ESCUELA TÉCNICA SUPERIOR DE INGENIEROS
INDUSTRIALES Y DE TELECOMUNICACIÓN

Titulación:
INGENIERO TÉCNICO INDUSTRIAL ELÉCTRICO

Título del proyecto:
“ACTUALIZACIÓN Y AMPLIACIÓN DE PANELES DOMÓTICOS DE LA UPNA”

MEMORIA

Alumno: Iñaki Tejado Villanueva
Tutor: Dr. César Elosúa Aguado
Pamplona, a 14 de Febrero de 2014
AGRADECIMIENTOS

A mi familia por todo el esfuerzo para que pueda llegar este momento.

A Sandra por la paciencia y apoyo durante este tiempo.

A mi tutor, Cesar Elosúa Aguado por su ayuda, implicación, comprensión e indicaciones durante el desarrollo del proyecto.

A Santi y Ander, por su ayuda y explicaciones en el laboratorio cuando se le solicito.

Al Grupo Scout Gundemaro.
ÍNDICE

1. **Introducción a la domótica** ... 5
 - Ventajas ... 5
 - Desventajas ... 6
 - Funciones de la domótica ... 6

2. **Componentes de una instalación Domótica** ... 8
 - Sensor .. 8
 - Actuador ... 9
 - Transmisor ... 9
 - Unidad de control ... 9
 - Pasarelas .. 9

3. **Sistema KNX** ... 11
 - Características del estándar KNX ... 11
 - Estándar que garantiza su durabilidad en el tiempo .. 11
 - Interoperabilidad ... 12
 - Calidad del producto ... 12
 - Software independiente del fabricante .. 12
 - Aporta muchas soluciones a la vivienda ... 12
 - Ahorro eléctrico ... 13
 - Ahorro de combustible ... 13
 - Versatilidad en todo tipo de construcción ... 13
 - KNX soporta diferentes medios de comunicación ... 14
 - KNX puede acoplarse con otros sistemas ... 14
 - Direcciones físicas y de grupos .. 15
4. **Sistema LONWORKS** .. 16
 - Microprocesador ... 16
 - LonWorks (TAC) ... 17
 - Tac Xenta 280 series ... 17
 - Tac Xenta 511 ... 18
 - Tac Xenta STR 350 ... 18

5. **Comparativa KNX-LONWORKS** ... 19
 - Fuente de alimentación ... 19
 - Programación (configuración) ... 19
 - Topología de cableado ... 19
 - Cable .. 19
 - Herramientas de instalación ... 20
 - Recuperación de la base de datos ... 20
 - Velocidad de transmisión (sobre cable) ... 20
 - Transmisión por IP. ... 20
 - Productos y distribuidores ... 20
 - Conclusión ... 20
 - Tabla comparativa ... 21

6. **Bibliografía** .. 22

ÍNDICE DE FIGURAS

Figura 1: Domótica... 7
Tabla 1: Comparativa KNX-LONWORKS... 21
1. Introducción domótica

Se entiende por DOMÓTICA el conjunto de sistemas capaces de automatizar una vivienda, aportando servicios de gestión energética, seguridad, bienestar y comunicación, y que pueden estar integrados por medio de redes interiores y exteriores de comunicación, cableadas o inalámbricas, y cuyo control goza de cierta presencia, desde dentro y fuera del hogar. Se podría definir como la integración de la tecnología en el diseño inteligente de un recinto cerrado.

El término domótica viene de la unión de las palabras domus (que significa casa en latín) y tica (de automática, palabra en griego, “que funciona por sí sola”).

Van apareciendo nuevos términos:

Domótica ➔ Sector doméstico
Inmótica ➔ Sector terciario
Urbótica ➔ Ciudad

La tecnología aplicada al hogar, conocida como domótica, integra automatización, informática y nuevas tecnologías de comunicación.

Ventajas

Un sistema domótico proporciona un sin fin de beneficios y ventajas inalcanzables mediante una instalación tradicional. Las principales razones para instalar un sistema son:

- Por seguridad.
- Confort.
- Comodidad.
- Información.
- Ahorro energético.
- Estética e imagen.
- Monitorización de salud.
- Comunicación con servidores externos.
 - etc.

Estas razones se reducen a una sola. Aumento de la calidad de vida.
Desde el punto de vista económico, la productividad, ya sea del edificio como de las personas aumenta, la rentabilidad mediante el ahorro energético (se recupera parte de la inversión).

Desventajas
Se podría decir que las desventajas son realmente pocas con respecto a las ventajas pero se pueden mencionar las siguientes:
- El precio aún es demasiado alto.
- Al ser relativamente nueva su aplicación aún provoca rechazo, sobretodo en personas mayores.
- Se puede dar un entorpecimiento del usuario, dependiendo del grado de automatización del sistema.

FUNCIONES DE LA DOMOTICA
La DOMÓTICA es el uso simultáneo de la *electricidad*, la *electrónica* y la *informática*, aplicadas a la gestión técnica de las viviendas.
Esta gestión técnica consiste en la modificación, local o remota, de los parámetros de funciones como:

![Figura 1: Domótica](image)
- **Ahorro energético**: Regulación temperatura, control de iluminación, gestión de los consumos de electrodomésticos y de la potencia contratada, etc.

- **Seguridad**: Custodia y vigilancia frente a la intrusión, la inundación, el fuego, los escapes de agua, pero también la seguridad personal con alarmas de pánico, alarmas para discapacitados. Posibilidad de realización de simulaciones de presencia cuando estamos ausentes.

- **Comunicaciones**: Telecontrol y telemetría, acceso a Internet, comunicación interna y compartición de recursos informáticos dentro del hogar.

- **Confort**: Programaciones horarias calefacción, escenarios luminosos, riego automático, mando a distancia, automatización de persianas, realización de escenas, etc.
2. Componentes de una instalación Domótica

Sensores

Miden magnitudes físicas o químicas y envían información al sistema. Estos dispositivos están permanentemente monitorizando el entorno con objeto de generar un evento que será procesado por el controlador.

Dependiendo del tipo de señal generada pueden ser:

- **Analógicos**: Realizan la medición del parámetro físico en un rango de valores. El valor del parámetro puede ser enviado al sistema de forma analógica (tensión o intensidad en función del valor del parámetro a medir) o de forma digital (convierte previamente el valor analógico en un dato digital que es interpretado por el controlador).

