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Influence of Surface Roughness Sample Size for
C-Band SAR Backscatter Applications

on Agricultural Soils
Alex Martinez-Agirre , Jesús Álvarez-Mozos, Hans Lievens, Niko E. C. Verhoest, and Rafael Giménez

Abstract— Soil surface roughness determines the backscatter1

coefficient observed by radar sensors. The objective of this letter2

was to determine the surface roughness sample size required3

in synthetic aperture radar applications and to provide some4

guidelines on roughness characterization in agricultural soils5

for these applications. With this aim, a data set consisting of6

ten ENVISAT/ASAR observations acquired coinciding with soil7

moisture and surface roughness surveys has been processed. The8

analysis consisted of: 1) assessing the accuracies of roughness9

parameters s and l depending on the number of 1-m-long profiles10

measured per field; 2) computing the correlation of field aver-11

age roughness parameters with backscatter observations; and12

3) evaluating the goodness of fit of three widely used backscatter13

models, i.e., integral equation model (IEM), geometrical optics14

model (GOM), and Oh model. The results obtained illustrate a15

different behavior of the two roughness parameters. A minimum16

of 10–15 profiles can be considered sufficient for an accurate17

determination of s, while 20 profiles might still be not enough for18

accurately estimating l. The correlation analysis revealed a clear19

sensitivity of backscatter to surface roughness. For sample sizes20

>15 profiles, R values were as high as 0.6 for s and ∼0.35 for l,21

while for smaller sample sizes R values dropped significantly.22

Similar results were obtained when applying the backscatter23

models, with enhanced model precision for larger sample sizes.24

However, IEM and GOM results were poorer than those obtained25

with the Oh model and more affected by lower sample sizes,26

probably due to larger uncertainly of l.27

Index Terms— Agricultural soils, backscatter models, surface28

roughness, synthetic aperture radar (SAR).29

I. INTRODUCTION30

SYNTHETIC aperture radar (SAR) sensors measure the

AQ:1

31

backscatter of observed targets and offer valuable infor-32

mation for the identification of terrain covers and for the33

Manuscript received August 31, 2017; accepted October 8, 2017. This
work was supported by the Spanish Ministry of Economy and Compet-
itiveness through scholarship under Grant BES-2012-054521 and through
MINECO/FEDER, EU, under Project CGL2011-24336, Project CGL2015-
64284-C2-1-R, and Project CGL2016-75217-R. (Corresponding author:
Alex Martinez-Agirre.)

A. Martinez-Agirre, J. Álvarez-Mozos, and R. Giménez are with the
Department of Projects and Rural Engineering, IS-FOOD Institute (Innovation
and Sustainable Development in Food Chain), Public University of Navarre,
31006 Pamplona, Spain (e-mail: alejandro.mda@unavarra.es).

H. Lievens is with the Laboratory of Hidrology and Water Management,
Ghent University, B-9000 Ghent, Belgium, and also with the Global Modeling
and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt,
MD 20771 USA.

N. E. C. Verhoest is with the Laboratory of Hidrology and Water Manage-
ment, Ghent University, B-9000 Ghent, Belgium.

Color versions of one or more of the figures in this letter are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2017.2762434

