝑆val𝛼(𝑅𝑐)) {

Let us consider 𝑐V𝑘 = (𝑐1, . . . , 𝑐𝑟𝑠, 𝑐𝑟𝑠+1, . . .,𝑐𝑟) ⊆ 𝑆val𝛼(𝑅𝑐), where 𝑐1, . . . , 𝑐𝑟𝑠, 𝑐𝑟𝑠+1, . . . , 𝑐𝑟
are feasible values for the parameters
of 𝑅𝑐: 𝛼1, . . . , 𝛼𝑟𝑠, 𝛼𝑟𝑠+1, . . . , 𝛼𝑟 ∈ 𝑆𝛼(𝑅𝑐),
respectively, and parameters 𝛼1, . . . , 𝛼𝑟𝑠 ∈𝑆str𝛼(𝑅𝑐) are structural parameters of 𝑅𝑐.
If it is verified that 𝑏1 = 𝑐1, 𝑏2 = 𝑐2, . . . , 𝑏𝑟𝑠 =𝑐𝑟𝑠, then 𝑆val𝛼(𝑅𝑖) ← 𝑐V𝑘, that is, assign 𝑐V𝑘
to 𝑆val𝛼(𝑅𝑖).}

}
Step 2 (construction of 𝑆𝛼(𝑅𝑖) and update of 𝑆val𝛼(𝑅𝑖))

𝑆𝛼(𝑅𝑖) = 𝑆𝛼(𝑅𝑐).
Repeat ∀𝑗 ∈ N, such that 1 ≤ 𝑗 ≤ 𝑟, where 𝑟 =
card(𝑆𝛼(𝑅𝑐)) {

Let 𝑆val𝛼(𝑅𝑖) = {𝑐V1, 𝑐V2, . . . , 𝑐V𝑞𝑖}, where ∀𝑘 ∈
N, such that 1 ≤ 𝑘 ≤ 𝑞𝑖; it can be expressed𝑐V𝑘 = (𝑐1(𝑘), . . . , 𝑐𝑟(𝑘)).
If 𝑐𝑗(1) = 𝑐𝑗(2) = ⋅ ⋅ ⋅ = 𝑐𝑗(𝑞𝑖), then 𝑆𝛼(𝑅𝑖) =𝑆𝛼(𝑅𝑖) \ {𝛼𝑗} and 𝛼𝑗 = 𝑐𝑗(1), which is not a
parameter anymore.∀𝑘 ∈ N, such that 1 ≤ 𝑘 ≤ 𝑞𝑖, remove 𝑐𝑗(𝑘) from𝑐V𝑗, and update 𝑆val𝛼(𝑅𝑖).

}𝑟𝑖 = card(𝑆𝛼(𝑅𝑖)).
End
Output: A set of Petri nets 𝑆𝑅 = {𝑅1, . . . , 𝑅𝑚𝑟}, where 𝑅𝑖 =⟨𝑃, 𝑇, pre, post,m0, 𝑆𝛼(𝑅𝑖), 𝑆val𝛼(𝑅𝑖)⟩ ∀𝑖 ∈ N, such that 1 ≤𝑖 ≤ 𝑚𝑟.
Proposition 10 (properties of the Petri nets obtained from the
application ofAlgorithm 9). Let us consider a compoundPetri
net 𝑅𝑐 = ⟨𝑃, 𝑇, 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡,m0, 𝑆𝛼, 𝑆V𝑎𝑙𝛼⟩,

Let 𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑐) be the set of feasible combinations of values
for the structural parameters of 𝑅𝑐, 𝑆𝑠𝑡𝑟𝛼(𝑅𝑐) ⊆ 𝑆𝛼.

Let ∏𝑞(𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑐)) be a partition of 𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑐), which
verifies

(i) ∏𝑞(𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑐)) = {𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅1), 𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅2), . . .,𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑚𝑟)};
(ii) |∏𝑞(𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑐))| = 𝑚𝑟 > 1.
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A set of Petri nets 𝑆𝑅 = {𝑅1, . . . , 𝑅𝑚𝑟} can be constructed by
the application ofAlgorithm 9 such that the following properties
are verified:

(i) ∀𝑖 ∈ N, such that 1 ≤ 𝑖 ≤ 𝑚𝑟; it is possible to build up a
Petri net 𝑅𝑖 = ⟨𝑃, 𝑇, 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡,m0, 𝑆𝛼(𝑅𝑖), 𝑆V𝑎𝑙𝛼(𝑅𝑖)⟩, such that∃ 𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑖) ⊆ ∏𝑞(𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑐)).

(ii) ∃ bijection 𝑓 : 𝑆𝑅 → ∏𝑞(𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑐)), where 𝑓(𝑅𝑖) =𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑖) ∀𝑅𝑖 ∈ 𝑆𝑅.
(iii) 𝑆𝑠𝑡𝑟𝛼(𝑅𝑖) ⊆ 𝑆𝛼(𝑅𝑖) ⊆ 𝑆𝛼(𝑅𝑐).
(iv) 𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑖) ⊆ 𝑆V𝑎𝑙𝛼(𝑅𝑖) ⊂ 𝑆V𝑎𝑙𝛼(𝑅𝑐) (every subset of the

partition has been assigned to one of the Petri nets as the set of
feasible combinations of values for the parameters in it).

Proof. (i) It is evident by the method of construction,
since ∏𝑞(𝑆valstr𝛼(𝑅𝑐)) is a prerequisite for the application of
this proposition and 𝑆valstr𝛼(𝑅𝑖) is one of the elements of∏𝑞(𝑆valstr𝛼(𝑅𝑐)).

(ii) Due to the fact that |∏𝑞(𝑆valstr𝛼(𝑅𝑐))| = |𝑆𝑅| = 𝑚𝑟,
it is possible to define a bijection between the sets 𝑆𝑅 and∏𝑞(𝑆valstr𝛼(𝑅𝑐)).

(iii) By definition 𝑆str𝛼(𝑅𝑖) ⊆ 𝑆𝛼(𝑅𝑖), since the structural
parameters are a particular type of parameters. Moreover,𝑆𝛼(𝑅𝑖) ⊆ 𝑆𝛼(𝑅𝑐) by construction, since the first step in the
construction of 𝑆𝛼(𝑅𝑐) consists of making 𝑆𝛼(𝑅𝑖) = 𝑆𝛼(𝑅𝑐)
and the subsequent feasible operations for the construction
of 𝑆𝛼(𝑅𝑖)may lead to the removal of elements of 𝑆𝛼(𝑅𝑖).