- **Digitales**: Se activan cuando se supera un cierto umbral, previamente programado o seleccionado (ya sea de forma manual o de fábrica). Solo tienen dos estados posibles de salida (encendido-apagado, ON-OFF, 0-1). Ejemplos: Interruptor, los sensores de umbral de temperatura, de umbral de viento, humedad, humo, escape de agua o gas, etc.

Dependiendo de la magnitud que miden:

- Sensores de Humos y Fuego.
- Sensores de Gases (Butano, Propano, Gas Natural, Metano).
- Sensores de CO$_2$ (Monóxido de Carbono).
- Sensores de Presencia. Volumétricos.
- Sensores de rotura de cristales y aperturas de puertas.
- Barreras de Infrarrojos.
- Sensores de Luminosidad. Crepusculares.
- Sensores de Humedad e inundación.
- Termostatos y sondas de temperatura.
- Sensores de velocidad del Viento. Anemómetros.
- Sensores de lluvia.
Actuadores
Son los dispositivos eléctricos/eléctronicos encargados de actuar sobre un parámetro físico. Estos dispositivos de salida reciben la orden del controlador y realizar una acción (encendido/apagado, subida/bajada de persiana, apertura/cierre de electroválvula, etc.).

- Relés y relés de estado sólido.
- Contactores.
- Actuadores de Persiana.
- Reguladores de luminosidad. Dímmers.
- Electroválvulas.

Transmisores
Son entradas del sistema, introducen órdenes directas del usuario.
Tipos:
- Mando a distancia.
- Pulsadores e interruptores.
- Pantallas táctiles, botoneras, teclados.
- PCs.
- Control acceso (teclado, llave, biométrico)

Unidad control
Son elementos encargados de la toma de decisiones. Es el elemento en el que reside la mayor parte de la inteligencia del sistema domótico. Recibe los datos de los sensores y transmite las órdenes oportunas a los actuadores. Aquí reside un programa que regula todas las acciones del sistema en función de las necesidades de usuario.
En función del tipo de sistema, esta unidad puede ser un dispositivo central (sistemas centralizados) único o estar distribuida entre los dispositivos del sistema (sistemas distribuidos).

Pasarelas
Abren el sistema a otros protocolos de comunicación.
• Pasarelas de comunicación
Casi todos los sistemas domóticos poseen pasarelas de comunicación, que ofrecen conectividad con: Bluetooth, Ethernet (Internet), radiofrecuencia, línea telefónica, GSM etc.

• Pasarelas a otros sistemas
Se está generalizando el uso de pasarelas de un estándar a otro (KNX-LONWORKS). De esta forma podemos aprovechar lo mejor de cada estándar en distintas aplicaciones.
3. SISTEMA KNX

La tecnología KNX es el resultado de la experiencia y el conocimiento adquirido durante los últimos 20 años de las tecnologías European Installation Bus (EIB), European Home System (EHS) y Batibus.

CARACTERÍSTICA DEL ESTÁNDAR KNX:

- Estándar que garantiza su durabilidad en el tiempo.
- Interoperabilidad.
- Calidad del producto.
- Software independiente del fabricante.
- Aporta muchas soluciones a la vivienda.
- Versatilidad en todo tipo de construcción.
- KNX soporta diferentes medios de comunicación.
- KNX puede acoplarse con otros sistemas.
- Direcciones físicas y de grupos.

ESTÁNDAR QUE GARANTIZA SU DURABILIDAD EN EL TIEMPO

Al cumplir y tener certificados por todo el mundo y no solo en una zona geográfica nos garantiza que es un sistema domótico con gran implantación que no se va a quedar obsoleto ni colgado en el futuro y eso nos da seguridad a la hora de apostar por este sistema.

- ISO/IEC
- CENELEC
 Aprobó la tecnología KNX como el Estándar Europeo EN 50090 en 2003.
- CEN
 Aprobó la tecnología KNX como EN 13321-1 (simple referencia a EN 50090) y EN1332-2 (KNXnet/IP) en 2006.
- SAC
 Aprobó la tecnología KNX como Estándar GB/T 20965 en China en 2013.
- ANSI/ASHRAE
INTEROPERABILIDAD
El proceso de certificación KNX asegura que funcionarán distintos productos de distintos fabricantes en una misma red, ya que tienen que cumplir las mismas normas y el mismo estándar para obtener la certificación KNX.

CALIDAD DEL PRODUCTO
La KNX Association exige un alto nivel de producción y control de calidad durante todas las etapas de la vida del producto. Por lo que todos los miembros fabricantes tienen que mostrar conformidad a la norma ISO 9001 incluso antes de que soliciten la certificación para productos KNX.

Además de la conformidad del fabricante a la norma ISO 9001, los productos tienen que cumplir con los estándares tanto Europeos como Internacionales para el control de Casas y Edificios. En caso de duda, la KNX Association tiene el derecho de volver a analizar el producto o puede exigir al fabricante el informe de conformidad de dicho hardware.

SOFTWARE INDEPENDIENTE DEL FABRICANTE
La herramienta software ETS permite proyectar, diseñar y configurar todos los productos certificados KXN. Dicha herramienta es además independiente del fabricante: el integrador de sistemas podrá combinar los productos de varios fabricantes en una instalación.

APORTA MUCHAS SOLUCIONES A LA VIVIENDA
KNX puede ser usado para el control de todas las posibles funciones/aplicaciones en casas y edificios desde iluminación, contraventanas, control de seguridad y alarmas, calefacción, ventilación, aire acondicionado, control de agua y dirección de energía, medición, hasta aplicaciones para el hogar, audio y mucho más.

KNX mejora el confort y la seguridad con sus instalaciones así como contribuye al ahorro energético y la protección del clima (se puede conseguir hasta un 50% de ahorro en iluminación y calefacción). Esto también se consigue con otros sistemas domóticos.
Ahorro en electricidad:

- Sistemas de iluminación eficientes: adaptan el nivel de iluminación en función de la variación de la luz solar, la zona de la casa o la presencia de personas, ajustándola a las necesidades de cada momento.
- Control automático inteligente de toldos, persianas y cortinas de la vivienda: permite que se aproveche al máximo la luz solar.
- Control automático del encendido y apagado de todas las luces de la vivienda: permite evitar el dejarse luces encendidas al salir de casa.
- Control de forma automática del encendido y apagado de las luces exteriores en función de la luz solar.
- Control o secuenciado de la puesta en marcha de electrodomésticos: programando su funcionamiento en horarios en los que el precio de la energía es menor.
- Detección y gestión del consumo “en espera” de los electrodomésticos.
- Programación de la desconexión de circuitos eléctricos no prioritarios (Aire Acondicionado) antes de alcanzar la potencia contratada.