retrieval of biogeophysical parameters of interest, such as soil 34

moisture (SM), vegetation phenology, and biomass. Among 35

other terrain parameters, soil surface roughness (SSR) strongly 36

affects the scattering of microwaves, and hence largely deter- 37

mines the backscatter coefficient (σ 0) observed by radar 38

sensors, complicating the interpretation and analysis of SAR 39

data [1]. In the SAR literature, SSR has been mostly para- 40

meterized by the standard deviation of the heights (s), the 41

correlation length (l), and the shape of the autocorrelation 42

function [2], generally assumed exponential for agricultural 43

soils. Several backscatter models exist that use these parame- 44

ters as input for simulating σ 0. If backscatter observations are 45

available, models can be inverted for retrieving a certain terrain 46

parameter of interest (normally SM). An accurate estimation 47

of roughness parameters is a prerequisite for this. Yet, their 48

spatial variability and also the multiscalar nature of roughness 49

make it difficult to determine s and l values with the required 50

accuracy for obtaining useful inversions [2]. 51

Surface roughness is known to be a multiscalar phe- 52

nomenon, causing instruments with different measuring 53

ranges (i.e., profile length or surveying area) yield para- 54

meter values that are not comparable with each other [2]. 55

In particular, the presence of long-wavelength roughness com- 56

ponents (i.e., several meters) on a soil surface or profile 57

can strongly affect the shape of the obtained autocorrelation 58

functions, introducing uncertainty in the determination of l [3]. 59

On the other hand, recent research has evidenced that these 60

long-wavelength components might not play a significant role 61

in the scattering of microwaves at the frequencies used by 62

earth observation satellites [4], [5]. This is in line with previous 63

studies that used profile lengths of 1–2 m for surface roughness 64

characterization with good results [6], [7]. 65

However, due to the spatial variability of surface rough- 66

ness, a minimum amount of samples might be required for 67

accurately characterizing roughness parameters for a partic- 68

ular agricultural field or roughness class. Bryant et al. [8] 69

observed that at least 20 profiles were required to accurately 70

determine s. Similarly, Baghdadi et al. [9] reported a ±10% 71

accuracy for parameter s and ±20% for l when ten roughness 72

profiles were used. Yet, it is necessary not only to assess how 73

the roughness sample size (i.e., number of profiles measured) 74

affects the accuracy of the computed parameters, but also 75

to evaluate how it influences the accuracy of backscatter 76

simulations using observed σ 0 data. 77

The aim of this letter was to evaluate the influence of surface 78

roughness sample size on SAR backscattering in different 79
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TABLE I