(iv) By definition 𝑆valstr𝛼(𝑅𝑖) ⊆ 𝑆val𝛼(𝑅𝑖), since 𝑆str𝛼(𝑅𝑖) ⊆𝑆𝛼(𝑅𝑖). On the other hand, by construction, 𝑆val𝛼(𝑅𝑖) ⊂𝑆val𝛼(𝑅𝑐), since the values of the first set are taken from the
second. Finally, 𝑆val𝛼(𝑅𝑖) ̸= 𝑆val𝛼(𝑅𝑐), because, according to
the statement of Proposition 10, |∏𝑞(𝑆valstr𝛼(𝑅𝑐))| = 𝑚𝑟 > 1
and, according to the definition of partition, ∃ 𝑆valstr𝛼(𝑅𝑖),𝑆valstr𝛼(𝑅𝑗) ∈ ∏𝑞(𝑆valstr𝛼(𝑅𝑐)), where 𝑆valstr𝛼(𝑅𝑖)∩𝑆valstr𝛼(𝑅𝑗) =⌀ and 𝑆valstr𝛼(𝑅𝑖) ̸= ⌀, 𝑆valstr𝛼(𝑅𝑗) ̸= ⌀; hence ∃ 𝑐V𝑠 ∈𝑆valstr𝛼(𝑅𝑗) and 𝑐V𝑠 ∉ 𝑆valstr𝛼(𝑅𝑖) and, by the construction
Algorithm 9, ∃ 𝑐V ∈ 𝑆val𝛼(𝑅𝑗) and 𝑐V ∉ 𝑆val𝛼(𝑅𝑖).

Theorem 11 proves that the set of Petri nets built up
according to Algorithm 9 is a set of alternative Petri nets. In
other words, it is a model suitable for describing a discrete
event system with freedom degrees in its structure.

Theorem 11. Let us consider a compound Petri net 𝑅𝑐 =⟨𝑃, 𝑇, pre, post,m0, 𝑆𝛼, 𝑆val𝛼⟩, where 𝑆valstr𝛼(𝑅𝑐) is the set of
feasible combinations of values for the structural parameters of𝑅𝑐.

Given a partition of 𝑆valstr𝛼(𝑅𝑐), ∏𝑞(𝑆valstr𝛼(𝑅𝑐)) ={𝑆valstr𝛼(𝑅1), 𝑆valstr𝛼(𝑅2), . . . , 𝑆valstr𝛼(𝑅𝑚𝑟)}, where|∏𝑞(𝑆valstr𝛼(𝑅𝑐))| = 𝑚𝑟 > 1.
Let 𝑆𝑅 = {𝑅1, . . . , 𝑅𝑚𝑟} be a set of Petri net, built up

according to Algorithm 9; then 𝑆𝑅 is a set of alternative Petri
nets.

Proof. ∀𝑅𝑖, 𝑅𝑗 ∈ 𝑆𝑅, such that 𝑖 ̸= 𝑗, the following are verified:
(i) 𝑆valstr𝛼(𝑅𝑖) ∩ 𝑆valstr𝛼(𝑅𝑗) = ⌀ ⇒ W𝑖 ̸= W𝑗; that is to

say, they present different incidence matrices.
(ii) The choice of 𝑐V𝑠𝑘 ∈ 𝑆valstr𝛼(𝑅𝑐) is the result of a

decision ⇒ if 𝑐V𝑠𝑘 = (𝑐1, . . . , 𝑐𝑟𝑠), then ∀𝑐V𝑠𝑞 ∈ 𝑆valstr𝛼(𝑅𝑐)

such that 𝑐V𝑠𝑞 ̸= 𝑐V𝑠𝑘; it is verified that (𝑐1, . . . , 𝑐𝑟𝑠) ̸= 𝑐V𝑠𝑞 ⇒
if 𝑐V𝑠𝑘 ∈ 𝑆valstr𝛼(𝑅𝑖), then 𝑐V𝑠𝑘 ∉ 𝑆valstr𝛼(𝑅𝑗)∧ as m(𝑅𝑖) ̸=
m0(𝑅𝑖), m(𝑅𝑗) = m0(𝑅𝑗) ⇒ the evolutions of 𝑅𝑖, 𝑅𝑗, ∀𝑖, 𝑗 ∈{1, . . . , 𝑛}, such that 𝑖 ̸= 𝑗, are mutually exclusive.

(ii) Let us make a decision to solve the structural degrees
of freedom of the original compound Petri net, 𝑅𝑐: let us
choose 𝑐V𝑠𝑘 ∈ 𝑆valstr𝛼(𝑅𝑐), such that 𝑐V𝑠𝑘 ∈ 𝑆valstr𝛼(𝑅𝑖). Addi-
tionally, 𝑆valstr𝛼(𝑅𝑖) ∈ ∏𝑞(𝑆valstr𝛼(𝑅𝑐)) and 𝑆valstr𝛼(𝑅𝑖) ∩𝑆valstr𝛼(𝑅𝑗) = ⌀ ⇒ 𝑐V𝑠𝑘 ∉ 𝑆valstr𝛼(𝑅𝑗) ⇒ m(𝑅𝑗) = m0(𝑅𝑗),
since the incidence matrices of 𝑅𝑗 are not univocally defined
and the dynamic of the Petri net is not defined either. On
the contrary, 𝑐V𝑠𝑘 defines univocally the incidence matrices
of 𝑅𝑖 and the evolution rules of the Petri net; the so-called
“token game” can be applied; hence it may be possible for the
marking of 𝑅𝑖 to verify m(𝑅𝑖) ̸= m0(𝑅𝑖) ⇒ the evolutions
of 𝑅𝑖, 𝑅𝑗, ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛}, such that 𝑖 ̸= 𝑗, are mutually
exclusive.∀𝑅𝑖, 𝑅𝑗 ∈ 𝑆𝑅, 𝑅𝑖 and 𝑅𝑗 are a pair of alternative Petri
nets, by Definition 3, and 𝑚𝑟 > 1 ⇒ by Definition 4, 𝑆𝑅 ={𝑅1, . . . , 𝑅𝑛} is a set of alternative Petri nets.

As it has been seen in Theorem 11, every partition of
the set of feasible values for the structural parameters of a
compound Petri net leads to a set of alternative Petri nets.
This set constitutes a collection of models, which are pairwise
exclusive. This exclusion is a consequence of the fact that
every feasible combination of values for the parameters of the
compound Petri net can be chosen as a result of a decision.
Whenone of these combinations of values is chosen, the other
ones are rejected; hence, the alternative Petri nets related to
them are also rejected.

4. Markings and Graphs of
Reachable Markings

In the previous sections, both formalisms, the set of alter-
native Petri nets and the compound Petri net, have been
defined. It has also been proven that it is possible to obtain
a set of alternative Petri nets from a compound Petri net. In
this section some definitions and results on the reachability
graph of both formalisms are discussed for preparing the
equivalence proof between compound Petri nets and a set
of alternative Petri nets obtained from the application of
Algorithm 9.

The first definition is devoted to characterize an iso-
morphous graph of reachable markings, which will be used
to prove the equivalence between Petri net models. The
following definition, in fact, could be stated and applied for
generic graphs.

Definition 12 (isomorphous graph of reachable markings).
Let us consider two graphs of reachable markings rg1 and rg2.

Let us call 𝑉1 and 𝑉2 the set of vertices in rg1 and rg2,
respectively.