Ahorro en Combustible

- Sistemas de regulación de la calefacción: adaptan la temperatura de la vivienda en función de la variación de la temperatura exterior, la hora del día, la zona de la casa o la presencia de personas.
- Detección de la apertura y cierre de ventanas: avisan al usuario de si hay ventanas abiertas cuando está activada la climatización.

VERSATILIDAD EN TODO TIPO DE CONSTRUCCIÓN

KNX puede ser usado tanto en nuevas construcciones como en las ya existentes. Las instalaciones KNX pueden ser fácilmente extendidas y adaptadas a las nuevas necesidades, con una pequeña inversión de tiempo y dinero (por ejemplo cuando nuevos arrendatarios entran en un edificio de oficinas). KNX puede ser instalado tanto en pequeñas casas como en grandes edificios (oficinas, hoteles, palacios de congresos, hospitales, escuelas, grandes almacenes, aeropuertos).
KNX SOPORTA DIFERENTES MEDIOS DE COMUNICACIÓN
Cada medio de comunicación puede ser usado en combinación con uno o más modos de configuración, lo que permite a cada fabricante elegir la combinación perfecta para su segmento de mercado y aplicaciones.

- Par trenzado (KNX TP):
 KNX es transmitido a través de un cable bus separado, con una estructura jerarquizada en líneas y áreas. Además por estos dos hilos se suministra 24 Vdc para la alimentación de los dispositivos EIB.

- Corrientes portadoras (KNX PL):
 KNX es transmitido sobre la red eléctrica existente, con corrientes portadoras sobre 230 Vac/50 Hz a 1200/2400 bps La distancia máxima que se puede lograr sin repetidor es de 600 metros.

- Radio frecuencia (KNX RF):
 KNX es transmitido por señales de radio. Estos dispositivos pueden ser unidireccionales o bidireccionales. Usando varias portadoras, se consiguen distancias de hasta 300 metros en campo abierto. Para mayores distancias o edificios con múltiples estancias se pueden usar repetidores.

- IP/Ethernet (IP KNX):
 Este conocido medio de comunicación puede ser usado en conjunción con las especificaciones ‘KNXnet/IP’, permiten enviar tramas KNX encapsuladas en tramas IP. Usando el estándar Ethernet a 10 Mbps (IEC 802-2). Sirve de comunicación entre segmentos EIB además de permitir la transferencia de telegramas EIB a través del protocolo IP a viviendas o edificios remotos.

- Infrarrojos (KNX IR):
 Infrarrojo: para el uso con mandos a distancia en salas o salones donde se pretenda controlar los dispositivos EIB instalados.

KNX PUEDE ACOPLARSE CON OTROS SISTEMAS
Distintos fabricantes ofrecen pasarelas a otros sistemas de automatización de edificios, redes de telefonía, iluminación, redes multimedia, redes IP, etc.
Control iluminación de una zona con sistema DALI:

El protocolo de control de alumbrado DALI permite gobernar individualmente cada luminaria. Mediante herramientas de software intuitivas un usuario de un edificio puede redefinir tantas veces como quiera, y con total libertad, los golpes de luz. Cada Bus DALI tiene un máximo de 64 balastros que se conectan, de forma similar al KNX, mediante dos hilos.

DIRECCIONES FÍSICAS Y DE GRUPO

Para poner en marcha la instalación tenemos que seguir los pasos de programación en el ETS:

1. Asignación de las direcciones físicas, para la identificación de cada modulo de la instalación.
2. Selección y programación (Parametrización) de los sensores y actuadores.
3. elegir el programa para cada modulo de los disponibles de cada fabricante.
4. Asignación de direcciones de grupo, para unir las funciones de sensores y actuadores.

La comunicación entre los dispositivos en una instalación EIB se lleva a cabo por medio de las direcciones de grupo. Se organizan las direcciones de grupos, según criterio de cada uno.

Un sistema recomendado dentro de la estructura de 3 niveles es:

- **Grupo principal**: área funcional (1= Sótano, 2= Planta baja,...).
- **Grupo intermedio**: función dentro de este área (0 = funciones generales; 1= luces; 2= dimmer; 3= persianas; 4= calefacción; 5= alarmas;...).
- **Subgrupo**: carga o grupo de cargas (1= luz cocina, 2= dimmer salón,...).
4. **Sistema LONWORKS**

El sistema LonWorks fue creado en EEUU el año 1990. Es un sistema distribuido y estándar. Actualmente se utiliza en viviendas, edificios, medios de transporte, industrias...

Las tecnologías y arquitectura del sistema utilizado en LonWorks son bastantes parecidas a las del sistema KNX. Algunos fabricantes poseen gama de producto para ambos sistemas.

En general, el sistema LonWorks es algo más potente a nivel de prestaciones aunque la oferta de producto en KNX es mayor.

LONworks hace referencia el nombre del bus, pero éste siempre se utiliza en conjunto con un protocolo llamado LONtalk. LONtalk consiste en una serie de protocolos que permiten la comunicación inteligente entre los dispositivos de la red. Este protocolo ha sido incluido en el estándar ANSI/EIA 709.1 en 1999 y el principal impulsor de este bus es Echelon Corporation.

Aparte de las normas nacionales, regionales y específicas de la industria en todo el mundo-incluidas las normas ANSI / CEA, EN, IEEE, AAR, SEMI, SAC, y otras. La plataforma LonWorks es ahora también un conjunto de normas internacionales ISO / IEC, que nos ayuda a su implantación en Europa.

MICROPROCESADOR

Todos los dispositivos presentes en una red Lonworks® precisan de un chip Neuron. El Neuron está constituido internamente como tres microprocesadores en uno. Dos de los microprocesadores están optimizados para ejecutar el protocolo de comunicaciones, mientras que el tercero está dedicado a ejecutar el programa de control del nodo. Hay por tanto dos procesadores de comunicación y un procesador para la aplicación.

Disponer de dos procesadores dedicados a tareas de comunicación en red y uno dedicado a la aplicación asegura que la complejidad del programa no afecta negativamente a la respuesta de la red y viceversa. Adicionalmente, el hecho de encapsular ambas funciones en un solo chip ahorra tiempos de diseño y producción.
• Ventajas Técnicas

El uso del chip Neuron garantiza un entorno de ejecución hardware para el protocolo. Para asegurar suficiente potencia de proceso, el protocolo se implementa como una mezcla de hardware y firmware.