ROUGHNESS CLASSES CORRESPONDING TO EACH FIELD AND
MEASUREMENT DATE. FOUR 5-m-LONG ROUGHNESS

PROFILES WERE ACQUIRED PER FIELD

agricultural soils. The objective was to determine the minimum80

number of 1-m-long profiles required in SAR applications and81

to provide same guidelines on how roughness should be char-82

acterized for these applications. With this aim, a data set con-83

sisting of ENVISAT/ASAR observations acquired coinciding84

with some ground surveys has been processed. The analysis85

consisted of: 1) assessing the accuracies of s and l depending86

on the number of profiles measured per field; 2) computing87

the correlation of field average roughness parameters with88

backscatter; and 3) evaluating the goodness of fit of backscatter89

models depending on the roughness sample size considered.90

II. MATERIALS AND METHODS91

A. Test Site92

The experimental data acquisition was carried out on the93

watershed of La Tejería (N42°44′10.6′′ and W1°56′57.2′′) in94

Navarre (Spain) [10]. The climate is humid sub-Mediterranean95

with a mean annual temperature of 13 °C and an average96

annual precipitation of ∼700 mm. Soils have a silty-clay tex-97

ture and are relatively shallow (0.5–1 m deep). Ten agricultural98

fields were studied with an area ranging between 3 and 7.3 ha.99

Soil preparation operations were performed sequentially100

during September and October 2004 for cultivating win-101

ter cereal. Five different tillage treatments were observed102

from September to December 2004 (Table I): mouldboard103

plough (MP), harrowed rough (HR), harrowed smooth (HS),104

planted (P), and planted compacted (PC).105

B. Surface Roughness Data106

Surface roughness was measured using a 5-m-long laser107

profile meter with a resolution of 5 mm and a vertical accuracy108

of 1.25 mm [11]. On each monitored field, four 5-m-long109

profiles were measured per date (except for field 208 on110

September 22, 2004), spatially distributed throughout the field111

and in parallel to the tillage direction. Each acquired profile112

was subdivided into five 1-m-long profiles, and these were113

detrended using a linear function to subtract the terrain slope.114

Thus, 20 1-m-long profiles (i.e., independent samples) were115

obtained per field, making a total of 635 1-m-long profiles.116

Two standard surface roughness parameters were analyzed: 117

the standard deviation of surface heights (s) and the correlation 118

length (l) obtained considering an exponential autocorrelation 119

function [2]. Further details on the processing of profiles and 120

roughness parameters are available in [11]. 121

C. Soil Moisture Data 122

SM was measured using a commercial time domain 123

reflectometry (TDR) instrument. On each field, five spatially 124

distributed measurement locations were monitored per date. 125

Soil samples were used to calibrate the TDR probe. Also, 126

TOPLATS [12]-modeled SM values were used for four satel- 127

lite acquisition dates (Table II) on which the TDR measure- 128

ments were not available. 129

D. SAR Data 130

Ten ENVISAT/ASAR scenes were acquired over La Tejería 131

watershed during the study period (Table II). Scenes were 132

acquired as VV single-pol image mode precision image prod- 133

ucts in swath IS2 (except for September 22, 2004, that was 134

VV/HH Alternate Pol in IS1), half of them in ascending pass 135

and the other half in descending. In all cases, the resolution 136

was 30 m × 30 m. Scenes were: 1) orthorectified (with an error 137

< 1 pixel); 2) calibrated (using the local incidence angle); and 138

3) speckle filtered (gamma MAP filter with a window of 5×5). 139

Mean backscatter coefficient values σ 0 were calculated for 140

each field per date. 141

E. Data Analysis 142

The analysis presented here focused on the influence of 143

sample size on the characterization of surface roughness 144

for SAR applications. For this, an increasing number of 145

1-m-long roughness profiles (from 1 to 20) were considered 146

for each field, and the following analyses were carried out: 147

1) assessment of the behavior of roughness parameters; 148

2) evaluation of the correlation between normalized σ 0 and 149

roughness parameters; and 3) evaluation of the goodness of fit 150

of different backscatter models. 151

The behavior of roughness parameters was evaluated by 152

comparing the average and standard deviation of s and l per 153

class computed considering an increasing sample size (i.e., 154

number of profiles). For the correlation analysis, field average 155

σ 0 values were normalized for incidence angle and SM 156

variations, so as to remove the influence of factors other than 157

surface roughness on σ 0 values [5]. Further details on the nor- 158

malization can be found in [5]. The Spearman coefficient (R) AQ:2159

was computed between the σ 0
norm (normalized σ 0) series 160

and field average s and l values considering an increasing 161

sample size. Finally, the goodness of fit of three backscatter 162

models was evaluated by computing the root-mean-square 163

error (RMSE) between observed σ 0 values and simulated ones; 164

the latter were obtained using field average s and l values for 165

an increasing sample size. Due to their different nature and 166

validity range, three backscatter models were considered: the 167

physically based integral equation model (IEM) [13] and geo- 168

metrical optics model (GOM) [2] for the smooth (P and PC) 169
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TABLE II

SUMMARY OF SAR DATA

Fig. 1. Mean values of (Top) s and (Bottom) l and their standard
deviation (error bars) for different roughness classes depending on the sample
size.

and rough classes (MP, HR, and HS), respectively, and the170

semiempirical Oh model [14] that was applicable to all classes.171

III. RESULTS172

A. Behavior of Roughness Parameters173

Mean s values did not change significantly for increasing174

sample sizes, except for some minor variations when only175

1–4 profiles were used (Fig. 1). However, class variability176

Fig. 2. Spearman correlation coefficient (R) between σ0
norm and the

roughness parameters s and l depending on sample size.

decreased as the sample size increased, stabilizing for a certain 177

sample size that depended on the particular roughness class. 178

The behavior of l was rather different (Fig. 1), with strongly 179

variable mean values for small sample sizes, which stabilized 180

only after ten profiles. In this case, the reduction of class 181

variability with sample size was slower than that in s, being 182

still high for the largest sample sizes analyzed. 183

Increasing sample sizes resulted in more clustered rough- 184

ness classes in the s − l space and also in an increase in 185

the correlation between s and l (results not shown). With 186

20 profiles, a correlation of R = 0.640 was obtained for the 187

linear function l = 1.89 + 1.29 s, being similar to that found 188

in [6] in comparable conditions. 189

B. Roughness Correlation With Backscatter 190

The correlation of σ 0
norm with both roughness parameters for 191

all the sample sizes investigated is presented in Fig. 2. Parame- 192

ter s showed a steady increase of R as sample size increased, 193

reaching values of ∼0.6 when the number of profiles was 194

larger than 12. Parameter l presented a very low correlation 195

with σ 0
norm (R ∼ 0.1) when the sample size was smaller than 196

eight profiles. When the number of profiles ranged between 197

8 and 15, it showed a constant increase of correlation, and for 198



IEE
E P

ro
of

4 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

Fig. 3. Roughness class RMSE between simulated and observed field
backscatter values depending on sample size. (a) GOM model for classes
MP, HR, and HS, and IEM model for classes P and PC. (b) Oh model.