Let us call 𝐸1 and 𝐸2 the set of directed edges in rg1 and
rg2, respectively.𝐸1 is a set of ordered pairs (V𝑖, V𝑗) such that V𝑖, V𝑗 ∈ 𝑉1 and
there exists a directed arc which starts in V𝑖 and ends in V𝑗.
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𝐸2 is a set of ordered pairs (V𝑝, V𝑞) such that V𝑝, V𝑞 ∈ 𝑉2
and there exists a directed arc which starts in V𝑝 and ends in
V𝑞.

rg1 and rg2 are said to be isomorphous or isomorphic
graphs, denoted by rg1 ≅ rg2, if it is possible to define the
following bijection: 𝑓 : 𝑉1 󳨀→ 𝑉2 (2)

such that ∀V𝑖, V𝑗 ∈ 𝑉1, it is verified that (V𝑖, V𝑗) ∈ 𝐸1 ⇔(𝑓(V𝑖), 𝑓(V𝑗)) ∈ 𝐸2.
This bijection 𝑓 is called labeled directed graph isomor-

phism. Two graphs of reachable markings are isomorphous
if they have the same structure of nodes and directed arcs.
This property plays a vital role in the proof of equivalence
between a compound Petri net and a set of alternative Petri
nets obtained from the application of Algorithm 9 to the
former. It is considered in this paper that the equivalence
between Petri nets do not imply the same marking in all the
states, because it is not taken into account the marking that
remains constant along all the feasible evolutions of the Petri
net.

Definition 13 (significant marking [20]). The significant
marking is the marking restricted to the places which do not
have the same marking in all the stable states.

More information on this previous definition can be
found in [20].

Definition 14 (graph of reachable markings of a set of
alternative Petri nets). Let 𝑆𝑅 = {𝑅1, . . . , 𝑅𝑚𝑟} be a set of
alternative Petri nets, where𝑅𝑖 = ⟨𝑃𝑖, 𝑇𝑖, pre𝑖, post𝑖,m0 (𝑅𝑖) , 𝑆𝛼 (𝑅𝑖) , 𝑆val𝛼 (𝑅𝑖)⟩ . (3)

The graph of reachable markings of 𝑆𝑅, called rg(𝑆𝑅), verifies
the following three properties:

(i) rg(𝑆𝑅) is made up of vertices which correspond to
reachable markings and arcs corresponding to firing of
transitions resulting in passing from one marking to another
one.

(ii) Considering the set of alternative Petri nets as a single
model of a DES, a marking of this set contains the tokens of
every alternative Petri net. Moreover, the set of places of the
set of alternative Petri nets is

𝑃 (𝑆𝑅) = 𝑚𝑟⋃
𝑖=1

𝑃𝑖. (4)

(iii) The construction of this graph of reachable markings is
performedby the exploration of the subgraphs corresponding
to the different alternative Petri nets. This choice means that
the places of the rest of alternative Petri nets will remain
in their initial marking. In other words, the places of the
nonchosen Petri nets will not contribute to the significant
marking of 𝑆𝑅.

A numerical example of Definition 14 is given in Stage 2
of Section 7, while in Stage 3 of the same section a numerical
application of Definition 15 is provided.

Definition 15 (choice subgraph of the reachability graph of a
set of alternative Petri nets). Let 𝑆𝑅 be a set of alternative Petri
nets, where |𝑆𝑅| = 𝑚𝑟.

Let 𝐶 = {1, . . . , 𝑚𝑟} be a set of natural numbers. Due to
the fact that |𝐶| = |𝑆𝑅| it is possible to create a bijection 𝑓 :𝑆𝑅 ↔ 𝐶.

Let 𝑐 ∈ 𝐶 be the result of a choice of one of the alternative
Petri nets in the solution process of a decision problem.

The 𝑐th choice subgraph of the reachability graph of𝑆𝑅 is the reachability graph obtained for 𝑆𝑅 when the cth
alternative Petri net is chosen as solution of a decision
problem.

It is called rg(𝑆𝑅, 𝑐).
In fact, a choice subgraph is the subset of a reachability

graph composed by all the nodes corresponding to all the
feasible evolutions of a single alternative Petri net.

Remark 16. It can be easily deduced that the choice subgraph
of an alternative Petri net 𝑅𝑖 belonging to a certain set 𝑆𝑅
can be transformed into the reachability graph of 𝑅𝑖 by the
removal of the marking of the places that do not belong
to 𝑅𝑖 but to another alternative Petri net. This removed
marking does not vary in the evolution of 𝑅𝑖 and, hence,
does not contribute to the significant marking and does
not modify the structure of the graph of reachable mark-
ings.

On the other hand, the transformation of the reachability
graph of a certain alternative Petri net 𝑅𝑖 into a choice
subgraph associated with a certain set 𝑆𝑅, where 𝑅𝑖 ∈ 𝑆𝑅, can
be done by the addition of a constant marking to every state.
The marking to be added is the initial marking of the places
that do not belong to this alternative Petri net but to the rest
of the Petri nets of 𝑆𝑅.
5. Construction of the Reachability
Graph of a Set of Alternative Petri Nets and
a Compound Petri Net

In the previous paragraphs the concept of choice subgraph
has been introduced. It can be seen as the reachability graph
of a set of alternative Petri nets when one of them is chosen
as solution of a decision problem. Once this choice is made,
the rest of the alternative Petri nets remain in their initial
markings by definition.

However, in some situations the comparison of the reach-
ability graphs of the different alternative Petri nets may be of
interest.This comparisonmay lead to interesting conclusions
on the behavior of the different alternative Petri nets and,
hence, it can be a valuable tool to make the appropriate
choice of a certain structural configuration for the modeled
DES.

Definition 17 describes the process of assembling the
choice subgraphs of the different components of a set of
alternative Petri nets. The reachability graph of the set of
alternative Petri nets is generated from this assembling pro-
cess, which eases the comparison mentioned in the previous
paragraph.
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Definition 17 (union of choice subgraphs). Given a set of
alternative Petri nets 𝑆𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑚𝑟}, let us consider
a subset 𝑆󸀠𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑖} ⊆ 𝑆𝑅.

Let𝐶 = {1, . . . , 𝑚𝑟} be a set of natural numbers.Due to the
fact that |𝐶| = |𝑆𝑅|, it is possible to create a bijection 𝑓 : 𝑆𝑅 ↔𝐶. Let 𝑐 ∈ 𝐶 be the result of a choice of one of the alternative
Petri nets in the solution process of a decision problem.

The union of the choice subgraphs of the set {rg(𝑆𝑅, 1),
rg(𝑆𝑅, 2), . . . , rg(𝑆𝑅, 𝑖)}, represented by ⋃𝑗=𝑖𝑗=1 rg(𝑆𝑅, 𝑖) =
rg(𝑆󸀠𝑅 ⊆ 𝑆𝑅), is defined as a graph rg(𝑆󸀠𝑅 ⊆ 𝑆𝑅) where

(i) the initial marking in rg(𝑆󸀠𝑅 ⊆ 𝑆𝑅) ism0(𝑆𝑅);
(ii) ∀𝑘 ∈ {1, 2, . . . , 𝑖}, rg(𝑆𝑅, 𝑘) is added to rg(𝑆󸀠𝑅 ⊆ 𝑆𝑅) by

means of the following modifications of rg(𝑆𝑅, 𝑘):
(ii.a) the arcs starting from the initial marking of rg(𝑆𝑅, 𝑘)

are labeled “choice of 𝑅𝑖,”
(ii.b) the initial marking of rg(𝑆𝑅, 𝑘) is substituted by the

initial marking of rg(𝑆󸀠𝑅 ⊆ 𝑆𝑅).
The next proposition provides a methodology to build

up the reachability graph of a set of alternative Petri nets by
the assembly of all the choice subgraphs associated with the
different alternative Petri nets of the set.