Diseñado para un amplio rango de aplicaciones, y fabricados en masa por dos de los mayores fabricantes de semiconductores del mundo, el chip Neuron ofrece una implementación del protocolo LonTalk más económica que cualquier otra solución propietaria. El resultado neto se traduce en que el chip Neuron es el mejor y más económico procesador Lonworks® para cualquier aplicación que precise potencia de proceso de 8 bits.

LonWorks (TAC)

TAC es una solución de control completa distribuida por el grupo Schneider Electric. Dispone de soluciones específicas y profesionales para las siguientes instalaciones:

• Iluminación.
• Climatización (Módulos de pared STR).
• Distribución eléctrica.
• Incendios (Único sistema de detección de incendios homologado en sistemas domóticos).
• CCTV.
• Control de accesos.
• Comunicación con otros sistemas abiertos.

De todos los módulos disponibles de la familia TAC XENTA en el laboratorio disponemos de tres de ellos:

• TAC XENTA 281
• TAC XENTA 511
• TAC XENTA STR350

TAC Xenta 280 series

Son controladores que permiten programar todas las funciones que se necesitan para el control perfecto de zonas y pequeñas aplicaciones de (calefacción, ventilación y aire
acondicionado), incluyendo bucles de control, curvas, control de tiempos, alarmas, registros, etc. Estos controladores están disponibles en varios modelos, con un número de E/S diseñados específicamente para ofrecer máxima rentabilidad en cada aplicación en concreto.

Características

- Se comunica sobre la red LonTalk TP/FT-10.
- Tiene todas las funcionalidades HVAC.
- 2 entradas digitales.
- 4 entradas universales.
- 3 salidas digitales.
- 3 salidas analógicas.
- TAC Xenta 281 no puede ampliarse con módulos E/S de la serie TAC Xenta 400.

TAC Xenta 511

El TAC Xenta 511 es un sistema de presentación basado en Internet para redes LonWorks.

Mediante el uso de un navegador web estándar, se puede visualizar y controlar los dispositivos en la red LonWorks a través de Internet o una red local, Intranet. Un TAC Xenta 511 puede presentar una pequeña red LonWorks o constituir uno de varios dispositivos locales de presentación en una red mayor.

Características

- El operador puede visualizar y controlar unidades en una red LonWorks sobre Internet o Intranet.
- Función especial como LTA, Adaptador LonTalk, entre TAC Vista y la red LonWorks.
- Almacenaje conveniente de documentación.

TAC Xenta STR 350

El TAC Xenta STR 350 utiliza la comunicación LON para visualizar y controlar la temperatura ambiente y la velocidad del ventilador. Está equipado con un pantalla que muestra las distintas funciones del modulo.
5. Comparativa KNX-LONWORKS

KNX y LONWORKS son los dos sistemas abiertos más usados en la automatización de hogares y edificios, domótica e Inmótica. Aunque rivales para algunos, son dos sistemas muy válidos dependiendo de para qué se utilicen.

FUENTE DE ALIMENTACIÓN

KNX necesita una por línea, LONWORKS no. En KNX los módulos pueden consumir hasta 10mA del bus, en LONWORKS van alimentados de la red o a través de un transformador.

PROGRAMACIÓN (CONFIGURACIÓN)

En LONWORKS los dispositivos vienen con un ID preinstalado y escrito en pegatinas mediante código de barras. Basta con apuntarla en el momento de la instalación y tendremos el ID siempre a mano. Para programar los dispositivos en KNX, hay que asignar una dirección física a los componentes uno a uno (al menos la primera vez). Esto se hace presionando el pin de programación. Puede ser bastante engorroso si hay un número importante de dispositivos, o no están muy accesibles.

TOPOLOGÍA DE CABLEADO

En los dos existe la topología libre. En KNX no se permite hacer bucles, la instalación del bus puede ser con forma de árbol o estrella. Mientras que en LONWORKS también podemos usar el bus en forma de anillo.

En KNX los bucles, dan muchos problemas de comunicación, por la redundancia que existe en el enviado de información. También hay que tener en cuenta que el bus tiene polaridad. En LONWORKS por el contrario los bucles permiten la comunicación en caso de rotura del cable. Aparte de esto, en LONWORKS existe la topología en BUS, que permite alcanzar mayores distancias que en KNX, hasta 2700m. En KNX está limitado a 1000m (con varias fuentes de alimentación, con una lo máximo es 350m).

CABLE

En KNX existe un tipo de cable homologado (Bus dos hilos apantallado, sin poner a tierra). En LONWORKS hay varios tipos de cable que se pueden usar, pero si se usa uno apantallado hay que ponerlo a tierra.
HERRAMIENTAS DE INSTALACIÓN
En KNX se hace todo con el ETS, software aceptado por todos los fabricantes para instalar la red. En LONWORKS hay diferente software, si usamos el de Echelon, el LonMaker, que es válido para todos los productos. El precio del ETS y del LonMaker es parecido (unos 800€ aprox).

RECUPERACIÓN DE LA BASE DE DATOS
Al llegar a una instalación, LONWORKS permite recuperar información del estado de la red, componentes, conexiones entre ellos...etc. En KNX esto no es posible, se necesita el proyecto original.

VELOCIDAD DE TRANSMISIÓN (SOBRE CABLE)
En KNX, 9600bps y en LONWORKS 78.125 kbps – 1.25 Mbps Una diferencia importante, al cargar proyectos en KNX y también al desprogramar los modulo (sobre todo en prácticas) se emplea mucho tiempo. En una instalación domótica de una vivienda no se nota la diferencia, por que las distancias son pequeñas y no transmitimos datos de gran tamaño. Pero en una instalación de mas tamaño si que podemos notar la velocidad e transmisión.

TRANSMISIÓN POR IP.
En ambos sistemas se pueden transmitir sobre IP y utilizar Internet (TCP/IP) como medio de transmisión.

PRODUCTOS Y DISTRIBUIDORES
En España hay un mayor número de dispositivos, de tipos de dispositivos y de distribuidores de KNX. Aunque de LONWORKS hay varias empresas que se dedican al desarrollo de productos y a su distribución. El catálogo de productos y de aplicaciones de KNX es, en general, más amplio.

