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Abstract  

Tree age (AGE) and stocking degree (P) strongly influence tree shape, but their effects have been 

neglected in most tree profile equations. In addition, data used to build traditional tree profile 

equations usually do not meet the statistical requirements of independence and identical distribution of 

observations. The main objectives were to present a method to improve taper equations with 

measurements easily collected in tree inventories (age, stocking degree) and also improve the 

statistical accuracy of those equations by selecting parameters with a more rigorous way than that is 

traditionally being done. We evaluated the effects of incorporating age and stocking degree as 

regressors in tree profile equations selected among 30 candidate foundation equations and 

parameterized with data from 1,858 Larix gmelinii (Rupr.) trees growing in the northern China. We 

used nonlinear mixed-effects models to minimize statistical problems present when building 

traditional tree profile equations: lack of independence and identical distribution of observations, 

random effects related to individual trees. Equations incorporating age and stocking degree 

significantly improved their accuracy. When the equation parameters were estimated with mixed-

effects models containing exponential variance functions and accounting for non-independence of 

observations from the same tree, diameters at any height along the tree bole were more accurately 

estimated. We demonstrate a new methodology to build more accurate tree profile equations that could 

support better economic valorization of timber and improve calculations of carbon flows in forests, not 

only for natural L. gmelinii forest but for other species growing in dense natural stands around the 

globe. 

 

Keywords Nonlinear mixed-effects model; single, segmented and variable-form taper functions; 

          autocorrelation; heteroskedasticity.    
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1. Introduction 

Taper equations allow forest managers to estimate timber volume, how the diameter of the stem 

(over or under bark) changes along the length of the stem (Clutter et al. 1983; West 2009), and the size 

of various end products (pulpwood, sawlogs, poles, veneer, etc.). Taper equations can be classified into 

three main categories: (i) single taper equations such as those developed by Kozak et al. (1969), 

Ormerod (1973), and Sharma and Oderwald (2001); (ii) segmented taper equations, as presented by 

Max and Burkhart (1976) and Farrar (1987); and (iii) variable-form taper equations as described by 

Kozak (1988), Kozak (2004), and Sharma and Parton (2009).  

Single taper models describe the taper in a stem based on a single function (Sharma and 

Oderwald 2001). To save computing time, Kozak (1988) developed the variable-form taper equation, 

becoming the most researched model type (Bi 2000; Bi and Long 2001; Kozak 2004; Li and Weiskittel 

2010). In general, variable-form taper models have shown the lowest bias and the greatest precision in 

taper predictions of the three types of taper models, followed by segmented and single taper models 

(Rojo et al. 2005; Sakici et al. 2008). 

Taper equations also have to be in accordance with the known tree ecophysiology. The shape of 

the bole generally shows considerable differences such as straight from top to bottom, satiation, curve 

(bend), or a sharp and distinct or indistinct trunk. Tree shape is generally influenced by a broad range 

of factors such as: tree genetic make-up (Larson 1963; Meng 2006), tree characteristics (e.g., age, 

crown size, position of branch and species) (Gray 1956; Li and Weiskittel 2010; Muhairwe 1993; 

Muhairwe et al. 1994), stand characteristics (e.g., density and stand age) (Gray 1956; Larson 1963; 

Muhairwe 1993; Sharma and Zhang 2004), site characteristics (e.g., water and nutrients) (Calama and 

Montero 2006; Larson 1963; Metzger 1894), climatic factors (e.g., mean annual precipitation and end 

of frost-free period) (Nigh and Smith 2012; Schneider 2018), and management and land use actions 

(e.g., thinning and pruning) (Ferreira et al. 2014; Tasissa and Burkhart 1998; Tasissa et al. 1997). 

These factors play an important role on taper equations as well (Brooks et al. 2008) and have been 

incorporated as independent variables on top of conventional variables such as total height, diameter at 

breast height (DBH) and height above the ground. Numerous studies have documented that the 

addition of crown dimensions-related metrics can improve taper equations´ accuracy (Jiang and Liu 
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2011; Leites and Robinson 2004; Valenti and Cao 1986). However, such improvements in model 

accuracy depend on the region, species and other aforementioned factors (Burkhart and Walton 1985; 

Li and Weiskittel 2010; Muhairwe et al. 1994; Valenti and Cao 1986). It is also well known that tree 

age (AGE) also strongly influences tree stem form because tree growth includes diameter and height 

from the continued biomass accumulation with increasing AGE (Brooks et al. 2008). Newnham (1965) 

stated that taper increased most rapidly with AGE in trees grown with heavy thinning. 

In addition, several attempts have been made to incorporate tree density (defined as the number of 

trees per area unit) into taper models (e.g., Sharma and Zhang (2004) and Smithers (1961)). However, 

there are two major disadvantages of incorporating tree density into taper profile models. First, 

available tree density information is usually deficient. For example, only three tree density values were 

used by both Sharma and Zhang (2004) and Smithers (1961) to assess the effect of tree density on 

stem form. Second, tree density typically shows a response to stand density worse than the stocking 

degree (P).  

Although other stand or individual tree variables have been previously incorporated to taper 

equations, few studies have quantitatively examined the effects of introducing AGE or AGE and P 

simultaneously on taper model accuracy. In addition, both AGE and P are typically species-specific, as 

each tree species grows at a different rate and into different stem shapes. Therefore, taper equations are 

limited by species specificities (Li et al. 2012; Sharma and Zhang 2004). It is particularly important to 

account for that for species not well represented in academic literature, like those from northern China.   

While taper equations have been extensively used, a concern is that multiple measurements from 

an individual tree used in the construction of taper equations may led to autocorrelation and 

heteroskedasticity (Lindstrom and Bates 1990), which violate the assumption of independent 

distribution of observations (Valentine and Gregoire 2001). An early example of introducing random 

factors in volume equations was provided by Lappi (1991). Nonlinear mixed-effects (NLME) models 

can solve these problems as they allow a predictive role in two ways, i.e., a typical response (including 

only fixed-effects parameters) and a calibrated response (including both fixed- and random-effects 

parameters) (Calama and Montero 2004). NLME models have the advantage of estimating the 

covariance matrix associated with hierarchical structure data (Garber and Maguire 2003). Additionally, 
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they can use the prior measurement of the diameter within the sample tree to calculate random-effects 

parameters and then calibrate the taper profile model to the sample tree level (Gómez-García et al. 2013; 

Trincado and Burkhart 2006).  

The forests in the Great Khingan Mountains (Inner Mongolia, northeast China) are among the most 

sensitive ecosystems to global climate change in China (Fu et al. 2018). These forests are the largest 

continuous bright coniferous forest of the cold temperate zone in China (Xu 1998), being Larix gmelinii 

(Rupr.) the dominant tree species (Jiang et al. 2002). Larix gmelinii forests account for more than 57% 

of the total Greater Khingan Mountains area, and the volume of L. gmelinii forests occupies about 8% 

of the total standing volume in Chinese forests (DFPRC 2014). These forests have been the focus of 

research for several years as L. gmelinii is also a major commercial species in Chinese boreal forest (Xu 

1998). As the demand for timber has increased during the past decades, accurate determination of stem 

taper has great interest (Lejeune et al. 2009). However, in spite of its economic and ecological 

importance, the factors driving L. gmelinii stem growth and shape are yet poorly understood. Hence, we 

attempt to develop specific stem taper equations for L. gmelinii, which would help to improve timber 

volume estimates and carbon sequestration budgets, and as a result, contribute to the sustainable 

management of these forests. 