greater sample sizes correlation stabilized at R ∼ 0.4. Small199

sample sizes lead to a higher class variability, in particular for200

l and for the planted (P) roughness class, and this was the201

main cause for R to drop. When a higher number of samples202

were used, fields were better clustered around the class mean,203

leading to higher R values.204

C. Backscatter Modeling205

The goodness of fit of physically based models (IEM206

and GOM) improved as the sample size increased207

[Figs. 3(a) and 4(a)–(c)]. The improvements were clear208

when using the GOM for rough classes (MP, HR, and HS),209

with RMSE reductions of ∼1.5 dB when passing from210

1–5 profiles to 15–20 profiles. Similar RMSE reductions211

were obtained when applying the IEM to planted fields212

(P class). In this case, RMSE values passed from >4 dB for213

1–5 profiles to ∼3 dB for 15–20 profiles. On the contrary,214

the class PC had very stable RMSE values (∼2.75 dB),215

independent of the sample size considered. Considering all216

the classes, an RMSE of ∼2.5 dB was obtained in the best217

case [Fig. 4(c)], with the largest residuals corresponding to218

class P. The best RMSE values achieved per class [Fig. 3(a)]219

were still high, with values of 2–2.75 dB, except for class HS220

with ∼1 dB. These values are too high for a viable retrieval221

of SM from SAR observations.222

The semiempirical Oh model also showed a mostly decreas- 223

ing RMSE trend for increasing sample sizes [Figs. 3(b) 224

and 4(d)–(f)]. However, this decreasing trend was much 225

weaker [Fig. 4(d)–(f)] with an overall RMSE reduction of only 226

0.078 dB when passing from 5 to 20 samples. The decreasing 227

trend was different for each of the classes [Fig. 3(b)]. For 228

MP, HR, and P, the RMSE values (1.2–1.5 dB) were very 229

stable and almost independent of the sample size. Conversely, 230

decreasing RMSE values were observed for HS and PC with 231

some stabilization for sample sizes above five profiles for PC 232

(∼2 dB) and 12 profiles for HS (∼1 dB). The Oh model 233

achieved significantly lower RMSE values than did the GOM 234

and IEM, with largest residuals (∼1–2 dB) obtained at both 235

the lowest and highest ends [Fig. 4(f)], where σ 0 values were 236

underestimated for some rough and smooth fields, respectively. 237

From the analysis, the Oh model seemed to be less sensitive 238

to different sample sizes. 239

IV. DISCUSSION AND CONCLUSION 240

The results obtained illustrate a different behavior of the 241

two classical roughness parameters s and l (Fig. 1). On the 242

one hand, s was rather insensitive to the influence of sample 243

size, with quite stable class means, although, as expected, its 244

variability decreased as the sample size increased. A minimum 245

of 10–15 profiles can be considered sufficient for an accurate 246

determination of s. On the other hand, class-mean l values 247

varied more strongly for low sample sizes, and even if its 248

variability decreased for increasing sample sizes, it was still 249

much higher than that of s. In this case, depending on the 250

particular roughness class, a sample of 20 profiles might still 251

be insufficient for estimating l with the required accuracy. 252

Similarly, Baghdadi et al. [9] found that averaging ten pro- 253

files (1 m long) resulted in quite accurate s estimates (∼10% 254

error) but much more variable l estimates (∼20% error). For 255

larger sample sizes, a significant correlation between s and l 256

was observed, similar to [6]. The existence of an l = f (s) 257

dependence could be used to reduce the number of unknown 258

roughness parameters, which can be important for ill-posed 259

algorithm inversion problems. 260

The correlation analysis (Fig. 2) revealed a clear sensitivity 261

of backscatter to surface roughness, and in particular s, similar 262

to [15]. However, when the number of profiles was insuf- 263

ficient for accurately determining the field mean roughness 264

parameters, R values dropped significantly. On the contrary, 265

for sample sizes >15 profiles, R values were as high as 0.6 for 266

s and ∼0.35 for l. As the number of samples increased, class 267

variability decreased, leading to better clustered field means 268

that positively correlated with backscatter. 269

Similar results were obtained when applying the backscatter 270

models (Figs. 3 and 4), with enhanced model precision for 271

larger sample sizes. However, this analysis highlighted the 272

influence of l on the physically based IEM and GOM models. 273

IEM and GOM results were poorer than those obtained with 274

the semiempirical Oh model due to the higher uncertainly 275

of l. This could be explained by the larger number of samples 276

required for an accurate estimation of l, which caused larger 277

errors in IEM and GOM simulations for a given number of 278

profiles than that in the Oh model. 279
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Fig. 4. Goodness of fit between simulated and observed backscatter coefficients per field for different roughness sample sizes with (a)–(c) GOM model for
classes MP, HR, and HS and IEM model for classes P and PC, and (d)–(f) Oh model.

To conclude, the results obtained evidence the existing280

relation between C-band SAR backscatter and SSR for rough-281

ness scales shorter than 1 m, as long as a sufficient number282

of samples are used to accurately characterize roughness.