CONCLUSIÓN:
KNX está más orientado a la domótica (usuario particular), aun que es igual de apta para grandes instalaciones domóticas.
LONWORKS está más orientada a la Inmótica (instalación mayor). Aun que igual que KNX es igual de apta para peñas aplicaciones domóticas.
Ambas tecnologías son igual de fiables y nos garantizan que convivirán en el tiempo.
<table>
<thead>
<tr>
<th></th>
<th>KNX</th>
<th>LONWORKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUENTE DE ALIMENTACIÓN</td>
<td>Si, una por línea (10mA por módulo)</td>
<td>NO</td>
</tr>
<tr>
<td>PROGRAMACIÓN</td>
<td>Asignar dirección física uno a uno (al menos la primera vez)</td>
<td>Cada uno viene con una ID preinstalada, por lo que no hay que ir uno a uno pulsando el botón de programación (instalaciones grandes se nota mucha diferencia)</td>
</tr>
<tr>
<td>TOPOLOGÍA DE CABLEADO</td>
<td>Libre, no se permiten bucles max 1000m (con varias fuentes, una solo 350m)</td>
<td>Libre, se permiten bucles. Hasta 2700m</td>
</tr>
<tr>
<td>CABLE</td>
<td>Bus a dos hilos apantallado</td>
<td>Varias tipos, si es apantallado hay que ponerlo a tierra</td>
</tr>
<tr>
<td>HERRAMIENTAS DE INSTALACIÓN</td>
<td>ETS, válido para todos los fabricantes (800€)</td>
<td>Diferentes, LonMarker es válido para todos productos (800€)</td>
</tr>
<tr>
<td>VELOCIDAD DE TRANSMISIÓN (SOBRE CABLE)</td>
<td>9600bps</td>
<td>78.125 kbps – 1.25 Mbps</td>
</tr>
<tr>
<td>TRANSMISIÓN POR IP.</td>
<td>Aceptada</td>
<td>Aceptada</td>
</tr>
<tr>
<td>PRODUCTOS Y DISTRIBUIDORES</td>
<td>Mayor número de dispositivos y distribuidores en España</td>
<td>Varias empresas pero menos que en KNX</td>
</tr>
<tr>
<td>CONCLUSIÓN</td>
<td>Está más orientado a la domótica (usuario particular), aun que es igual de apta para grandes instalaciones domóticas.</td>
<td>Está más orientada a la Inmótica (instalación mayor). Aun que igual que KNX es igual de apta para peñas aplicaciones domóticas.</td>
</tr>
</tbody>
</table>

Ambas tecnologías son igual de fiables y nos garantizan que convivirán en el tiempo.

Tabla 1: Comparativa KNX-LONWORKS
6. Bibliografía

- La domótica como solución de futuro. Asociación Profesional de Empresas de Instalaciones Eléctricas y Telecomunicaciones de Madrid (APIEN), Dirección General de Industria, Energía y Minas de la Comunidad de Madrid, Fundación de la Energía de la Comunidad de Madrid (FENERCOM), 2007.
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN

Titulación:

INGENIERO TÉCNICO INDUSTRIAL ELÉCTRICO

Título del proyecto:

“ACTUALIZACIÓN Y AMPLIACIÓN DE PANELES DOMÓTICOS DE LA UPNA”

AMPLIACIONES Y ACTUALIZACIONES

Alumno: Iñaki Tejado Villanueva
Tutor: Dr. César Elosúa Aguado
Pamplona, a 14 de Febrero de 2014
ÍNDICE

1. KNX

<table>
<thead>
<tr>
<th>Subíndice</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Panel 1 (Blanco)</td>
<td>5</td>
</tr>
<tr>
<td>1.1.1. Foto</td>
<td>5</td>
</tr>
<tr>
<td>1.1.2. Descripción del panel</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3. Disposición panel y esquema eléctrico</td>
<td>7</td>
</tr>
<tr>
<td>1.1.4. Propuesta práctica</td>
<td>7</td>
</tr>
<tr>
<td>1.1.5. Manuales</td>
<td>9</td>
</tr>
<tr>
<td>1.2. Panel 2 (Azul Claro)</td>
<td>10</td>
</tr>
<tr>
<td>1.2.1. Foto</td>
<td>10</td>
</tr>
<tr>
<td>1.2.2. Descripción del panel</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3. Disposición panel y esquema eléctrico</td>
<td>12</td>
</tr>
<tr>
<td>1.2.4. Propuesta práctica</td>
<td>12</td>
</tr>
<tr>
<td>1.2.5. Manuales</td>
<td>13</td>
</tr>
<tr>
<td>1.3. Panel 3 (Azul Oscuro)</td>
<td>14</td>
</tr>
<tr>
<td>1.3.1. Foto</td>
<td>14</td>
</tr>
<tr>
<td>1.3.2. Descripción del panel</td>
<td>14</td>
</tr>
<tr>
<td>1.3.3. Disposición panel y esquema eléctrico</td>
<td>17</td>
</tr>
<tr>
<td>1.3.4. Propuesta práctica</td>
<td>17</td>
</tr>
<tr>
<td>1.3.5. Manuales</td>
<td>18</td>
</tr>
<tr>
<td>1.4. Panel 4 (verde)</td>
<td>19</td>
</tr>
<tr>
<td>1.4.1. Foto</td>
<td>19</td>
</tr>
<tr>
<td>1.4.2. Descripción del panel</td>
<td>19</td>
</tr>
<tr>
<td>1.4.3. Disposición panel y esquema eléctrico</td>
<td>21</td>
</tr>
<tr>
<td>1.4.4. Propuesta práctica</td>
<td>21</td>
</tr>
<tr>
<td>1.4.5. Manuales</td>
<td>23</td>
</tr>
<tr>
<td>1.5. Panel 5 (Blanco)</td>
<td>24</td>
</tr>
<tr>
<td>1.5.1. Foto</td>
<td>24</td>
</tr>
<tr>
<td>1.5.2. Descripción del panel</td>
<td>24</td>
</tr>
<tr>
<td>1.5.3. Disposición panel y esquema eléctrico</td>
<td>27</td>
</tr>
<tr>
<td>1.5.4. Propuesta práctica</td>
<td>27</td>
</tr>
<tr>
<td>1.5.5. Manuales</td>
<td>28</td>
</tr>
<tr>
<td>1.6. Panel 6 (Blanco)</td>
<td>29</td>
</tr>
<tr>
<td>1.6.1. Foto</td>
<td>29</td>
</tr>
<tr>
<td>1.6.2. Descripción del panel</td>
<td>29</td>
</tr>
<tr>
<td>1.6.3. Disposición panel y esquema eléctrico</td>
<td>32</td>
</tr>
<tr>
<td>1.6.4. Propuesta práctica</td>
<td>32</td>
</tr>
</tbody>
</table>
1.6.5. Manuales... 34