In Stage 5 of Section 7, a numerical example illustrates
both Definition 17 and Proposition 18.

Proposition 18. Let 𝑆𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑚𝑟} be a set of alter-
native Petri nets:

𝑚𝑟⋃
𝑖=1

𝑟𝑔 (𝑆𝑅, 𝑖) = 𝑟𝑔 (𝑆𝑅) , (5)

where 𝑟𝑔(𝑆𝑅, 𝑖) is the graph of reachable markings of the 𝑖th
alternative Petri net and 𝑟𝑔(𝑆𝑅) is the graph of reachable
markings of a set of alternative Petri nets.

Proof. The graph of reachable markings of the set of alter-
native Petri nets, according to Definition 14, complies with
three properties, numbered (i), (ii), and (iii). Let us prove
that⋃𝑚𝑟𝑖=1 rg(𝑆𝑅, 𝑖), the union of the choice subgraphs of every
alternative Petri net, complies with the same statements;
hence, both constructions are the same.

(i) By Definition 17 the initial marking of both construc-
tions ism0(𝑆𝑅). From this initial marking in both cases, there
are a set of arcs that represent the possible evolutions of the
set of Petri nets by taking a certain decision that chooses
an alternative Petri net and keeps the others in their initial
marking. From now on, the different nodes of both graphs
represent the reachable markings of certain alternative Petri
nets in addition to the constant marking of the places that do
not belong to this alternative Petri net but to the others in the
set 𝑆𝑅.

(ii) This condition is complied, since every node of⋃𝑚𝑟𝑖=1 rg(𝑆𝑅, 𝑖) includes the marking of every place of all the
alternative Petri nets in 𝑆𝑅.

(iii) This last condition is verified by ⋃𝑚𝑟𝑖=1 rg(𝑆𝑅, 𝑖), since
its construction is based on linking the independent evo-
lution of every alternative Petri net to the initial marking.
This resulting graph includes the constant marking of other

places not belonging to the chosen alternative Petri net but
taking part in the other Petri nets of 𝑆𝑅. Moreover, the choice
subgraphs of all the alternative Petri nets of 𝑆𝑅 are present
in the ⋃𝑚𝑟𝑖=1 rg(𝑆𝑅, 𝑖); hence all the feasible evolutions of the
alternative Petri nets can be found in the union of subgraphs,
the same as in rg(𝑆𝑅).

The conclusion of the verification of all the statements
of Definition 14 in the union of choice subgraphs is that
Proposition 18 is true.

The union of choice subgraphs verifies all the statements
ofDefinition 14.As a consequence, Proposition 18 is true.

The following definition will describe how to construct
the reachability graph of a compound Petri net. The aim of
this definition is to state Theorem 20, which will relate the
graph of a compound Petri net with the reachability graph
of an equivalent set of alternative Petri nets. Definition 19
is applied to a numerical example presented in Stage 6 of
Section 7.

Definition 19 (reachability graph of a compound Petri
net). Let us consider a compound Petri net 𝑅𝑐 and a set𝑆valstr𝛼(𝑅𝑐) = {𝑐V𝑠1, 𝑐V𝑠2, . . . , 𝑐V𝑠𝑚𝑟} composed of the feasible
combinations of values for the structural parameters of 𝑅𝑐.

Let us define a partition 𝑆valstr𝛼(𝑅𝑐) with the
maximal cardinality |𝑆valstr𝛼(𝑅𝑐)| = 𝑚𝑟, denoted by∏𝑞(𝑆valstr𝛼(𝑅𝑐)), as the collection of subsets∏𝑞(𝑆valstr𝛼(𝑅𝑐)) ={𝑆valstr𝛼(𝑅1), 𝑆valstr𝛼(𝑅2), . . . , 𝑆valstr𝛼(𝑅𝑚𝑟)} such that∀𝑖 ∈ {1, 2, . . . , 𝑚𝑟} it is verified that 𝑆valstr𝛼(𝑅𝑖) = {𝑐V𝑠𝑖}.

The reachability graph of𝑅𝑐 will be constructed according
to the following algorithm.

Step 1. The first node ism0(𝑅𝑐).
Step 2. From the first node, an arc starts for every feasible
evolution of 𝑅𝑐, labeled with the subset 𝑆valstr𝛼(𝑅𝑖), chosen as
a result of a decision. Every arc reaches a node displaying the
new marking.

Step 3. From any node, other than the initial one, the reacha-
bility graph may continue. This continuation corresponds to
the Petri net that results from the application of the choice of𝑆valstr𝛼(𝑅𝑖) to the compound Petri net 𝑅𝑐.
6. Equivalence of a Compound Petri Net and
a Set of Alternative Petri Nets

The next theorem leads to a significant result. Given a
compound Petri net, it is possible to obtain a set of alternative
Petri nets by means of a partition of the set of feasible
combinations of values for its structural parameters. This
process is explained in Algorithm 9, Proposition 10, and
Theorem 11. Additionally, Theorem 20 proves that the graphs
of reachable markings of both the compound Petri net and
the associated set of alternative Petri nets are isomorphous.
Moreover, they are the same for the significant marking.
As a consequence, the compound Petri net and the set of
alternative Petri nets are said to be equivalent. Theorem 20
is illustrated in a numerical example described in Stage 6 of
Section 7.
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Theorem 20. Let us consider a compound Petri net 𝑅𝑐 =⟨𝑃, 𝑇, 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡,m0, 𝑆𝛼, 𝑆V𝑎𝑙𝛼⟩, where 𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑐) is the set of
feasible combinations of values for the structural parameters of𝑅𝑐.

Given a partition of 𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑐), ∏𝑞(𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑐)) ={𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅1), 𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅2), . . . , 𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑚𝑟)}, such that|∏𝑞(𝑆V𝑎𝑙𝑠𝑡𝑟𝛼(𝑅𝑐))| = 𝑚𝑟 > 1
By Algorithm 9 and Proposition 10, it is possible to obtain

a set of Petri nets 𝑆𝑅 = {𝑅1, . . . , 𝑅𝑚𝑟}, which according to
Theorem 11 is a set of alternative Petri nets.

In addition, it is possible to state that

(i) 𝑟𝑔(𝑅𝑐) is isomorphous to 𝑟𝑔(𝑆𝑅);
(ii) 𝑟𝑔(𝑅𝑐) = 𝑟𝑔(𝑆𝑅) for the significant marking.

Proof. This proof will be carried out by the principle of
induction.

(a) The first step, also called beginning step, consists of
describing the relation between the first node and the first set
of arcs of the reachability graphs for both 𝑅𝑐 and 𝑆𝑅.

The initial marking of 𝑅𝑐 is [m0(𝑝1),m0(𝑝2), . . .,
m0(𝑝𝑛)]𝑇.

In a general case, the marking of every place of 𝑅𝑐
might be a (marking) parameter; hence it is possible to write[m0(𝑝1),m0(𝑝2), . . . ,m0(𝑝𝑛)]𝑇 = [𝛼𝑘+1, 𝛼𝑘+2, . . . , 𝛼𝑘+𝑛].