AQ:3

283

Due to the large spatial variability of roughness parameters,284

a minimum of ten samples were required for s and a value even285

larger than 20 might be required for l. The lower variability of286

s caused a better fit of the semiempirical Oh model than that287

of the physically based IEM and GOM, which were affected288

by the higher variability of l. Altogether, the relatively small289

errors obtained with the Oh model (between 1 and 1.5 dB290

in most cases) recommend its use for the retrieval of SM as291

long as a minimum of 10–15 1-m-long roughness profiles are292

available per field.293
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Influence of Surface Roughness Sample Size for
C-Band SAR Backscatter Applications

on Agricultural Soils
Alex Martinez-Agirre , Jesús Álvarez-Mozos, Hans Lievens, Niko E. C. Verhoest, and Rafael Giménez

Abstract— Soil surface roughness determines the backscatter1

coefficient observed by radar sensors. The objective of this letter2

was to determine the surface roughness sample size required3

in synthetic aperture radar applications and to provide some4

guidelines on roughness characterization in agricultural soils5

for these applications. With this aim, a data set consisting of6

ten ENVISAT/ASAR observations acquired coinciding with soil7

moisture and surface roughness surveys has been processed. The8

analysis consisted of: 1) assessing the accuracies of roughness9

parameters s and l depending on the number of 1-m-long profiles10

measured per field; 2) computing the correlation of field aver-11

age roughness parameters with backscatter observations; and12

3) evaluating the goodness of fit of three widely used backscatter13

models, i.e., integral equation model (IEM), geometrical optics14

model (GOM), and Oh model. The results obtained illustrate a15

different behavior of the two roughness parameters. A minimum16

of 10–15 profiles can be considered sufficient for an accurate17

determination of s, while 20 profiles might still be not enough for18

accurately estimating l. The correlation analysis revealed a clear19

sensitivity of backscatter to surface roughness. For sample sizes20

>15 profiles, R values were as high as 0.6 for s and ∼0.35 for l,21

while for smaller sample sizes R values dropped significantly.22

Similar results were obtained when applying the backscatter23

models, with enhanced model precision for larger sample sizes.24

However, IEM and GOM results were poorer than those obtained25

with the Oh model and more affected by lower sample sizes,26

probably due to larger uncertainly of l.27

Index Terms— Agricultural soils, backscatter models, surface28

roughness, synthetic aperture radar (SAR).29

I. INTRODUCTION30

SYNTHETIC aperture radar (SAR) sensors measure the
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31

backscatter of observed targets and offer valuable infor-32

mation for the identification of terrain covers and for the33
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retrieval of biogeophysical parameters of interest, such as soil 34