1.7. Panel 7 (Amarillo) ... 35
 1.7.1. Foto ... 35
 1.7.2. Descripción del panel.. 35
 1.7.3. Disposición panel y esquema eléctrico.. 38
 1.7.4. Propuesta practica .. 38
 1.7.5. Manuales.. 39

2. LONWORKS ... 40

 2.1. Panel 8 (Blanco) ... 40
 2.1.1. Foto ... 40
 2.1.2. Descripción del panel.. 40
 • Alarma Correo (Paso a Paso) .. 41
 2.1.3. Disposición panel y esquema eléctrico.. 46
 2.1.4. Propuesta practica .. 46
 2.1.5. Manuales.. 48

 2.2. Panel 9 (Marrón) ... 49
 2.2.1. Foto ... 49
 2.2.2. Descripción del panel.. 49
 2.2.3. Disposición panel y esquema eléctrico.. 51
 2.2.4. Propuesta practica .. 52
 2.2.5. Manuales.. 53

 2.3. Panel 11 (Gris) ... 54
 2.3.1. Foto ... 54
 2.3.2. Descripción del panel.. 55
 2.3.3. Disposición panel y esquema eléctrico.. 57
 2.3.4. Propuesta practica .. 57
 2.3.5. Manuales.. 59

3. Conclusiones .. 60

4. Líneas Futuras ... 61
ÍNDICE DE FIGURAS

Figura 1: Panel 1 Blanco. ... 5
Tabla 2: Material Panel 1 ... 7
Figura 3: Plano practica Panel 1 .. 8
Figura 4: Leyenda Planos ... 9
Figura 5: Panel 2 Azul Claro ... 10
Tabla 6: Material Panel 2 ... 12
Figura 7: Plano practica Panel 2 .. 13
Figura 8: Panel 3 Azul Oscuro ... 14
Figura 9: Visualización datos contador a través de la pasarela IP ... 15
Tabla 10: Material Panel 3 ... 16
Figura 11: Plano practica Panel 3 .. 18
Figura 12: Panel 4 Verde ... 19
Figura 13: configuración mando IR .. 20
Tabla 14: Material Panel 4 ... 21
Figura 15: Plano practica Panel 4 .. 23
Figura 16: Panel 5 Blanco ... 24
Tabla 17: Material Panel 5 ... 26
Figura 18: Plano practica Panel 5 .. 28
Figura 19: Panel 6 Blanco ... 29
Figura 20: Rampa Soft Switch ... 30
Figura 21: Parámetros Soft Switch ... 31
Tabla 22: Material Panel 6 ... 32
Figura 23: Plano practica Panel 6 .. 34
Figura 24: Panel 7 Amarillo .. 35
Tabla 25: Material Panel 7 ... 38
Figura 26: Plano practica Panel 7 .. 39
Figura 27: Panel 8 Blanco ... 40
Figura 28: Inserción de un bloque simple 41
Figura 29: Inserción de un bloque de Entrada Analógico 41
Figura 30: Edición del bloque ... 42
Figura 31: Edición del bloque expresión 42
Figura 32: Estado de la programación ... 43
Figura 33: Edición del bloque alarma .. 43
Figura 34: Edición del bloque Oscilador 44
Figura 35: Aspecto Final modulo Correo 44
Figura 36: Creación del módulo de correo 45
Tabla 37: Material Panel 8 ... 46
Figura 38: Plano practica Panel 8 .. 48
Figura 39: Panel 9 Marrón ... 49
Tabla 40: Material Panel 9 ... 51
Figura 41: Modulo INS-460 ... 51
Figura 42: Plano practica Panel 8 .. 53
Figura 43: Panel 11 gris ... 54
Figura 44: Panel 11 Gris (Zona LonWorks) 54
Tabla 45: Material Panel 11 ... 57
Figura 46: Plano practica Panel 11 .. 59
1. KNX

1.1. Panel 1 (Blanco)

1.1.1. Foto

Figura 1: Panel 1 blanco.

1.1.2. Descripción del panel

Este es uno de los paneles que ya existía en el laboratorio antes de la ampliación. El panel tenía muchos módulos que en las prácticas no se utilizaban, pero que estaban instalados en él. Se han quitado módulos para completar los paneles nuevos.

Tenemos un módulo de persiana “JA/S 2.2.6” con el cual podríamos gobernar dos persianas. En el panel como solo tenemos una persiana, solo vamos a usar una de las dos salidas (salida A). Con este módulo tenemos la opción de manejar la persiana y la inclinación de la celosía de forma independiente.

En el panel se han dejado 4 entradas, 8 salidas, regulador fluorescente y bombilla y un módulo de 4 entradas analógicas “6157 EB-101-500”, en desuso prácticamente, puesto que no
tenemos sensores analógicos. Para darle uso se ha puesto el sensor de gas en el canal 1 con la versión de software elegida lo que configuramos es el valor por encima del cual queremos que se active la salida. En el caso del sensor de gas con poner un 10% garantizamos que se active la salida.