Given the above mentioned research gaps, we hypothesize that: 1) in the case of natural forests 

adding the variables AGE and P will significantly improve stem taper equations; and 2) using NLME 

tree profile equations with random effects at tree level will be a successful strategy to remove the 

issues of heteroskedasticity and autocorrelation from the data structure used to build up the taper 

models. When testing these two hypotheses, we aim to reach the following objectives: 1) to construct a 

specific taper equation for L. gmelinii; 2) if our first hypothesis is supported, to incorporate AGE and 

P as independent variables into the taper equation to quantitatively analyze their effect on model 

predictive precision when estimating diameters along the bole; and 3) if our second hypothesis is 

supported, to develop a NLME taper equation with random effects at tree level to reduce 

autocorrelation and heteroskedasticity of hierarchical structure data when data are repeatedly 

measured for the same tree. 
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2. Materials and Methods 

2.1 Study area and stem data 

The study area is located in the Greater Khingan Mountains of Inner Mongolia, situated in the sub-

frigid region with a distinct cold temperate continental monsoon climate (Supplementary Information: 

Fig. S1). The geographical range of the study area is 119° 36´-125° 19′ E, and 47° 3´-53° 20′ N. Between 

330 and 1,750 m.a.s.l., the annual precipitation ranges from 350 to 500 mm, most of which falls in May 

to October. The mean annual temperature is about -3°C and the mean monthly maximum and minimum 

temperatures are 17 to 20°C and -20 to -30°C in July and January, respectively. Slopes in the region are 

moderate, being the average slope 10°. Research area´s soil type is predominantly a dark brown forest 

soil. L. gmelinii is the dominant tree species. Other tree species include white birch (Betula platyphylla 

Suk.), aspen (Populus davidiana Dole), Scots pine (Pinus sylvestris L. var. mongolica Litv.) and Korean 

spruce (Picea koriensis Nakai). The main forest types include L. gmelinii-Ledum palustre, L. gmelinii-

grass and L. gmelinii-Rhododendron dahurica (Xu 1998). 

Data used in this research came from natural L. gmelinii stands located in the 17 Forestry Bureaus 

throughout the Greater Khingan Mountains (Fig. S1), covering the existing P range of these forests. A 

total of 10,729 measured values were taken from 1,858 dominant, intermediate and suppressed trees 

with AGE ranging from 7 to 201 years from 381 plots with areas from 0.04 to 1.05 ha. Trees were felled 

and measured to model stem shape variability. To validate each model, 2,146 data points (20% of total 

data) were randomly selected as a validation dataset. The remaining data were used for model fitting. 

All trees were measured for DBH outside bark (D) (diameter at breast height, 1.3 m above the 

ground) to the nearest 0.1 cm, total tree height (H) to the nearest 0.1 m, and diameter outside bark (d) at 

stump height (between 0.1 and 0.3 m above the ground) and at 0.7 m height. Diameter along the stem 

was measured at 0.5, 1 or 2 m intervals (depending on the total height of the sample trees) from DBH 

to the tree tip. In each section, two perpendicular diameters outside bark (d) were measured and were 

then arithmetically averaged. Tree age was estimated by counting growth rings at the basal stem section. 

The following three indicators were calculated for each tree: q = h/H (relative height), X = (H − 

h)/(H − 1.3) and Z =(H − h)/H. For stand density, P is the most accurate indicator in multiaged stands 

(O’Hara 2014). In order to calculate P, the basal area of the stand was first calculated. Two methods 
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were used to determine the basal area of the stand; 

I. For the first 355 plots stand basal areas were calculated by positioning a subplot of known 

area. The diameters at breast height outside bark of all the trees in the subplot were 

measured. The diameters were then converted to stem cross-sectional areas, the results 

summed and divided by the plot area to give stand basal area.  

II. For the last 26 plots that were set up, stand basal areas were measured using the self-

leveling stick type angle gauge (angle count sampling), using a basal area factor (Fg) of 1 

m2/ha. The principles of this method can be found in Bitterlich (1984).  

The P value of each stand was determined using the basal area of the current stand divided by the 

basal area of the standard yield stand (P = 1), which was estimated based on a standard table of the 

basal area-volume for natural L. gmelinii under the same site conditions (Agriculture and Forestry 

Planning Team of Inner Mongolia Autonomous Region 1974). Summary statistics for D, H, AGE and 

P of sample trees used in fitting and validating the models are described in Table 1. Fig. 1 shows the 

variation magnitude between the relative height and relative diameter (d/D) according to measurement 

data points of the 1,858 trees. 

<Table 1 here> 

< Fig. 1 here> 

 

2.2 Stem taper foundation equation 

Thirty different taper equations were used (Table S1). The first sixteen taper equations are single 

taper models, the middle four equations are segmented taper models, and the last ten taper equations 

are variable-form taper models. All the foundation stem taper models were fitted with the nonlinear 

least squares using the nlme package in R (Pinheiro et al. 2018). The Newberry and Burkhart (1986), 

Max and Burkhart (1976) and Kozak (2004)-(2) models were superior to the other models in 

predicting diameter outside bark of Larix gmelinii for the single, segmented and variable-form taper 

models, respectively. However, the Max and Burkhart (1976) model displayed the smallest R2
adj and 

the largest RMSE, MAB and MPRB for both fitting and validation, when compared with the other two 

models mentioned above. Therefore, the Newberry and Burkhart (1986) and Kozak (2004)-(2) models 
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were selected in this study as the foundation models for further incorporation of AGE and P, and for 

developing NLME single and variable-form taper models, respectively. The best single taper 

foundation model selected was (Eq. (1)): 

2

1 ( )
1.3

i ij b

ij i ij

i

H h
d b D

H



 


                     (1) 

The best variable-form taper foundation model selected was (Eq. (2)):  
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    (2) 

where dij (cm) is diameter outside bark at a height hij of the jth measurement in the ith tree; Di (cm) and 

Hi (m) are the DBH outside bark and total tree height of the ith tree, respectively; xij = (1-qij
1/3)/(1-

(1.3/Hi)1/3), qij = hij /Hi; εij is an error term; and b1–b9 are model parameters.     