Moreover, |𝑆𝑅| = 𝑚𝑟. For this reason, every place of 𝑅𝑐
is replicated 𝑚𝑟 times, one for every alternative Petri net.
Furthermore, the initial marking of 𝑆𝑅 is

[(m0 (𝑝1, 𝑅1) ,m0 (𝑝1, 𝑅2) , . . . ,m0 (𝑝1, 𝑅𝑚𝑟))(m0 (𝑝2, 𝑅1) ,m0 (𝑝2, 𝑅2) , . . . ,m0 (𝑝2, 𝑅𝑚𝑟))⋅ ⋅ ⋅
(m0 (𝑝𝑛, 𝑅1) ,m0 (𝑝𝑛, 𝑅2) , . . . ,m0 (𝑝𝑛, 𝑅𝑚𝑟))] .

(6)

Given a place 𝑝𝑖 ∈ 𝑃(𝑅𝑐), the different values for m0(𝑝𝑖, 𝑅𝑗),∀𝑗 ∈ N, such that 1 ≤ 𝑗 ≤ 𝑚𝑟, can be obtained from𝑆val𝛼𝑘+𝑖 = {V1(𝛼𝑘+𝑖), V2(𝛼𝑘+𝑖), . . . , V𝑢𝑘+𝑖(𝛼𝑘+𝑖)} by the application
of |∏𝑞(𝑆valstr𝛼(𝑅𝑐))| to 𝑆val𝛼(𝑅𝑐). In other words, the initial
markings of the places of every alternative Petri net derived
from 𝑅𝑐 are obtained by the assignment of the values of
the marking parameters that correspond to the feasible
combination of values associated with the alternative Petri
nets by the partition of 𝑆valstr𝛼(𝑅𝑐).

As a consequence, two possibilities may arise for
m0(𝑝𝑖, 𝑅𝑗):

(i) m0(𝑝𝑖, 𝑅𝑗) = V𝑞(𝛼𝑘+𝑖); hence, this marking presents a
unique value; then it is not a parameter of 𝑅𝑗.

(ii) m0(𝑝𝑖, 𝑅𝑗) = 𝛼𝑗
𝑘+𝑖

, where 𝑆
𝛼
𝑗

𝑘+𝑖

= {V1(𝛼𝑗𝑘+𝑖), V2(𝛼𝑗𝑘+𝑖),. . . , V
𝑢
𝑗

𝑘+𝑖

(𝛼𝑗
𝑘+1

)}; hence, this marking is a parameter of 𝑅𝑗.
It is clear that any information present in m0(𝑆𝑅) is

also present in m0(𝑅𝑐) and vice versa. This information is
classified by means of choices of a subset in ∏𝑞(𝑆valstr𝛼(𝑅𝑐))
for 𝑅𝑐 or choices of an alternative Petri net in 𝑆𝑅. For this
reason, both initial markings are equivalent.

From these initial markings, depart a series of arcs, rep-
resenting the evolution conditions of 𝑅𝑐 and 𝑆𝑅, respectively.(1)The arcs starting inm0(𝑅𝑐) are as follows:

(i) one arc for each choice of a subset in ∏𝑞(𝑆valstr𝛼(𝑅𝑐)),
in case that by means of this choice the initial marking does
not contain any parameter;

(ii) one arc for each choice of a subset in ∏𝑞(𝑆valstr𝛼(𝑅𝑐))
and for feasible value for the remaining marking parameters
inm0(𝑅𝑐), called 𝛼𝑗

𝑘+𝑖
, in case that by means of this choice the

initial marking contains at least one parameter.(2)On the other hand, the arcs starting inm0(𝑆𝑅) will be
as follows:

(i) one arc for each choice of an alternative Petri net in 𝑆𝑅,
in case that by means of this choice the initial marking does
not contain any parameter;

(ii) one arc for each choice of an alternative Petri net in 𝑆𝑅
and for feasible value for the remaining marking parameters
inm0(𝑆𝑅), called 𝛼𝑗

𝑘+𝑖
, in case that by means of this choice the

initial marking contains at least one parameter.
The choicemade in∏𝑞(𝑆valstr𝛼(𝑅𝑐)) leads to the samePetri

net as the choice made in 𝑆𝑅; for this reason the arcs starting
inm0 of both cases (𝑅𝑐 and 𝑆𝑅) are the same and are labeled
with the same information: choice, fired transition, and value
selected for the remaining marking parameters.

As a consequence, the markings reached, while 𝑆𝑅
evolves, are the same as the markings corresponding to
equivalent evolutions of the alternative Petri net 𝑅𝑗. As it has
already been mentioned, 𝑅𝑗 corresponds to a certain choice
made in ∏𝑞(𝑆valstr𝛼(𝑅𝑐)). It is clear then that the structure
of both reachability graphs will be the same so far (they are
isomorphous) and that the markings of 𝑅𝑐 will be included in
the markings of 𝑆𝑅 (because the former are the same as the
markings of the chosen alternative Petri net). Nevertheless,
the markings of 𝑆𝑅 are not included in the markings of 𝑅𝑐
since the markings of 𝑆𝑅 contain the initial marking of every
nonchosen alternative Petri net. However, this difference in
the marking of the states of 𝑆𝑅 and 𝑅𝑐 is based on values
that remain constant for any evolution of the resulting Petri
net after the choice made on ∏𝑞(𝑆valstr𝛼(𝑅𝑐)) or 𝑆𝑅. This fact
means that the markings are the same for the significant
marking in every subgraph of the reachability tree that starts
in the initial marking.

(b)Assumption step: let us consider that, given two equiv-
alent paths in rg(𝑅𝑐) and rg(𝑆𝑅), these paths are described by
means of the following information:{𝑖th choice, assignment of values for the remaining
marking parameters, sequence of transition firings}.

Being equivalent paths, the information that describes
them should be the same.

The paths lead to the following nodes m𝑘, which are
assumed to be equivalent:

(i) For 𝑅𝑐 it is obtained that, in m𝑘(𝑅𝑐, choice 𝑖), the
values selected for the remaining marking parameters must
be added:

m𝑘 (𝑅𝑐, choice 𝑖)
= [m𝑘 (𝑝1, 𝑅𝑐) ,m𝑘 (𝑝2, 𝑅𝑐) , . . . ,m𝑘 (𝑝𝑛, 𝑅𝑐)]𝑇 . (7)
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(ii) For 𝑆𝑅 the following marking is reached:

m𝑘 (𝑆𝑅, choice 𝑖)= [(m𝑘 (𝑝1, 𝑅1) ,m𝑘 (𝑝2, 𝑅1) , . . . ,m𝑘 (𝑝𝑛, 𝑅1))⋅ ⋅ ⋅(m𝑘 (𝑝1, 𝑅𝑖−1) ,m𝑘 (𝑝2, 𝑅𝑖−1) , . . . ,m𝑘 (𝑝𝑛, 𝑅𝑖−1))(m𝑘 (𝑝1, 𝑅𝑖) ,m𝑘 (𝑝2, 𝑅𝑖) , . . . ,m𝑘 (𝑝𝑛, 𝑅𝑖))(m𝑘 (𝑝1, 𝑅𝑖+1) ,m𝑘 (𝑝2, 𝑅𝑖+1) , . . . ,m𝑘 (𝑝𝑛, 𝑅𝑖+1))⋅ ⋅ ⋅
(m𝑘 (𝑝1, 𝑅𝑚𝑟) ,m𝑘 (𝑝2, 𝑅𝑚𝑟) , . . . ,m𝑘 (𝑝𝑛, 𝑅𝑚𝑟))]𝑇 ,