<table>
<thead>
<tr>
<th>Numero en el panel</th>
<th>Referencia</th>
<th>Versión Software más adecuada</th>
<th>Descripción / Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SV/S 30.640</td>
<td>-</td>
<td>FA 640mA</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>VB/S 2.2</td>
<td>-</td>
<td>Acoplador carril</td>
</tr>
<tr>
<td>4</td>
<td>EA/S 232</td>
<td>-</td>
<td>Pasarela comunicación</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conectada al puerto “COM” del PC Es de las más antiguas del laboratorio y en muchos portátiles nuevos no la podemos conectar.</td>
</tr>
<tr>
<td>5</td>
<td>ET/S 4.230</td>
<td>1.1</td>
<td>Entrada binaria 4c 230V AC Versión en la que podemos configurar el funcionamiento que queramos de la entrada, ON, OFF, CAMBIO</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>JA/S 2.2.6</td>
<td>0.1</td>
<td>Modulo Persiana Modulo con dos canales, usamos los objetos del Canal A</td>
</tr>
<tr>
<td>8</td>
<td>VB/S 2.2</td>
<td>-</td>
<td>Acoplador carril</td>
</tr>
<tr>
<td>9-10</td>
<td>AT/S 4.6</td>
<td>0.1</td>
<td>Salida 4c 230V AC Con esta versión podemos elegir si queremos que sea un contacto NA o NC y como queremos que actué si hay una caída y una vuelta de tensión en el Bus</td>
</tr>
<tr>
<td>11</td>
<td>VB/S 2.2</td>
<td>-</td>
<td>Acoplador carril</td>
</tr>
<tr>
<td>12</td>
<td>6153 EB-500</td>
<td>6.1</td>
<td>Dimmer Fluorescente Modulo para regular un único Fluorescente</td>
</tr>
<tr>
<td>13</td>
<td>6155 EB-101-500</td>
<td>5.2</td>
<td>Dimmer Lámpara incandescente Modulo para regular una lámpara de incandescencia o halógena</td>
</tr>
<tr>
<td>14</td>
<td>6157 EB-101-500</td>
<td>1.3</td>
<td>Modulo 4 entradas analógicas En esta versión de software lo que ajustamos es el valor (%) por encima del que queremos que se active la entrada</td>
</tr>
<tr>
<td>15-16-17-18-19</td>
<td>6120 U-500</td>
<td>Dependiendo de lo que acoplemos en este modulo</td>
<td>Acoplador bus empotrar</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>-</td>
<td>Puerta</td>
</tr>
</tbody>
</table>
1.1.3. Disposición panel y esquema eléctrico

23	-	-	Anemómetro
24	-	-	Buzón
25	-	-	Sensor inundación
26	-	-	Electroválvula
27	-	-	Sensor gas

Tabla 2: Material Panel 1.

1.1.4. Propuesta de practica

En este panel vamos a simular la instalación domótica de un loft en el ático de un bloque de pisos.

TERRAZA

Tiene una zona chilout con una iluminación fluorescente regulable y un toldo (persiana) impermeable para poder estar en los sofás aun que llueva. El toldo tiene la seguridad añadida de que si tenemos ráfagas de aire y hay peligro de que se rompa se recogerá automáticamente.

COCINA

Tenemos un sensor de gas analógico que cuando detecta una fuga en la cocina cierra la electroválvula del gas y enciende la sirena para que desalojemos la vivienda.

Al entrar a casa se encenderá la luz del recibidor automáticamente y se apagará de un pulsador.

ZONA SALÓN

Tenemos distintas lámparas de colores para elegir el ambiente que queremos. Verde, roja, amarilla, azul gobernadas desde el mando a distancia y con la opción de todo OFF.

Además de una lámpara regulable desde un interruptor.

BAÑO

Con un pulsador doble controlamos dos lámparas Halógenas una en el espejo y otra en el techo.
Figura 3: Plano practica Panel 1.
1.1.5. Manuales

Anexo I: Manuales
1.2. Panel 2 (Azul Claro)

1.2.1. Foto

![Panel 2 Azul Claro](image)

Figura 5: Panel 2 Azul Claro

1.2.2. Descripción del panel

Panel de sistema domótico KNX con la peculiaridad de que contamos con otra pasarela IP en este caso EIBPORT. Es un modulo muy potente que nos permite hacer visualizaciones, y enviar notificaciones vía mail.

La configuración de este módulo es:
- **IP**: 172.18.69.251.
- **Eibport login**: ZfEgvI.
- **Usuario**: admin
- **Contraseña**: id2007

Si no podemos conectarnos lo primero será añadir una exclusión en java para esta dirección IP. Este módulo nos sirve de pasarela para la programación de los módulos del panel, configurando la pasarela en el ETS.
También nos sirve para conectarnos a él atreves del navegador web y ver la visualización de la instalación como configurar las diferentes funciones.
Los demás módulos del panel son módulos más comunes como en el resto de paneles de los cuales se recomienda una versión en concreto para su programación.

El panel cuenta con 4 entradas y 8 salidas, además de dos dimmers, uno fluorescente y otro para lámparas incandescentes, además de un modulo de persiana, un crepuscular y un reloj programable

<table>
<thead>
<tr>
<th>Numero en el panel</th>
<th>Referencia</th>
<th>Versión Software más adecuada</th>
<th>Descripción / Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SV/S 30.640</td>
<td>-</td>
<td>FA 640mA</td>
</tr>
<tr>
<td>2</td>
<td>DM/S 1.1</td>
<td>0.1</td>
<td>Crepuscular</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tiene objetos de 1 bit y 4 bit para hacer una regulación con un dimmer.</td>
</tr>
<tr>
<td>3</td>
<td>SW/S 2.1</td>
<td>1.1</td>
<td>Reloj</td>
</tr>
<tr>
<td>4-5</td>
<td>ET/S 4.230</td>
<td>1.1</td>
<td>Entrada binaria 4c 230V AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Versión en la que podemos configurar el funcionamiento que queramos de la entrada, ON, OFF, CAMBIO</td>
</tr>
<tr>
<td>6</td>
<td>JA/S 2.2.6</td>
<td>0.1</td>
<td>Modulo Persiana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Modulo con dos canales, usamos los objetos del Canal A</td>
</tr>
<tr>
<td>7</td>
<td>AT/S 2.16</td>
<td>6.1</td>
<td>Salida 2c 230V AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Este modulo de salidas tiene la peculiaridad con respecto a otros que nos permite hacer temporizaciones, el resto de módulos de salidas del laboratorio no nos dan esta opción.</td>
</tr>
<tr>
<td>8</td>
<td>AT/S 6.6.1</td>
<td>4.1</td>
<td>Salida 6c 230V AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Con esta versión podemos elegir si queremos que sea un contacto NA o NC y enlaces lógicos</td>
</tr>
<tr>
<td>9</td>
<td>Eibport</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | | IP: 172.18.69.251
Eibport login: ZfEgvl.
Usuario: admin
Contraseña: id2007
(192.168.0.95 IPPD
192.168.0.244 IP EIBport) |
| 10 | 6155 EB-101-500 | 5.2 | Dimmer Lámpara incandescencia |
| | | | Modulo para regular una lámpara de incandescencia o halógena |
| 11 | 6153 EB-500 | 6.1 | Dimmer Fluorescente |
| | | | Modulo para regular un único Fluorescente |
| 12-13-14-15-16-17 | 6120 U-500 | Depende de lo que acoplemos en este modulo | Acoplador bus empotrar |
| 18-19-20 | VB/S 2.2 | - | Acoplador carril |
| 21 | - | - | Sensor inundación |
1.2.3. Disposición panel y esquema eléctrico

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>-</td>
<td>-</td>
<td>Electroválvula</td>
</tr>
<tr>
<td>23</td>
<td>-</td>
<td>-</td>
<td>Sensor gas</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>-</td>
<td>Crepuscular</td>
</tr>
<tr>
<td>25</td>
<td>-</td>
<td>-</td>
<td>Puerta</td>
</tr>
<tr>
<td>26</td>
<td>-</td>
<td>-</td>
<td>Anemómetro</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>-</td>
<td>Buzón</td>
</tr>
</tbody>
</table>

Tabla 6: Material Panel 2

1.2.4. Propuesta practica

Instalación domótica de una guardería.