 

2.3 Additional AGE and P variables as regressors in stem taper foundation equations 

A univariate ANOVA was used to test whether relative diameters were statistically different for 

AGE and P. The relative height (independent variable) was divided into ten sections. Within each 

section, AGE was divided into five different classes, following the standard set by the State Forestry 

Administration of the P.R. China (SFAPRC 2011, see Appendix 1 in Supplementary Information for a 

detailed explanation of how age classes are defined). The AGE classes were as follows: young (0–40 

years), half-mature (41–80 years), near-mature (81–100 years), mature (101–140 years) and over-

mature (>141 years). The P values of the stands were equally divided into three different density 

classes as follows: low (0.10–0.39), middle (0.40–0.69) and high (>0.7). Before data analysis, 

boxplots and histograms were used to detect possible outliers and to determine the skeweness of the 

data (Liu et al. 2014). Differences among groups of AGE and P were tested with Tukey’s honest 

significant difference test. A p value of 0.05 or less was defined as statistically significant. 

The Pearson correlation coefficient was calculated to measure the relationship between the 

dependent variable (d) and AGE and P (independent variables). Scatter plots were used to seek the 

relationship between the relative diameter and AGE and P. To avoid bias on model selection by the use 

of pre-selected regressor type on AGE or P in the taper equation, several forms of linear, power, 

file:///C:/Documents%20and%20Settings/Program%20Files/Youdao/Dict/7.5.2.0/resultui/dict/
file:///C:/Documents%20and%20Settings/Program%20Files/Youdao/Dict/7.5.2.0/resultui/dict/
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exponential, and logarithmic models and their combinations for AGE and P were repeatedly tested by 

adding them into the best-fitted foundation model identified for L. gmelinii to validate the performance 

and identify the most suitable form of the variables AGE and P in the best-fitted foundation models. 

Comparisons were made among fitted models with different forms for AGE and P in terms of the 

Akaike´s information criterion (AIC), Bayesian information criterion (BIC) and log likelihood 

(logLik) (Sakamoto et al. 1986; Schwarz 1978; Yang et al. 2009b) for the stem diameter predictions. 

 

2.4 Nonlinear mixed-effects (NLME) models   

NLME models contain both fixed-effects parameters common to all individuals and random-

effects parameters specific for each individual. Hence, the most important step in the construction of 

the NLME models is to determine which parameters are the fixed-effects parameters and which 

parameters are the mixed-effects (both fixed and random effects) parameters. The most common 

method to determine the parameter status is to fit the same tree profile model with possible 

combinations of fixed- and random-effects parameters and to select as the optimal fitted mixed-effects 

model the one with the smallest AIC and BIC. The mixed-effects model fitting was performed with 

restricted maximum likelihood using the nlme function of the nlme package in R v. 3.5.2 (R 

Development Core Team 2017). 

Datasets of tree profile equations were compiled from different points along the same individual 

tree stem, thus leading to the two problems of heteroskedasticity and autocorrelation usually identified 

in common taper equations (Neter et al. 1996). Heteroskedasticity and autocorrelation can be handled 

by incorporating individual tree as a random effect into NLME models of tree profile to accurately 

predict stem diameters at any h value (Garber and Maguire 2003; Pinheiro and Bates 2000). The 

expression of NLME models was as follows Eq. (3): 

 ( , )i i i if d X     (3) 

where di is the vector for diameter outside bark at the different heights h on the ith tree (dependent 

variable); Xi is the vector for the independent variable; θi is the parameter vector of fixed and random 

effects for the NLME model, 
i i i i A B u  ; β is the vector of fixed parameters with design matrix Ai; 
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Bi is the random effects design matrix for the sample tree; ui is the vector of random effects for sample 

tree, ~ (0, )u Di N , where N is the multivariate normal distribution and D is the variance–covariance 

structure matrix for the random-effects parameters ui, which explains between-tree random variability, 

and is considered common to every tree analyzed (Calama and Montero 2005).  

Under these conditions, the D matrix, which must be a positive semidefinite matrix, is generally 

considered as the unstructured positive definite matrix in forest research (Dong et al. 2016; Pinheiro and 

Bates 2000; Yang et al. 2009b). We also used our dataset of stem taper to show that the evaluation 

indices, AIC and BIC, are the smallest when the D matrix is the unstructured positive matrix. D can be 

expressed as follows Eq. (4): 

   

2

1 12 1 2 1 1

2

12 1 2 2 2 2

2

1 1 2 2

n n

n n

n n n n n

Corr Corr

Corr Corr

Corr Corr

 
 
 
 
  
 

D

    

    

    

       (4) 

where 
1 ,

2 and
n represent the standard deviation of the first, second and nth random effects, 

respectively;
12Corr ,

1nCorr and
2nCorr are the correlation coefficient between the first and second 

random effects, the first and nth random effects and the second and nth random effects; εi is random error, 

εi ~N (0, Ri), where Ri is the within-tree variance–covariance matrix, which needs to be specified to 

account for any within-tree heteroskedasticity and autocorrelation among measurements. Ri can be 

expressed as follows: 

 2 0.5 0.5

i i i iR G G    (5) 

where 2 is a scaling factor for error dispersion which was given by the value of residual variance of the 

estimated model; Gi is the diagonal matrix explaining the variance of within-tree heteroskedasticity; and 

i is a matrix accounting for within-tree autocorrelation structure of the errors.  

To correct the within-tree heteroskedasticity, we utilized a power of the fitted value ( d̂ ) variance 

function, 2 2ˆVar( ) di i

  , an exponential of the fitted value variance function,

2 ˆVar( ) exp(2 d )i i   , or a constant plus power of the fitted value variance function, 
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22 2

1
ˆVar( ) ( d ) i i

   , where δ, δ1, and δ2 are estimated parameters (Pinheiro and Bates 2000). 

Among the three variance functions tested mentioned above, the exponential variance function 

demonstrated the best performance for the NLME single and variable-form taper models (see 

Appendix S and Table S3 in Supplementary Information for details for the performance comparison of 

NLME models with different variance functions). Thus, in this study we selected the exponential 

variance function to explain observed data heteroskedasticity.  

Because the data used in the tree profile models were measured with an unequal distance along the stem , 

we used first-order autoregressive models (AR(1) models), first-order continuous autoregressive 

correlation structure (CAR(1) models) and mixed autoregressive-moving average models (ARMA 

models) (Pinheiro and Bates 2000) to model the within-tree autoregressive structure of error and thus 

account for the autocorrelation of the data. Among the AR(1), CAR(1) and ARMA models, the CAR(1) 

model demonstrated the best performance for the NLME single and variable-form taper models (see 

Appendix S and Table S2 in Supplementary Information for details for the performance comparison of 

NLME models with different correlation structures). Thus, in this study we select the CAR(1) model to 

remove the autocorrelation of within the sample tree, which can be defined as 
'

'( , ) 
d jj

ij ijCov    , 

where 
'( , )ij ijCov     is the covariance between two residuals 

ij  and 
'ij  from tree i; ρ is the 

estimated correlation parameter of first-order continuous autoregressive correlation structure (CAR(1)); 

the continuous autoregressive error structure assumes that the within-sample tree correlation decreases 

with increasing distance 'jjd between two observation h on tree i. ' 'jj ij ijd h h  , for 'j j (Pinheiro and 

Bates 2000). 