(8)

where every row corresponds to a certain choice; hence, it
is possible to relate the marking of the chosen alternative
Petri net to the marking of the compound Petri net and the
marking of the nonchosen alternative Petri nets with their
initial marking:

m𝑘 (𝑆𝑅, choice 𝑖)= [(m0 (𝑝1, 𝑅1) ,m0 (𝑝2, 𝑅1) , . . . ,m0 (𝑝𝑛, 𝑅1)). . .(m0 (𝑝1, 𝑅𝑖−1) ,m0 (𝑝2, 𝑅𝑖−1) , . . . ,m0 (𝑝𝑛, 𝑅𝑖−1))(m𝑘 (𝑝1, 𝑅𝑐) ,m𝑘 (𝑝2, 𝑅𝑐) , . . . ,m𝑘 (𝑝𝑛, 𝑅𝑐))(m0 (𝑝1, 𝑅𝑖+1) ,m0 (𝑝2, 𝑅𝑖+1) , . . . ,m0 (𝑝𝑛, 𝑅𝑖+1)). . .
(m0 (𝑝1, 𝑅𝑚𝑟) ,m0 (𝑝2, 𝑅𝑚𝑟) , . . . ,m0 (𝑝𝑛, 𝑅𝑚𝑟))]𝑇 .

(9)

Hence, because the paths are the same for both rg(𝑅𝑐)
and rg(𝑆𝑅), the reachability graphs are isomorphous, and
because the significantmarkings are the same, both nodes are
equivalent.

(c) Induction step: let us now analyze a descendant node
to the previous one.

First of all, it has to be considered that the set of enabled
transitions in 𝑅𝑐 and 𝑆𝑅 are the same (the transitions in𝑆𝑅 derive from the transitions in 𝑅𝑐 and they might even
have the same name), since, by the assumption step, the
marking of 𝑅𝑐 is the same as the marking of the alternative
Petri net and the incidence matrices of 𝑅𝑐 and 𝑅𝑖 are the
same after an equivalent choice made from the initial mark-
ing.

After the previous considerations, it can be written that

m𝑘+1 (𝑅𝑐, choice 𝑖) = [m𝑘+1 (𝑝1, 𝑅𝑐) ,m𝑘+1 (𝑝2, 𝑅𝑐) ,
. . . ,m𝑘+1 (𝑝𝑛, 𝑅𝑐)]𝑇 . (10)

On the other hand, themarking of the 𝑖th alternative Petri net
is the 𝑖th row of themarking of the set of alternative Petri nets𝑆𝑅, where the other rows have constant values that correspond
to the initial markings of the rest of the alternative Petri
nets:

m𝑘+1 (𝑅𝑖)
= [m𝑘+1 (𝑝1, 𝑅𝑖) ,m𝑘+1 (𝑝2, 𝑅𝑖) , . . . ,m𝑘+1 (𝑝𝑛, 𝑅𝑖)]𝑇 . (11)

It is clear that m𝑘+1(𝑅𝑐, choice 𝑖) = m𝑘+1(𝑅𝑖); hence it is
possible to state that

m𝑘+1 (𝑆𝑅, choice 𝑖) = [m𝑘+1 (𝑅1) ⋅ ⋅ ⋅ m𝑘+1 (𝑅𝑖−1) m𝑘+1 (𝑅𝑖) m𝑘+1 (𝑅𝑖+1) ⋅ ⋅ ⋅ m𝑘+1 (𝑅𝑚𝑟)]
= [m0 (𝑅1) ⋅ ⋅ ⋅ m0 (𝑅𝑖−1) m𝑘+1 (𝑅𝑐, choice 𝑖) m0 (𝑅𝑖+1) ⋅ ⋅ ⋅ m0 (𝑅𝑚𝑟)] . (12)

Hence, it is possible to conclude that
(i) rg(𝑅𝑐) is isomorphous to rg(𝑆𝑅);
(ii) rg(𝑅𝑐) = rg(𝑆𝑅) for the significant marking.

7. Example of Application

In this section, an example is presented with the purpose
of illustrating the concepts and processes described in this
research paper. It is divided into a sequence of stages labeled
with descriptive titles for better understanding.

Stage 1 (transformation of a compound Petri net in a set of
alternative Petri nets). Let us consider the compound Petri
net represented in Figure 1,𝑅𝑐, which verifies Definition 7. As
it can be seen in Figure 1, 𝑅𝑐 presents five parameters, 𝑆𝛼 ={𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5}, and the first four of them are structural

parameters, 𝑆str𝛼 = {𝛼1, 𝛼2, 𝛼3, 𝛼4}, which belong to the
incidence matrix. In Figure 1, the set of feasible values for the
parameters, 𝑆val𝛼, has also been represented, as well as the set
of feasible values for each structural parameter, 𝑆val𝛼𝑖, where𝑖 ∈ {1, 2, 3, 4}.

According to Algorithm 9, it is possible to obtain a set of
Petri nets from this compound Petri net.

The first step in the transformation of the compound
Petri net is the choice of a partition of the set of feasible
combination of values for the structural parameters of the
compound Petri net 𝑆valstr𝛼 = {(2, 2, 0, 0), (1, 1, 1, 1)}.

As it can be seen |𝑆valstr𝛼| = 2; hence, only two possibilities
arise to decompose this set.

The first option consists of making a single set from the
partition. As a result, the same compound Petri net, rather
than the original one, will be obtained. However, this solution
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is discarded because it does not meet the prerequisite of
Proposition 10,𝑚𝑟 > 1.

The case to be analyzed is the decomposition of 𝑆valstr𝛼
into two subsets:∏𝑞(𝑆valstr𝛼(𝑅𝑐)) = {𝑆valstr𝛼(𝑅1), 𝑆valstr𝛼(𝑅2)}, where𝑆valstr𝛼(𝑅1) = {(2, 2, 0, 0)} and 𝑆valstr𝛼(𝑅2) = {(1, 1, 1, 1)}.

This partition verifies Definition 8, since
(i) 𝑆valstr𝛼(𝑅1) ∪ 𝑆valstr𝛼(𝑅2) = {(2, 2, 0, 0)} ∪ {(1, 1, 1, 1)} ={(2, 2, 0, 0), (1, 1, 1, 1)} = 𝑆valstr𝛼(𝑅𝑐);
(ii) 𝑆valstr𝛼(𝑅𝑖) ̸= ⌀, 1 ≤ 𝑖 ≤ 2;
(iii) 𝑆valstr𝛼(𝑅1) ∩ 𝑆valstr𝛼(𝑅2) = ⌀ = {(2, 2, 0, 0)} ∩{(1, 1, 1, 1)}.
On the other hand, every resulting Petri net can be

obtained, according to Algorithm 9 and Proposition 10, by
means of 𝑅𝑖 = ⟨𝑃, 𝑇, pre, post,m0, 𝑆𝛼(𝑅𝑖), 𝑆val𝛼(𝑅𝑖)⟩, where𝑆valstr𝛼(𝑅𝑖) ⊆ ∏𝑞(𝑆valstr𝛼(𝑅𝑐)).