moisture (SM), vegetation phenology, and biomass. Among 35

other terrain parameters, soil surface roughness (SSR) strongly 36

affects the scattering of microwaves, and hence largely deter- 37

mines the backscatter coefficient (σ 0) observed by radar 38

sensors, complicating the interpretation and analysis of SAR 39

data [1]. In the SAR literature, SSR has been mostly para- 40

meterized by the standard deviation of the heights (s), the 41

correlation length (l), and the shape of the autocorrelation 42

function [2], generally assumed exponential for agricultural 43

soils. Several backscatter models exist that use these parame- 44

ters as input for simulating σ 0. If backscatter observations are 45

available, models can be inverted for retrieving a certain terrain 46

parameter of interest (normally SM). An accurate estimation 47

of roughness parameters is a prerequisite for this. Yet, their 48

spatial variability and also the multiscalar nature of roughness 49

make it difficult to determine s and l values with the required 50

accuracy for obtaining useful inversions [2]. 51

Surface roughness is known to be a multiscalar phe- 52

nomenon, causing instruments with different measuring 53

ranges (i.e., profile length or surveying area) yield para- 54

meter values that are not comparable with each other [2]. 55

In particular, the presence of long-wavelength roughness com- 56

ponents (i.e., several meters) on a soil surface or profile 57

can strongly affect the shape of the obtained autocorrelation 58

functions, introducing uncertainty in the determination of l [3]. 59

On the other hand, recent research has evidenced that these 60

long-wavelength components might not play a significant role 61

in the scattering of microwaves at the frequencies used by 62

earth observation satellites [4], [5]. This is in line with previous 63

studies that used profile lengths of 1–2 m for surface roughness 64

characterization with good results [6], [7]. 65

However, due to the spatial variability of surface rough- 66

ness, a minimum amount of samples might be required for 67

accurately characterizing roughness parameters for a partic- 68

ular agricultural field or roughness class. Bryant et al. [8] 69

observed that at least 20 profiles were required to accurately 70

determine s. Similarly, Baghdadi et al. [9] reported a ±10% 71

accuracy for parameter s and ±20% for l when ten roughness 72

profiles were used. Yet, it is necessary not only to assess how 73

the roughness sample size (i.e., number of profiles measured) 74

affects the accuracy of the computed parameters, but also 75

to evaluate how it influences the accuracy of backscatter 76

simulations using observed σ 0 data. 77

The aim of this letter was to evaluate the influence of surface 78

roughness sample size on SAR backscattering in different 79

1545-598X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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TABLE I