 

2.5 Prediction of diameter outside bark (d) 

The prediction of d could be made by the NLME taper equation with or without random effects at 

tree level. The d prediction using NLME taper equation without random effects does not require prior 

diameter measurements from each tree. Only fixed-effects parameters were applied to predict the d 

mean response. Thus, the random-effects parameters (the expected value as 0) are not predicted. The d 
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prediction using NLME taper equation with random effects requires prior measured diameter 

information. The mixed-effects parameters including both mean response (only fixed-effects 

parameters) and calibrated response (fixed- and random-effects parameters) were applied to predict 

subject-specific d calibrations. The empirical best linear unbiased prediction (EBLUP) method (Eq. 

(6)) (Vonesh and Chinchilli 1997) was used to calculate the sample tree-level random effects. The 

expression is written as Eq. (6) 

 
1ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ( )T T

i i i i i i

 u DZ R Z DZ e  (6) 

where ˆ
iu is vector of the random effects from sample tree i; D̂ is the estimated unstructured variance-

covariance matrix for ui; ˆ
iR  is the estimated matrix of within-tree variance–covariance for the error 

term; ˆ
ie  is the residuals vector, the components of which are calculated as the difference between the 

observed d value of the sample tree for the subsample and the predicted d value using the fixed-effects 

models; and ˆ
iZ is the design matrix of the partial derivatives of Eq. (3), i.e. ˆ , 0

( , , )

i

i i
i

i





 u

u X
Z

u 

f
. 

The random-effects parameters of the NLME models were predicted using the method of random 

subsamples (Sharma et al. 2016). A total of four randomly selected subsamples, which have low 

inventory cost and high prediction accuracy, has been recommended as the optimal sampling number 

for the most accurate calculation of the random-effects parameters, even when model types are different 

(Calama and Montero 2004; Fu et al. 2017b; Paulo et al. 2011). Thus, d measurements at four random 

h for each sample tree were used to predict the random effects of the tree profile model in this study. 

Details on the calculation of random-effects parameters for NLME models can be found in Meng and 

Huang (2009) and Fu et al. (2017b). 

 

2.6 Model evaluation 

As AIC and BIC can represent a penalized likelihood criteria, so they are widely used goodness of 

fit criteria for comparing taper models, where the dependent variable for each taper model was the same 

and all the models compared were fitted to the same data. In this study, in order to determine whether 

the fit and prediction performance of corresponding fixed- and mixed-effects models met the accuracy 
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requirements, besides AIC and BIC, the following four statistical indicators for each model were 

calculated to determine the best stem taper model for L. gmelinii: adjusted coefficient of determination 

(R2
adj), root mean squared error (RMSE), mean absolute error (MAB) and mean percentage of relative 

bias (MPRB).   

Residual plots were generated to ensure satisfaction of the assumptions of normality and 

homoscedasticity of the residuals, identifying outliers when the standardized residuals of the 

observation value were lower than −2 or higher than +2 standard deviation (Dong et al. 2015; Feng 

2004).  

 

3 Results 

3.1 Inclusion of AGE and P variables 

There were significant differences in the relative diameter of the trees among the three P 

classifications (low, middle and high) along the entire tree stem (0 < q ≤ 1; F = 21.82, p < 0.001; Table 

2). The average relative diameter of tree bole in the stands with low P was 0.783 ± 0.003, the biggest 

among all stands, significantly higher than the other two stands (p < 0.001, Table 2). Stands with 

different P showed different trends for relative diameter in each relative height (q intervals of 

0.1).When q ranged from 0 to 0.1 and from 0.8 to 1.0, the relative diameter variables had no 

significant differences among stand densities, where tree boles are modeled geometrically in the forest 

literature commonly using neiloid and cone approaches, respectively. Relative diameter of the stands 

with low densities in q from 0.1 to 0.4 was significantly different from the stands with the middle and 

high densities, reduced as the stand densities progressively increased, where a cylindrical shape was 

usually used to describe stem form. The section from the top end of the cylinder to the bottom start of 

the cone was characterized using a paraboloid, where q range is between 0.4 and 0.8, but the q range 

corresponding to different geometrical shapes is dependent on tree species. Differences in paraboloid 

stem form were not significant for stands with middle and high P. 

<Table 2 here> 

The smallest relative diameter (0.717 ± 0.008) was found in the half-mature forest (Table 3). 

Differences in relative diameter among AGE classes were smaller than among P, but there were 

javascript:showjdsw('showjd_0','j_0')
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significant differences among young, half-mature and near-mature forests in relative diameter along 

the entire tree bole (0 < q ≤ 1) except for q from 0.7 to 1 (there were no differences between young 

and half-mature forests). In the q from 0.1 to 0.7, relative diameter in the mature forests was larger 

than over-mature forest and there were significant differences between the mature and over-mature 

forests (Table 3). However, in the q from 0 to 0.1 (neiloid) and 0.8 to 1.0 (cone) the relative diameter 

variables showed no significant differences between the mature and over-mature forests. In summary, 

ANOVA indicated that P and AGE exerted significant effects on the tree stem diameter. 

<Table 3 here> 

Among all the models in which several functions of variables (all forms of AGE and P) were 

combined for the single (Eq. (1)) and variable-form (Eq. (2)) taper models, Eqs. (7) and (8), for which 

all the parameters were significant at the 95% confidence level, showed the lowest AIC (28298.52 and 

26630.35) and BIC (28333.81and 26715.04) values, and the largest logLik (−14144.26 and 

−13303.17) values, respectively. The final taper equations including AGE and P information were 

written as 

Newberry and Burkhart (1986) model with AGE and P: 

 3 4( P )

1 2{[ ln(AGE )]( ) }
1.3


  


ib bi ij

ij i i ij

i

H h
d b b D

H
  (7) 

Kozak (2004)-(2) model with AGE and P: 
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qD H iji i
ij ij i i ij i ib q b e b x b D b H b x b b

bb

ij i i ij ijd b D H x   (8) 

where AGEi and Pi are age of the ith tree and the stocking degree of the stand in which the ith tree is 

located, respectively, and b1–b11 are model parameters. 

The parameters, which were significant at the 95% confidence level, in the models adding the 

AGE and P (Eqs. (7) and (8)) for the single and variable-form taper models were shown in Table 4. 

<Table 4 here> 

 

3.2 NLME models and parameter estimates 

When considering sample-tree-level random effects, Eq. (7) with more than three random-effects 
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parameters and Eq. (8) with more than two random-effects parameters failed to reach convergence (the 

different tolerances of the two adjacent iterations are more than 0.000001, with a maximum number of 

iterations of 50). Preliminary analysis showed that Eqs. (7) and (8) including two random-effects 

parameters were better than Eqs. (7) and (8) including one random-effects parameter among the 

converged mixed-effects models. The best two random-effects parameters for Eqs. (7) and (8) were 

associated with the parameters b2 and b4, and b1 and b6, respectively. The following Eqs. (9) and (10) 

had the lowest AIC (27236.59 and 25349.94) and BIC (27293.05 and 25455.80) values, and the 

highest logLik (−13610.30 and −12659.97) values. In addition, all the parameters of Eqs. (9) and (10) 

were significant at the 95% confidence level, and Eqs. (9) and (10) were thus selected as the optimal 

NLME single and variable-form taper models, respectively: 

 3 4 4( ( ) P )

1 2 2{[ ( )ln(AGE )]( ) }
1.3

 
   


i ib b ui ij

ij i i i ij

i

H h
d b b u D

H
  (9) 
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qD H iji i
ij i ij i i ij i ib q b e b u x b D b H b x b b

bb

ij i i i ij ijd b u D H x   (10) 

where u2i, u4i, u1i and u6i are the random-effects parameters produced by the ith sample tree on b2, b4, 

b1, and b6, respectively.  