In other words, 𝑅1 will be obtained by (𝛼1, 𝛼2, 𝛼3, 𝛼4) =(2, 2, 0, 0), which once substituted in the incidence matrix of𝑅𝑐 will lead to the Petri net, whose incidence matrix is shown
as follows:

W (𝑅1) =
𝑡1 𝑡2

( −1 1𝛼1 = 2 −𝛼2 = −2𝛼3 = 0 −𝛼4 = 0 ) 𝑝1𝑝2𝑝3
=

𝑡1 𝑡2
(−1 12 −20 0 ) 𝑝1𝑝2𝑝3.

(13)

As it can be seen, 𝑅1 contains a row of zeros, which
corresponds to an isolated place. That is to say, there is a
place in 𝑅1 whose input and output arcs have weight zero.
The marking of place 𝑝3 can neither change nor modify the
marking of other places after firing of any of the transitions
of the Petri net. As a consequence, it is possible to remove
this isolated place obtaining a Petri net 𝑅󸀠1 with a graph of
reachable markings which is the same as the graph of 𝑅1,
when only the marking of the connected places is considered
(significant marking of 𝑅1).

Furthermore, m0[𝑝1] = 1 and 𝑆𝛼(𝑅1) = ⌀. In other
words, in the compound Petri net the initial marking of 𝑝1 is
a parameter, 𝛼5, since it can take two different values: 𝑆val𝛼5 ={1, 2}. Nevertheless, when place 𝑝1 of 𝑅1 is considered, its
initial marking can take a single value and, hence, it is not
a parameter anymore.

Additionally, 𝑅2 is obtained by the assignment(𝛼1, 𝛼2, 𝛼3, 𝛼4) = (1, 1, 1, 1). These values can be substituted
in the incidence matrix of 𝑅𝑐, hence, leading to the Petri net,
whose incidence matrix is given as follows:

W (𝑅2) =
𝑡1 𝑡2

( −1 1𝛼1 = 1 −𝛼2 = −1𝛼3 = 1 −𝛼4 = −1)
𝑝1𝑝2𝑝3

=
𝑡1 𝑡2

(−1 11 −11 −1)
𝑝1𝑝2𝑝3.

(14)

As it can be seen, 𝑅2 does not contain any isolated node.
Moreover,m0[𝑝1] = 2 and 𝑆𝛼(𝑅2) = ⌀.

Figure 2 shows 𝑅1 and 𝑅2, which, according to
Theorem 11, constitute a set of alternative Petri nets,𝑆𝑅 = {𝑅1, 𝑅2}.
Stage 2 (graph of reachable markings of a set of alternative
Petri nets). The graph of reachable markings of 𝑆𝑅, as
presented inDefinition 14, is given by the application of every
feasible sequence of transition firing to the initial marking of𝑆𝑅 for every feasible choice of the alternative Petri nets.

Figure 3 depicts the reachability graph of the set of
alternative Petri nets 𝑆𝑅 = {𝑅1, 𝑅2}, also called graph of
reachable markings. Every reachable marking is represented
by a box containing themarking of the places of 𝑆𝑅, which are
the places of 𝑃 = 𝑃1 ∪ 𝑃2. Notice that 𝑃1 is the set of places of
the alternative Petri net 𝑅1, while 𝑃2 is the set of places of 𝑅2.

The arrangement of the markings in any of the boxes
(vertices) of the reachability graph of 𝑆𝑅, depicted in Figure 3,
corresponds to{m [𝑝1 (𝑅1)] ,m [𝑝2 (𝑅1)] ,m [𝑝3 (𝑅1)] ,m [𝑝1 (𝑅2)] ,

m [𝑝2 (𝑅2)] ,m [𝑝3 (𝑅2)]} . (15)

Thedifferentmarkings or states are linked bymeans of arrows
(directed arcs), which represent the evolution of the Petri net
system from one state to another one after the firing of the
transitions written next to the arrow. These transitions that
label the arrows are associated with the alternative Petri net
to which they belong.

The initial marking can lead to different subgraphs
according to the choice of one or another alternative Petri
net as solution of a decision problem. For this reason, every
arc starting in the initial marking is also labeled with the
corresponding decision.

Once a decision to choose an alternative Petri net is
made, the marking that does not vary in any state of the
reachability graph is written between round brackets in the
boxes (vertices) of the graph. This absence of variation in
the marking of certain places can be due to the fact that a
set of places belong to nonchosen alternative Petri nets in a
subgraph or because it corresponds to an isolated place. Both
situations appear in m1(𝑅1) and, therefore, they have been
represented in different brackets.

Stage 3 (choice subgraphs of the set of alternative Petri nets).
The different choice subgraphs of the reachability graph of a
set of alternative Petri nets, 𝑆𝑅 = {𝑅1, 𝑅2}, are shown in this
Stage 3.

Let 𝐶 = {1, 2} be a set of natural numbers, such that|𝐶| = |𝑆𝑅|. It is possible to create a bijection𝑓: 𝑆𝑅 ↔ 𝐶, where𝑓(𝑅1) = 1 and 𝑓(𝑅2) = 2.



Complexity 11

02(0)(200)

(100)022(100)111

100200

Choice of R1

Choice of R2

m0(SR)

m1(R1)

m1(R2) m2(R2)

t1(R1)

t1(R2)
t1(R2)

t2(R1)
t2(R2)t2(R2)

Figure 3: Graph of reachable markings of a set of alternative Petri
nets.
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Figure 4: Choice subgraphs of the alternative Petri net 𝑅1 and 𝑅2.

Following Definition 15, two choice subgraphs can be
considered, as it can be seen in Figure 4.

The 1st choice subgraph is obtained from the selection of𝑅1 as solution of a decision problem associated with 𝑆𝑅, while
the 2nd choice subgraph is related to 𝑅2.
Stage 4 (reachability graph of the Petri nets belonging to a set
of alternative Petri nets). Once the choice subgraphs of all
the Petri nets belonging to 𝑆𝑅, set of alternative Petri nets,
have been represented, this stage deals with the graphs of
reachable markings of these same alternative Petri nets. This
last representation is independent of the fact that they belong
to a set of alternative Petri nets. The only difference between
both representations (Figures 4 and 5) is the removal, in the
latter, of the marking of the places that do not belong to the
Petri net but belong to the other Petri net (Petri nets in amore
general case) of 𝑆𝑅.

Figure 5 shows the reachability graphs of 𝑅1 and 𝑅2. It
is interesting to compare them with the choice subgraphs
presented in Figure 4.

Stage 5 (union of choice subgraphs of a set of alternative Petri
nets). In this stage, the union of the choice subgraphs of the
alternative Petri nets of 𝑆𝑅 = {𝑅1, 𝑅2}, developed in Stage 3, is
performed. Definition 17 describes formally this union.