ROUGHNESS CLASSES CORRESPONDING TO EACH FIELD AND
MEASUREMENT DATE. FOUR 5-m-LONG ROUGHNESS

PROFILES WERE ACQUIRED PER FIELD

agricultural soils. The objective was to determine the minimum80

number of 1-m-long profiles required in SAR applications and81

to provide same guidelines on how roughness should be char-82

acterized for these applications. With this aim, a data set con-83

sisting of ENVISAT/ASAR observations acquired coinciding84

with some ground surveys has been processed. The analysis85

consisted of: 1) assessing the accuracies of s and l depending86

on the number of profiles measured per field; 2) computing87

the correlation of field average roughness parameters with88

backscatter; and 3) evaluating the goodness of fit of backscatter89

models depending on the roughness sample size considered.90

II. MATERIALS AND METHODS91

A. Test Site92

The experimental data acquisition was carried out on the93

watershed of La Tejería (N42°44′10.6′′ and W1°56′57.2′′) in94

Navarre (Spain) [10]. The climate is humid sub-Mediterranean95

with a mean annual temperature of 13 °C and an average96

annual precipitation of ∼700 mm. Soils have a silty-clay tex-97

ture and are relatively shallow (0.5–1 m deep). Ten agricultural98

fields were studied with an area ranging between 3 and 7.3 ha.99

Soil preparation operations were performed sequentially100

during September and October 2004 for cultivating win-101

ter cereal. Five different tillage treatments were observed102

from September to December 2004 (Table I): mouldboard103

plough (MP), harrowed rough (HR), harrowed smooth (HS),104

planted (P), and planted compacted (PC).105

B. Surface Roughness Data106

Surface roughness was measured using a 5-m-long laser107

profile meter with a resolution of 5 mm and a vertical accuracy108

of 1.25 mm [11]. On each monitored field, four 5-m-long109

profiles were measured per date (except for field 208 on110

September 22, 2004), spatially distributed throughout the field111

and in parallel to the tillage direction. Each acquired profile112

was subdivided into five 1-m-long profiles, and these were113

detrended using a linear function to subtract the terrain slope.114

Thus, 20 1-m-long profiles (i.e., independent samples) were115

obtained per field, making a total of 635 1-m-long profiles.116

Two standard surface roughness parameters were analyzed: 117

the standard deviation of surface heights (s) and the correlation 118

length (l) obtained considering an exponential autocorrelation 119

function [2]. Further details on the processing of profiles and 120

roughness parameters are available in [11]. 121

C. Soil Moisture Data 122

SM was measured using a commercial time domain 123

reflectometry (TDR) instrument. On each field, five spatially 124

distributed measurement locations were monitored per date. 125

Soil samples were used to calibrate the TDR probe. Also, 126

TOPLATS [12]-modeled SM values were used for four satel- 127

lite acquisition dates (Table II) on which the TDR measure- 128

ments were not available. 129

D. SAR Data 130

Ten ENVISAT/ASAR scenes were acquired over La Tejería 131

watershed during the study period (Table II). Scenes were 132

acquired as VV single-pol image mode precision image prod- 133

ucts in swath IS2 (except for September 22, 2004, that was 134

VV/HH Alternate Pol in IS1), half of them in ascending pass 135

and the other half in descending. In all cases, the resolution 136

was 30 m × 30 m. Scenes were: 1) orthorectified (with an error 137

< 1 pixel); 2) calibrated (using the local incidence angle); and 138

3) speckle filtered (gamma MAP filter with a window of 5×5). 139

Mean backscatter coefficient values σ 0 were calculated for 140

each field per date. 141

E. Data Analysis 142

The analysis presented here focused on the influence of 143

sample size on the characterization of surface roughness 144

for SAR applications. For this, an increasing number of 145

1-m-long roughness profiles (from 1 to 20) were considered 146

for each field, and the following analyses were carried out: 147

1) assessment of the behavior of roughness parameters; 148

2) evaluation of the correlation between normalized σ 0 and 149

roughness parameters; and 3) evaluation of the goodness of fit 150

of different backscatter models. 151

The behavior of roughness parameters was evaluated by 152

comparing the average and standard deviation of s and l per 153

class computed considering an increasing sample size (i.e., 154

number of profiles). For the correlation analysis, field average 155

σ 0 values were normalized for incidence angle and SM 156

variations, so as to remove the influence of factors other than 157

surface roughness on σ 0 values [5]. Further details on the nor- 158

malization can be found in [5]. The Spearman coefficient (R) AQ:2159

was computed between the σ 0
norm (normalized σ 0) series 160

and field average s and l values considering an increasing 161

sample size. Finally, the goodness of fit of three backscatter 162

models was evaluated by computing the root-mean-square 163

error (RMSE) between observed σ 0 values and simulated ones; 164

the latter were obtained using field average s and l values for 165

an increasing sample size. Due to their different nature and 166

validity range, three backscatter models were considered: the 167

physically based integral equation model (IEM) [13] and geo- 168

metrical optics model (GOM) [2] for the smooth (P and PC) 169
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TABLE II

SUMMARY OF SAR DATA

Fig. 1. Mean values of (Top) s and (Bottom) l and their standard
deviation (error bars) for different roughness classes depending on the sample
size.

and rough classes (MP, HR, and HS), respectively, and the170

semiempirical Oh model [14] that was applicable to all classes.171

III. RESULTS172

A. Behavior of Roughness Parameters173

Mean s values did not change significantly for increasing174

sample sizes, except for some minor variations when only175

1–4 profiles were used (Fig. 1). However, class variability176

Fig. 2. Spearman correlation coefficient (R) between σ0
norm and the

roughness parameters s and l depending on sample size.

decreased as the sample size increased, stabilizing for a certain 177

sample size that depended on the particular roughness class. 178

The behavior of l was rather different (Fig. 1), with strongly 179

variable mean values for small sample sizes, which stabilized 180

only after ten profiles. In this case, the reduction of class 181

variability with sample size was slower than that in s, being 182

still high for the largest sample sizes analyzed. 183

Increasing sample sizes resulted in more clustered rough- 184

ness classes in the s − l space and also in an increase in 185

the correlation between s and l (results not shown). With 186

20 profiles, a correlation of R = 0.640 was obtained for the 187

linear function l = 1.89 + 1.29 s, being similar to that found 188

in [6] in comparable conditions. 189

B. Roughness Correlation With Backscatter 190

The correlation of σ 0
norm with both roughness parameters for 191

all the sample sizes investigated is presented in Fig. 2. Parame- 192

ter s showed a steady increase of R as sample size increased, 193

reaching values of ∼0.6 when the number of profiles was 194

larger than 12. Parameter l presented a very low correlation 195

with σ 0
norm (R ∼ 0.1) when the sample size was smaller than 196

eight profiles. When the number of profiles ranged between 197

8 and 15, it showed a constant increase of correlation, and for 198
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Fig. 3. Roughness class RMSE between simulated and observed field
backscatter values depending on sample size. (a) GOM model for classes
MP, HR, and HS, and IEM model for classes P and PC. (b) Oh model.