Equations (9) and (10) including each of the three variance function and the three correlation 

structures significantly improved model performance (using L.Ratio, p < 0.0001) comparing with the 

models in which homogeneous variances were assumed (Table S2 and S3), respectively. Even with 

random effects in the parameters, heteroskedasticity and autocorrelation persisted in the NLME single 

and variable-form taper models (Eq. (9) and Eq. (10)). Consequently, both Eq. (9) and Eq. (10) were 

fitted with exponential variance functions and CAR(1) with the best performance to further explain the 

variance heterogeneity and autocorrelation, respectively. The parameters, which were significant at the 

95% confidence level, in the complete NLME models of L. gmelinii (the foundation models adding the 

AGE and P at sample tree level combining exponential variance function and CAR(1) model) for the 

single and variable-form taper profile models were estimated as follows (Eqs. (11) and (12)). Eq. (11) 

and Eq. (12) had lower AIC (23025.68 and 22467.98) and BIC (23096.26 and 22587.96) values, and 

larger logLik (−11502.84 and −11216.99) values than Eq. (9) and Eq. (10). 
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The complete NLME single taper profile model: 
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The complete NLME variable-form taper profile model:  
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3.3 Evaluation of model fitting and validation  

Four randomly selected diameters for each sampled tree were used to calculate the random effects 

of the tree profile NLME models in this study. Table 5 summaries the evaluation indices of the fitting 

and validation for fixed and NLME models of single and variable-form taper models based on the 

fitting and validation datasets. 

<Table 5 here> 

All six models showed acceptable goodness of fit and validation, accounting for more than 97% 

of L. gmelinii taper variation (Table 5). Regardless of the fitting or validation data, each variable-form 

taper profile model (except for the Kozak (2004)-(2) model) showed a better performance than the 

single taper profile model. The MAB and MPRB of the validation data for the Kozak (2004)-(2) 
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model were much larger than those of the NLME model combining CAR(1) and an exponential 

variance function for the single taper profile model (Eq. (11)). Of the single taper profile models, Eq. 

(11) performed best, followed by the foundation model incorporating AGE and P variables (Eq. (7)) 

and then by the foundation model (Eq. (1)), which showed an average RMSE decrease of 13.93% and 

11.83% for fitting and validation, respectively. There were also corresponding decreases of 9.18% and 

8.72% in MAB and MPRB for fitting and validation, respectively. Similarly, in the variable-form taper 

profile models, NLME model combining CAR(1) and exponential variance function (Eq. (12)) had the 

smallest RMSE, MAB and MPRB. Models adding AGE and P (Eq. (8)), showed slightly worse 

performance in the fitting statistics than the foundation model (Eq. (2)), but better validation statistics 

(Table 5). However, Eq. (8) demonstrated lower AIC (26630.35 < 27014.52) and BIC (26715.04 < 

27085.09) values, and larger logLik values (−13303.17 > −13497.26) for predicting the stem diameter 

of any tree height. The RMSE decrease ranged from 2.39% to 4.67%, and the MAB and MPRB 

decrease ranged from 4.43% to 6.86%, depending on whether the fitting or validation dataset was 

applied. Based on AIC, BIC, logLik, and fitting and validation statistics, the NLME models including 

the exponential variance function and CAR(1) eliminated the heteroskedasticity and autocorrelation 

and significantly improved the predicted performance.  

The standardized residual plots also showed that residuals of all six models were distributed 

around the zero mean, except the bottom sections of the stem, which were substantially larger than ±2 

standard deviation (Fig. 2, 1.0 < predicted relative d ≤ 1.2). It is clear that residual variance of Eq. (12) 

was more homogeneous along the tree bole and Eq. (1) showed a much poorer performance than other 

models (Fig. 2). Overall, based on the fitting and validation indictors and standardized residual plots, 

Eq. (12) was identified as the optimal model for modeling taper profile of L. gmelinii in the Greater 

Khingan Mountains of Inner Mongolia, northeast China. 

< Fig. 2 here> 

 

3.4 An example application of the developed single and variable-form taper models 

Fig. 3 shows the simulation of diameters at corresponding heights along the tree bole for a 

selected tree of L. gmelinii (D = 24.5 cm, H = 20.3 m, AGE = 103 years and P = 0.71, from the 
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validation dataset).  

(1) If tree age, stocking degree and four random complementary upper stem diameter 

measurements are available (h = 1.0, 5.0, 9.0 and 19.0 m and d = 25.2, 22.0, 20.0 and 2.5 cm at the 

corresponding height h) for this selected tree, the vector of the random-effects parameters ˆ
iu for the 

NLME single and variable-form taper models can be estimated using the EBLUP (Eq. (6)): 

2
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for the NLME variable-form taper model. Then the random-effects parameter values ˆ
iu  were 

substituted into Eqs. (11) and (12) to obtain the tree-specific stem diameters at the corresponding 

height (Fig. 3, red lines);  

(2) If tree age and stand stocking are available but no stem diameter measurement is available, 

then Eq. (11) or (12) are still the equations used to obtain the mean upper stem diameter prediction 

only using the fixed parameter estimates as the random effects can no longer be predicted and the 

random-effects vectors were assumed to be equal to their expected estimates E(ui = 0);  

(3) If tree age and stocking degree are not available and only D and H are known, strictly 

speaking, Eq. (1) and (2) are still invalid to estimate the stem diameters if they were fitted using non-

linear least squares and there is heteroscedasticity and autocorrelation in residuals. But if the 

requirement to model accuracy is not very high and the error is acceptable, Eqs. (1) and (2) can be 

used to estimate the stem diameters at the corresponding height (Fig. 3, black lines). Because model 

parameters estimated using non-linear least squares are still unbiased, only estimated variances and 

confidence interval estimation on model parameters are biased (the parameters of Eqs. (1) and (2) can 

be found in Table 4). If we also know AGE and P, similarly, Eqs. (7) and (8) can be used to estimate 

the stem diameters at the corresponding height (Fig. 3, blue lines). Overall, the NLME taper models 

including both fixed-effects parameters and calibrated responses improved the model d prediction, 

particularly in the middle and near the top of the stem, where bias of d was the lowest (Fig. 3).  