The first step consists of labeling the arcs that start in the
initial marking of the subgraphs with “choice of 𝑅𝑖.” In the
labels, 𝑖 is the ordinal associated with the alternative Petri net
whose subgraph is being developed.The result of this step can
be seen in Figure 6.
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Figure 5: Reachability graphs of the Petri nets 𝑅1 and 𝑅2.
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Figure 6: First step in the union of the choice subgraphs of 𝑅1 and𝑅2, alternative Petri nets.
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Figure 7: Union of the choice subgraphs of 𝑅1 and 𝑅2.
The second step is to define the initial marking of 𝑆𝑅,

which is m0(𝑆𝑅) = [1 0 0 2 0 0]𝑇, and to substitute the first
marking of every choice subgraph by m0(𝑆𝑅). The result of
this process is shown in Figure 7.

As a result of this union, it is possible to verify rg(𝑆𝑅) =⋃2𝑖=1 rg(𝑆𝑅, 𝑖) as stated in Proposition 18. Notice that the left
side of the previous equation refers to the graph of reachable
markings of a set of alternative Petri net, 𝑆𝑅 (Figure 3), while
the right side refers to the union of choice subgraphs of
reachable markings of the individual alternative Petri nets
belonging to 𝑆𝑅; that is, ⋃2𝑖=1 rg(𝑆𝑅, 𝑖) = rg(𝑆𝑅, 1) ∪ rg(𝑆𝑅, 1)
(Figure 7). Comparing Figure 3 with Figure 7, it is possible to
see that both reachability graphs are the same. This result is
proven in Proposition 18.

Stage 6 (construction of the reachability graph of a compound
Petri net). Let 𝑅𝑐 be the compound Petri net described in
Stage 1 of this section and depicted in Figure 1.
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Figure 8: Steps 1 and 2 in the construction of the reachability graph
of 𝑅𝑐.

In order to build up the graph of reachable markings
of this compound Petri net, called rg(𝑅𝑐), the three steps
described in Definition 19 are developed.

Step 1. The first node of the reachability graph is m0(𝑅𝑐) =[1 0 0]𝑇.
Step 2. From this initial marking, there are two possible
choices to be made, regarding the set of feasible combination
of values for the structural parameters.

Step 2.1 (choice 1: (𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5) = (2, 2, 0, 0, 1)).With this
choice 𝛼5 = 1; hence, only 𝑡1 is enabled to fire, allowing the
Petri net to evolve to a new state. As a consequence, there will
be an arc starting inm0(𝑅𝑐) with the labels “choice 1,” “𝛼5 =1,” and “𝑡1.”
Step 2.2 (choice 2: (𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5) = (1, 1, 1, 1, 2)). With
this choice 𝛼5 = 2; hence, only 𝑡1 is enabled to fire, allowing
the Petri net to evolve to a new state. As a consequence there
will be an arc starting in m0(𝑅𝑐) with the labels “choice 2,”
“𝛼5 = 2,” and “𝑡1.”

The new states reached from the initial one are named as
m𝑖(choice, 𝛼5), where 𝑖 is an ordinal number corresponding
to the sequence of different markings reached under a
particular combination of values for the parameters of𝑅𝑐. On
the other hand, choice is a natural number associated with
the choice performed for the combination of values for the
structural parameters. Finally, 𝛼5 is the specific value of the
marking parameter 𝛼5 associated with this evolution of the
Petri net.

The result of Step 2 can be seen in Figure 8.

Step 3. From the markings labeled “m1(1, 1)” and “m1(2, 2)”
it is possible to explore the feasible evolutions of the Petri net𝑅𝑐, where every node inherits the choice and value of 𝛼5 of
the first arc from which it has evolved.

In Figure 9 it is possible to find the result of Step 3 in the
construction of the reachability graph of the compound Petri
net 𝑅𝑐.

At this point of the example, it is possible to compare the
reachability graph of the compound Petri net, 𝑅𝑐 (Figure 9),
and the reachability graph of the set of alternative Petri nets,𝑆𝑅 (Figure 3), obtained from 𝑅𝑐 in Stage 1.

It can be seen that both graphs are isomorphous, accord-
ing to Definition 12. On the other hand, the marking of every
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Figure 9: Reachability graph of the compound Petri net 𝑅𝑐.
pair of nodes in both graphs, located in the same position,
bears the same information concerning the significant mark-
ing. The conclusions of this comparison verify Theorem 20.

8. Conclusions

The present paper has focused on two formalisms, based on
the Petri net paradigm, commonly used for describing dis-
crete event systemswith alternative structural configurations.
This is an issue which has an immediate application in the
design of discrete event systems. The mentioned formalisms
are the parametric Petri nets and a set of alternative Petri
nets. In order to specify the particular case of parametric
Petri nets that contain parameters in their structure, that
is, incidence matrices, this formalism has been defined as
compound Petri nets. Formal definitions and analysis of the
transformation of a compound Petri net into an equivalent
set of alternative Petri nets are provided, with the purpose
of profiting from the advantages of both formalisms at
different stages of their application to the design of a discrete
event system: modeling, structural analysis, performance
evaluation, simulation, optimization, or decision making.
This analysis has been based on the study of the graph
or reachable markings. For example, the analysis of the
graph of reachable markings is the methodology used to
prove the equivalence between a compound Petri net and
a set of alternative Petri nets obtained from the former
by the application of an algorithm, also described in the
paper.

An interesting advantage of the proposed methodology
consists in the possibility of automating some stages of the
design process of a discrete event system, for example,

(a) the modeling of alternative structural configurations
with common features, which might be carried out
easily with one of both formalisms;

(b) the selection of one of the alternative structural con-
figurations by means of a decision-making method-
ology, such as a metaheuristic-guided search in the
pool of alternative configurations; this operation can
be applied to optimize an objective function that
quantifies the objectives of the design process.

The main drawbacks or challenges of the proposed
methodology are as follows:
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(a) knowing in advance which one of the formalisms is
best fitted for every stage of the decision process;

(b) knowing in advance which decisions to make in the
transformation process, such as which partition of the
set of feasible combination of values for the structural
parameters of the original compound Petri net is the
best to obtain an efficient set of alternative Petri nets
for a certain stage of the design process.

Two of the main future research lines are the application
of the results presented in this paper to a wide range of
application cases, as well as mitigating the effects of the
mentioned drawbacks of this approach.

Additionally, the authors of the present work expect
that this research will help in consolidating the feasibility
and applicability of model transformation for representing
DESwith alternative structural configurations. Asmentioned
before, these transformations may allow profiting from the
advantages of different formalisms to be applied in opti-
mization processes based on simulation. In particular, the
equivalence between compound Petri nets and a set of
alternative Petri nets might contribute to the applicability
of the search of efficient and compact models for reducing
the computational requirements of simulation of DES. Fast
simulation is a key factor in the development of efficient
decision support systems for industrial and logistic sys-
tems.
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sion Support System, Based on the Paradigm of the Petri Nets,
for the Design and Operation of a Dairy Plant,” International
Journal of Food Engineering, vol. 11, no. 6, pp. 767–776, 2015.
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