greater sample sizes correlation stabilized at R ∼ 0.4. Small199

sample sizes lead to a higher class variability, in particular for200

l and for the planted (P) roughness class, and this was the201

main cause for R to drop. When a higher number of samples202

were used, fields were better clustered around the class mean,203

leading to higher R values.204

C. Backscatter Modeling205

The goodness of fit of physically based models (IEM206

and GOM) improved as the sample size increased207

[Figs. 3(a) and 4(a)–(c)]. The improvements were clear208

when using the GOM for rough classes (MP, HR, and HS),209

with RMSE reductions of ∼1.5 dB when passing from210

1–5 profiles to 15–20 profiles. Similar RMSE reductions211

were obtained when applying the IEM to planted fields212

(P class). In this case, RMSE values passed from >4 dB for213

1–5 profiles to ∼3 dB for 15–20 profiles. On the contrary,214

the class PC had very stable RMSE values (∼2.75 dB),215

independent of the sample size considered. Considering all216

the classes, an RMSE of ∼2.5 dB was obtained in the best217

case [Fig. 4(c)], with the largest residuals corresponding to218

class P. The best RMSE values achieved per class [Fig. 3(a)]219

were still high, with values of 2–2.75 dB, except for class HS220

with ∼1 dB. These values are too high for a viable retrieval221

of SM from SAR observations.222

The semiempirical Oh model also showed a mostly decreas- 223

ing RMSE trend for increasing sample sizes [Figs. 3(b) 224

and 4(d)–(f)]. However, this decreasing trend was much 225

weaker [Fig. 4(d)–(f)] with an overall RMSE reduction of only 226

0.078 dB when passing from 5 to 20 samples. The decreasing 227

trend was different for each of the classes [Fig. 3(b)]. For 228

MP, HR, and P, the RMSE values (1.2–1.5 dB) were very 229

stable and almost independent of the sample size. Conversely, 230

decreasing RMSE values were observed for HS and PC with 231

some stabilization for sample sizes above five profiles for PC 232

(∼2 dB) and 12 profiles for HS (∼1 dB). The Oh model 233

achieved significantly lower RMSE values than did the GOM 234

and IEM, with largest residuals (∼1–2 dB) obtained at both 235

the lowest and highest ends [Fig. 4(f)], where σ 0 values were 236

underestimated for some rough and smooth fields, respectively. 237

From the analysis, the Oh model seemed to be less sensitive 238

to different sample sizes. 239

IV. DISCUSSION AND CONCLUSION 240

The results obtained illustrate a different behavior of the 241

two classical roughness parameters s and l (Fig. 1). On the 242

one hand, s was rather insensitive to the influence of sample 243

size, with quite stable class means, although, as expected, its 244

variability decreased as the sample size increased. A minimum 245

of 10–15 profiles can be considered sufficient for an accurate 246

determination of s. On the other hand, class-mean l values 247

varied more strongly for low sample sizes, and even if its 248

variability decreased for increasing sample sizes, it was still 249

much higher than that of s. In this case, depending on the 250

particular roughness class, a sample of 20 profiles might still 251

be insufficient for estimating l with the required accuracy. 252

Similarly, Baghdadi et al. [9] found that averaging ten pro- 253

files (1 m long) resulted in quite accurate s estimates (∼10% 254

error) but much more variable l estimates (∼20% error). For 255

larger sample sizes, a significant correlation between s and l 256

was observed, similar to [6]. The existence of an l = f (s) 257

dependence could be used to reduce the number of unknown 258

roughness parameters, which can be important for ill-posed 259

algorithm inversion problems. 260

The correlation analysis (Fig. 2) revealed a clear sensitivity 261

of backscatter to surface roughness, and in particular s, similar 262

to [15]. However, when the number of profiles was insuf- 263

ficient for accurately determining the field mean roughness 264

parameters, R values dropped significantly. On the contrary, 265

for sample sizes >15 profiles, R values were as high as 0.6 for 266

s and ∼0.35 for l. As the number of samples increased, class 267

variability decreased, leading to better clustered field means 268

that positively correlated with backscatter. 269

Similar results were obtained when applying the backscatter 270

models (Figs. 3 and 4), with enhanced model precision for 271

larger sample sizes. However, this analysis highlighted the 272

influence of l on the physically based IEM and GOM models. 273

IEM and GOM results were poorer than those obtained with 274

the semiempirical Oh model due to the higher uncertainly 275

of l. This could be explained by the larger number of samples 276

required for an accurate estimation of l, which caused larger 277

errors in IEM and GOM simulations for a given number of 278

profiles than that in the Oh model. 279
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Fig. 4. Goodness of fit between simulated and observed backscatter coefficients per field for different roughness sample sizes with (a)–(c) GOM model for
classes MP, HR, and HS and IEM model for classes P and PC, and (d)–(f) Oh model.

To conclude, the results obtained evidence the existing280

relation between C-band SAR backscatter and SSR for rough-281

ness scales shorter than 1 m, as long as a sufficient number282

of samples are used to accurately characterize roughness.

AQ:3

283

Due to the large spatial variability of roughness parameters,284

a minimum of ten samples were required for s and a value even285

larger than 20 might be required for l. The lower variability of286

s caused a better fit of the semiempirical Oh model than that287

of the physically based IEM and GOM, which were affected288

by the higher variability of l. Altogether, the relatively small289

errors obtained with the Oh model (between 1 and 1.5 dB290

in most cases) recommend its use for the retrieval of SM as291

long as a minimum of 10–15 1-m-long roughness profiles are292

available per field.293
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