< Fig. 3 here> 
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4. Discussion 

4.1 Stem taper foundation models for L. gmelinii 

This study identified the optimal stem taper foundation models on the basis of the statistical 

indicators and model simplicity as the Newberry and Burkhart (1986) and Kozak (2004)-(2) models 

for the single and variable-form taper models. However, our results were not fully consistent with 

previous studies. Adding to this inconsistency among previous studies, Sakici et al. (2008) 

recommended the Demaerschalk (1972) model as the optimal single taper model for Bornmullerian fir 

(Abies nordmanniana subsp. bornmulleriana Mattf.), which was the most accurate single taper model 

for the selected 17 simple polynomial in their study. Yet Rojo et al. (2005) found that the single taper 

functions developed by Cervera (1973) provided the most accurate predictions among 19 other single 

taper models for maritime pine (Pinus pinaster Ait.). One of the main reasons for such disparity of 

results is the simple ecophysiological fact that there is no general stem taper model to provide a better 

description for all tree species, as different tree species have different wood properties, growth rates, 

and aboveground architecture. To make things more complicated, all these factors have strong genetic 

and site-specific environmental drivers.  

In the present study, the Kozak (2004)-(2) variable-form taper model showed the best 

performance for L. gmelinii, agreeing with results by Kozak (2004) who concluded it was the best 

taper model to estimate diameter inside bark and suggested that it could be widely applied to many 

tree species. Supporting the transferability of this model, the Kozak (2004)-(2) variable-form taper 

model similarly provided the best performance in describing the stem profile of five major pine 

species in El Salto (Durango, Mexico) (Corral-Rivas et al. 2007); lodgepole pine (Pinus contorta var. 

latifolia Engelm.) (Yang et al. 2009b); birch (Betula pubescens Ehrh.) (Gómez-García et al. 2013); 

and red spruce (Picea rubens (Sarg.)) and white pine (Pinus strobus (L.)) (Li and Weiskittel 2010). 

Menéndez-Miguélez et al. (2014) also described superior performance using the Kozak (2004)-(2) 

model in predicting diameter for chestnut (Castanea sativa Mill.) coppiced stands.  

However, despite such reports on superior performance, the Kozak (2004)-(2) taper model still 

has relatively large residuals at the tree stem butt (Fig. 2) and is a non-compatible variable-exponent 

taper model. One reason could be the lack of clear ecophysiological parameters in a purely 
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mathematical model, as many of the early taper models have been developed using data from even-age 

secondary forests or even plantations, in which growth variability among trees is reduced compared to 

a natural dense forest. When including age and tree density, some of the variability in micro-site and 

tree conditions directly affecting growth conditions of each individual tree is therefore taken into 

account, improving predictions of stem taper, as seen in Fig. 3.  

In general, it is assumed that the variable-form taper model had the lowest bias when estimating 

diameters along the tree bole, closely followed by the segmented and single taper models (Rojo et al. 

2005; Sakici et al. 2008). However, our results do not support this assumption, as they indicated that 

the single taper model by Newberry and Burkhart (1986) provided more accurate prediction than the 

Max and Burkhart (1976) segmented taper model. Similarly, Özçelik and Crecente-Campo (2016) 

found that variable-form taper models were inferior to segmented taper models in terms of prediction 

accuracy, which is again in contradiction with the most common results described in the literature. 

Given these inconsistencies among studies, it is clear that no optimal taper model (either single or 

variable-form) exists and that species- and site-specific factors are influential in stem shape.  

 

4.2 Modeling AGE and P effects on taper of L. gmelinii 

Some previous studies suggested that predictors of h, H and DBH were able to accurately model 

the stem taper, while other studies considered that including predictors of tree age (Muhairwe et al. 1994; 

Tasissa and Burkhart 1998), stand density (Muhairwe et al. 1994; Scolforo et al. 2018; Sharma and 

Parton 2009) and climatic variables (Schneider 2018) would best improve the stem taper prediction 

accuracy. However, based on our results, we argue that stem taper models including h, H and DBH as 

the independent variables may be sufficiently accurate for even aged stands and stands with a consistent 

density, but might not be so for natural forest, supporting our first hypothesis.  

The corroboration of our first hypothesis is sustained by the significant improvements observed for 

the stem taper model incorporating AGE and P as predictor variables. For example, the predictive ability 

on the upper stem for the Kozak (2004)-(2) taper model with AGE and P was higher than without AGE 

and P (Fig. 2). This could be because the Kozak (2004)-(2) model incorporating AGE and P had greater 

biological relevance than the foundation model. The effect of AGE on stem taper is likely to be mostly 
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associated with the tree crown as the upper stem receives more sunlight than the lower stem (Barnes et 

al. 1998) and the tree crown responds to changes in stand density (P). Previous studies have also shown 

that the addition of new parameters substantially improved stem form predictions. For example, the 

introduction of crown class, site class, and breast height age into the Kozak (1988) variable-exponent 

taper model (Muhairwe et al. 1994); total basal area (BA) and D, i.e. ( /BA D ) into the Sharma and 

Oderwald (2001) model (Sharma and Parton 2009); or slenderness (reflected by height to diameter ratio) 

and crown base height into a variable-exponent model (Courbet and Houllier 2002), all improved the 

basic model´s accuracies.  

However, in our results the prediction accuracy for stem taper models with AGE and P was still 

low in the neiloid shape (Fig. 2, 1.0 < predicted relative d ≤ 1.2), for which there was no significant 

difference between models with and without AGE and P as independent variables. There are three 

possible reasons for this result. First, P had no effect and AGE had little to no effect (between mature 

and over-mature forests) on the relative diameters for the frustum of the neiloid (0 < q ≤ 0.1, Table 2 

and 3). Second, a neiloid taper equation is especially adequate to model stump volume, but if stump 

diameter has been used to estimate DBH, error is introduced when estimating volume from DBH (Pond 

and Froese 2014). Third, although tree growth primarily follows biological limitations, stem growth 

depends on complex multifactorial and site-specific factor combinations, which are complicated and 

thus hard to model with statistical methods. Empirical and theoretical taper equations only simulate the 

effect of relative height change on taper. No matter how accurate the equation, uncertainty cannot be 

completely eliminated, because all models are simplifications of reality (Kimmins et al. 2008). 

 

4.3 Mixed-effects taper models for L. gmelinii  

Our results demonstrated that incorporating two random-effects parameters led to more accurate 

predictions of stem taper, supporting our second hypothesis. Such result indicate that accounting for the 

sampled tree as a random effect accounted for part of the variability and therefore the result was a more 

reliable prediction of diameters along the tree stem. It is crucial for studies applying mixed-effects 

models to determine the within-tree variance–covariance structure for the matrix of the error term Ri. 

Both the NLME single taper model (Eq. 11) and NLME variable-form taper model (Eq. 12) used 
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exponential variance functions and CAR(1) to minimize the effect for the within-tree heteroskedasticity 

and autoregressive structure of error, respectively. In this manner, Eqs. (11) and (12) improved the model 

performances relative to other NLME model forms that did not include CAR(1) and exponential 

variance functions (Eqs. 9 and 10, Table S2 and S3) or fixed-effects models of the stem profile (Table 

5, Fig. 2). Other authors have also shown that adding CAR(1) to the taper model greatly removed the 

autocorrelation (Li and Weiskittel 2010; Trincado and Burkhart 2006; Younger 2007). In addition, an 

exponential variance function had a better correction effect on the heterogeneous residual variances than 

a power variance function for repeated-measures data (Fu et al. 2017a; Trincado and Burkhart 2006; 

Zhao et al. 2005). However, some studies have shown that heterogeneous residual variances could be 

corrected by weighting through a power variance function (Wang et al. 2014; Yang et al. 2009a). 

One of the earliest examples of the inclusion of random effects in forestry applications was the 

generation of height growth curves (Lappi and Bailey 1988). In the same line as our results, NLME 

models have been successfully applied to the development of taper equations (Özçelik et al. 2011), 

crown width equations (Fu et al. 2013; Yang and Huang 2017), biomass equations (Njana et al. 2016), 

tree height and diameter equations (Gollob et al. 2018; MacPhee et al. 2018; Mehtätalo et al. 2015), and 

top height equations (Sharma and Reid 2018). This suggests that the inclusion of random-effects 

parameters significantly improves the fit of the corresponding equations by capturing part of the natural 

variability related to biological processes involved in tree growth.  

Estimation of the random-effects parameters of the NLME model is a key step in model applications 

based on the EBLUP method (Eq. 6) and explicit derivation of corresponding models if additional 

diameter subsamples are available. NLME models significantly improved their predictive ability relative 

to the fixed-effects models with reduction of RMSE by 1.22%–13.93% and R2
adj increase of 0.09%–

0.74% (Table 5), based on the calibrated response using four random measured upper stem diameters 

for each sample tree. Hence, our results with previous research suggesting four as the optimal subsample 

size used in estimating random effects (Calama and Montero 2004; Fu et al. 2017a; Paulo et al. 2011).  

Although models fitted considering random-effects parameters can eliminate the autocorrelation 

and heteroskedasticity, a compromise should be achieved between model prediction accuracy 

requirements for practical applications, complexity of the error covariance structure when using more 
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than one randomly selected sub-sample, and operational costs involved in additional diameter 

measurements to estimate random-effects parameters. It is difficult to estimate the random effects within 

sample trees unless four randomly selected diameters at different points along the same tree stem are 

available for the calibration of the NLME models. However, recent advances in measurement 

equipments make this issue of accurately measuring four upper-stem diameter measurements on 

standing trees in a forested setting less problematic. In addition, sometimes the reduction of the precision 

of the models by measurement error exceeds the improvement in precision from the inclusion of the 

random-effects parameters (Fu et al. 2017b; Gómez-García et al. 2013). This could arise in the following 

cases: (i) deformed diameter measurement, such as forked, sunken, or burl stems or trees lacking apical 

dominance; (ii) the field measurement errors encountered by field staff or faulty instruments (Fu et al. 

2017b; Omule 1980); or (iii) the choice of number of diameter classes (Schröder et al. 2015), and the 

values of AGE and P. 

Our results show the viability of including more ecologically meaningful parameters (such as tree 

age and stocking degree) but at the same time improving accuracy of taper equations, reaching therefore 

a more adequate degree of model complexity (Kimmins et al. 2008). Such enhanced models can be used 

to improve estimations of volume, biomass or carbon in standing forests as well as in harvested trees.  

 

5. Conclusions 

Out of the 30 stem taper foundation models studied, the Newberry and Burkhart (1986), Max and 

Burkhart (1976) and Kozak (2004)-(2) models showed the best estimates for diameters along the stem. 

Of these, the Max and Burkhart (1976) model provided the worst accurate predictions. As we 

hypothesized, AGE and P exhibited significant effects on tree stem and improved the models when 

incorporated into the taper equations. As we also hypothesized, common exponential variance 

functions and CAR(1) can be used to minimize within-tree heteroskedasticity and autoregressive 

structure of error for both NLME models. The NLME taper models included both fixed-effects 

parameters and calibrated responses when four random complementary upper stem diameter 

measurements are available for a new tree, which improved the fitting and predicting abilities of 

model estimation for diameter at any height along the tree bole. We have then provided the first 
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improved taper modes with NLME single and variable-form taper models for natural forests of L. 

gmelinii in the Greater Khingan Mountains of Inner Mongolia, northeast China (Eqs. 11 and 12), but 

our approach is probably suitable for other tree species, and the example provided here can be used as 

guidance for further research. 

In conclusion, when developing taper functions for trees in natural forests it is strongly suggested 

that tree age and stocking degree to be accounted for in the model, and if possible, the introduction of 

a random effects model to account for the potential violation of assumptions in the stem data used to 

create the models. These recommendations are timely and relevant as the need for accurate timber 

volume estimation in multi-aged, dense stands is already increasing as forest management moves 

towards management regimes closer to nature, precisely by increasing the number of tree age cohorts 

in secondary forests, therefore making them more similar to natural forests such as those used in this 

research.  
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Variable Fitting   Validation  

 Mean SD Min Max  Mean SD Min Max 

No. of data points=8583  No. of data points=2146 

D(cm) 16.3 6.9 1.0 68.3  16.4 7.2 2.1 68.3 

H(m) 15.3 4.1 2.0 43.0  15.3 4.3 3.2 41.9 

AGE (a) 25 32 7 200  27 35 10 201 

P 0.63 0.14 0.27 0.96  0.64 0.12 0.32 0.94 

Note: D, diameter at breast height outside bark; H, total tree height; AGE, tree age; P, stocking 
degree. Min, minimum; Max, maximum; SD, standard deviation. 
 

 

 
 

 

 

Table 2. ANOVA of relative diameter (mean ± standard error) for different stocking degrees (low, 

middle and high stocking degree) for different relative height classes (q intervals of 0.1). 

Relative 
height 

Low stocking degree Middle stocking degree High stocking degree 
F p 

d/D N d/D N d/D N 

0<q≤1 0.783±0.003 a 8719 0.763±0.006 b 1460 0.713±0.011 c 550 21.82 <0.001 

0<q≤0.1 1.044±0.003a 2288 1.032±0.006a 447 1.034±0.009a 143 2.24 0.106 

0.1<q≤0.2 0.972±0.002a 912 0.915±0.008b 48 0.866±0.006c 51 132.34 <0.001 

0.2<q≤0.3 0.846±0.002a 1172 0.825±0.003b 228 0.806±0.006c 43 25.20 <0.001 

0.3<q≤0.4 0.803±0.003a 686 0.756±0.005b 98 0.732±0.006c 53 47.70 <0.001 

0.4<q≤0.5 0.713±0.002a 1124 0.688±0.004b 184 0.669±0.006bc 51 22.61 <0.001 

0.5<q≤0.6 0.636±0.003a 797 0.585±0.004b 196 0.590±0.006bc 59 51.31 <0.001 

0.6<q≤0.7 0.535±0.003a 664 0.517±0.005ab 121 0.496±0.006b 54 7.17 0.001 

0.7<q≤0.8 0.441±0.004a 487 0.417±0.010ab 67 0.401±0.007b 54 7.30 0.001 

0.8<q≤0.9 0.273±0.005a 357 0.278±0.011a 39 0.262±0.014a 26 0.22 0.804 

0.9<q <1 0.136±0.005a 232 0.132±0.013a 32 0.136±0.012a 16 0.06 0.945 

Note: Superscript letters in the same row indicate significant differences between treatments 

(Tukey’s HSD, p < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. ANOVA of relative diameter (mean ± standard error) for different tree age classes 
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(young, half-mature, near mature, mature and over mature forest) for different relative height 

classes (q intervals of 0.1). 

Relative 

height  

Young forest Half-mature forest Near mature forest Mature forest Over mature forest F p 

d/D N d/D N d/D N d/D N d/D N   

0<q≤1 0.786±0.003a 7429 0.717±0.008b 1368 0.785±0.009a 1238 0.777±0.201a 291 0.769±0.017a 403 21.71 <0.001 

0<q≤0.1 1.006±0.001a 2174 1.103±0.010b 279 1.208±0.014c 239 1.162±0.024d 73 1.148±0.019d 111 287.58 <0.001 

0.1<q≤0.2 0.969±0.002a 646 0.942±0.006b 144 0.975±0.003a 152 0.956±0.009ab 34 0.913±0.008c 35 16.59 <0.001 

0.2<q≤0.3 0.833±0.001a 1171 0.865±0.006b 116 0.901±0.004c 99 0.885±0.012bcd 20 0.850±0.010ab 37 54.62 <0.001 

0.3<q≤0.4 0.777±0.003a 536 0.794±0.007b 122 0.849±0.004c 125 0.852±0.013cd 23 0.792±0.010ab 31 39.73 <0.001 

0.4<q≤0.5 0.696±0.002a 1054 0.721±0.006b 131 0.781±0.005c 113 0.787±0.010cd 25 0.732±0.012be 36 75.30 <0.001 

0.5<q≤0.6 0.604±0.002a 745 0.640±0.007b 138 0.715±0.006c 109 0.699±0.016cd 24 0.651±0.011be 36 91.88 <0.001 

0.6<q≤0.7 0.504±0.003a 537 0.528±0.006b 124 0.621±0.008c 121 0.605±0.018cd 22 0.566±0.013de 35 78.00 <0.001 

0.7<q≤0.8 0.421±0.004a 313 0.408±0.007ab 134 0.492±0.010c 108 0.464±0.020ac 25 0.470±0.016c 30 21.96 <0.001 

0.8<q≤0.9 0.255±0.007a 148 0.247±0.007a 116 0.315±0.010b 107 0.286±0.020ab 27 0.297±0.021ab 24 10.38 <0.001 

0.9<q<1 0.123±0.006a 105 0.137±0.008ab 64 0.162±0.011b 65 0.127±0.017ab 18 0.126±0.015ab 28 3.17 0.014 

Note: Superscript letters in the same row indicate significant differences between treatments 

(Tukey’s HSD, p < 0.05). 

 

 

 

 

Table 4. Regression coefficients and standard errors (in parentheses) for Newberry and Burkhart 

(1986) model and Kozak (2004)-(2) model without (Eqs. (1) and (2)) and with (Eqs. (7) and (8)) 

tree age (AGE) and stocking degree (P).  

Model b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 

Eq.1 
1.0065 

(0.0011)  

0.7265 

(0.0029)  
         

Eq.2 
0.9687 

(0.0084) 

0.9759 

(0.0053) 

0.0445 

(0.0074) 

7.0916 

(0.1319) 

-1.1192 

(0.2323) 

-10.4929 

(0.3488) 

-0.6966 

(0.0506) 

0.0163 

(0.0036) 

15.1469 

(0.4142) 
  

Eq.7 
0.9141 

(0.0031)  

0.0293 

(0.0009)  

0.3793 

(0.0205)  

0.4043 

(0.0234)  
              

Eq.8 
0.9731 

(0.0082)  

0.9749 

(0.0051)  

0.0441 

(0.0072)  

7.4220 

(0.1299)  

-0.2243 

(0.2532)  

-11.6700 

(0.3683)  

-1.9030 

(1.0140)  

0.0123 

(0.0035)  

15.8800 

(0.4072)  

-0.0036 

(0.0002)  

0.6589 

(0.0944)  

 

  

 

Table 5. Evaluation statistics of NLME models and models with and without tree age (AGE) and 
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stocking degree (P) for the Newberry and Burkhart (1986) and Kozak (2004)-(2) models. 

Model 

No. 

Fitting Validating 

R2
adj RMSE MAB MPRB(%) AIC BIC logLik RMSE MAB MPRB(%) 

Single taper models 

Eq. (11) 0.97951  1.15163  0.67737  5.13700  23025.7 23096.3 -11502.8 1.03868  0.64442  4.88682  

Eq. (7) 0.97557  1.25764  0.72778  5.51927  28298.5 28333.8 -14144.3 1.12334  0.69834  5.29571 

Eq. (1) 0.97234  1.33797  0.74581  5.65600  29359.4 29380.6 -14676.7 1.17807  0.70600  5.35382  

Variable-form taper models 

Eq. (12) 0.98250  1.06436  0.64142  4.86440  22468.0 22588.0 -11217.0 0.94898  0.61193  4.64041  

Eq. (8) 0.98135  1.09917  0.67059  5.08559  26630.4 26715.0 -13303.2 0.96067  0.63149  4.78873  

Eq. (2) 0.98165  1.08979  0.66981  5.07970  27014.5 27085.1 -13497.3 0.99333  0.65384  4.95823  
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Fig. 1. Scatter plot of the relative height over relative diameter of 10,729 data points for 1,858 Larix 

gmelinii (Rupr.) trees. 
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Fig. 2. Diameter outside bark residuals plotted against predicted relative d for Newberry and 

Burkhart (1986) and Kozak (2004)-(2) models fitted only without tree age (AGE) and stocking 

degree (P) incorporated (Eqs. (1) and (2)), with AGE and P incorporated (Eqs. (7) and (8)), and with 

fixed- and random-effects parameters (with AGE and P incorporated) plus an autoregressive error 

structure CAR(1) and exponential variance function (Eqs. (11) and (12)).  
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Fig. 3. An example stem profile simulation using the Newberry and Burkhart (1986) and Kozak 

(2004)-(2) models (black lines), Newberry and Burkhart (1986) and Kozak (2004)-(2) models with 

tree age (AGE) and stocking degree (P) (blue lines), and Newberry and Burkhart (1986) and Kozak 

(2004)-(2) models with AGE and P and with fixed- and random-effects parameters plus CAR(1) 

and an exponential variance function (red lines). The calibrated response of NLME models 

(Newberry and Burkhart (1986) and Kozak (2004)-(2) models with AGE and P and with fixed- and 

random-effects parameters plus CAR(1) and an exponential variance function) was based on four 

randomly selected upper-stem diameters at h = 1.0, 5.0, 9.0 and 19.0 m for the same sample tree (D 

= 24.5 cm, H = 20.3 m, AGE = 103 years and P = 0.71). The three color codes represent the three 

different models of single and variable-form taper models. The dots represent the measured value 

of the upper-stem diameter at corresponding height along the tree bole. The stem diameters used for 

calibration are represented by four hollow dots.  
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