Dispone de un patio con un toldo para quitar el sol en verano. El toldo es impermeable para los días de tormentas garantizar que el patio no se moje. Cuenta con la seguridad del anemómetro para evitar que se rompa y con un crepuscular debajo por si hay poca luz para encender la luz en la terraza (halógena 1).

La puerta de la calle activará la sirena luminosa, para que siempre que esté abierta se enteren los cuidadores y estén atentos de que no se escape ningún niño.

En el baño hay un sensor de inundación por si los niños mojan mucho el suelo. Se encenderá la luz verde que hay en la puerta del baño para que limpien el baño y así evitar accidentes de los niños. La luz del baño se encenderá con un pulsador (fluorescente 1).

El sensor de gas cerrará la electroválvula del gas a la caldera. Activará la ventilación en la sala de calderas para evitar que nadie salga intoxicado y encenderá la luz roja de la puerta de la sala para que no entre nadie.

Cada una de las dos salas de la guardería cuenta con una luz regulable, (una fluorescente y otra incandescencia) para adaptar la iluminación en función si es hora de la siesta o de jugar.

El pasillo cuenta con un punto de luz fluorescente que se encenderá con un sensor de presencia.
1.2.5. Manuales

Anexo II: Manuales
1.3 Panel 3 (Azul Oscuro)

1.3.1 Foto

![Panel 3 Azul Oscuro](image)

Figura 8: Panel 3 Azul oscuro.

1.3.2 Descripción del panel

Panel de los ya existentes en el laboratorio, como en los demás se han aprovechado módulos que tenía y no se les daba utilidad.

De los módulos más importantes y actuales del panel tenemos la pasarela IP “NK-FW” y el módulo contador de energía “Kamstrup”. Al cual accedemos a través de la pasarela y del navegador Web. Este modulo es muy útil ya que uno de los pilares de la domótica en el ahorro energético, y este módulo nos da toda la información de consumos de la instalación domótica.

La pasarela tiene asignado los siguientes datos:

- **IP**: (172.18.69.250)
- **Máscara**: (255.255.224.0)
- **Gateway**: (272.18.64.254)
- **Usuario**: user
- **Contraseña**: Nk1
Para asignar el módulo del contador, entramos a la página del fabricante y descargamos proyecto que contiene el módulo. http://www.lingg-janke.de/en/fachbereich/support/software/elektroz\%C3\%A4hler/
Ya tenemos el modulo en el proyecto, ahora seguiremos con la programación del panel.

Al módulo del contador accedemos a través de la pasarela IP poniendo en el navegador la dirección de la pasarela y a continuación la dirección física del contador. Dependerá del proyecto http://172.18.69.250/1.1.22/ en este menú podemos ver: Energía, Potencia, Tensión, Corriente, Historial de todo el año detallado y más configuraciones.

<table>
<thead>
<tr>
<th>Numero en el panel</th>
<th>Referencia</th>
<th>Versión Software más adecuada</th>
<th>Descripción / Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SV/S 30.640</td>
<td>-</td>
<td>Fuente alimentación 640mA</td>
</tr>
<tr>
<td>2</td>
<td>LW/S 3.1</td>
<td>1.2</td>
<td>Sensor Luminosidad 3canales Solo tenemos sensor en el canal A</td>
</tr>
<tr>
<td>3</td>
<td>ET/S 4.230</td>
<td>1.1</td>
<td>Entrada binaria 4c 230V AC Versión en la que podemos configurar el funcionamiento que queremos de la entrada, ON, OFF, CAMBIO</td>
</tr>
<tr>
<td>4</td>
<td>VB/S 2.2</td>
<td>-</td>
<td>Acoplador Carril</td>
</tr>
<tr>
<td>5</td>
<td>JA/S 2.2.6</td>
<td>0.1</td>
<td>Modulo Persiana Modulo con dos canales, usamos los objetos del Canal A</td>
</tr>
<tr>
<td>6</td>
<td>EA/S 232</td>
<td>-</td>
<td>Pasarela comunicación</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 7 | AT/S 6.6.1 | 4.1 | **Salida 6c 230V AC**
Con esta versión podemos elegir si queremos que sea un contacto NA o NC y enlaces lógicos |
| 8 | SW/S 2.1 | 1.1 | Reloj |
| 9 | VB/S 2.2 | - | Acoplador Carril |
| 10 | 6120 U-500 | Depende de lo que acoplemos en este modulo | Acoplador bus empotrar |
| 11 | VB/S 2.2 | - | Acoplador Carril |
| 12 | 6120 U-500 | Depende de lo que acoplemos en este modulo | Acoplador bus empotrar |
| 13 | 6155 EB-101-500 | 5.2 | **Dimmer Lámpara incandescencia**
Modulo para regular una lámpara de incandescencia o halógena |
| 14 | 6153 EB-500 | 6.1 | **Dimmer Fluorescente**
Modulo para regular un único Fluorescente |
| 15 | NK-FW | - | **Pasarela Comunicación**
IP: (172.18.69.250)
Mascara: (255.255.224.0)
Gateway: (272.18.64.254)
Usuario: user
Contraseña: Nk1 |
| 16 | 6120 U-500 | Depende de lo que acoplemos en este modulo | Acoplador bus empotrar |
| 17 | 6153 EB-500 | 6.1 | **Dimmer Fluorescente**
Modulo para regular un único Fluorescente |
| 18-19 | 6120 U-500 | Depende de lo que acoplemos en este modulo | Acoplador bus empotrar |
| 20 | Kamstrup 686-18A-B2-31-070 | 1.0 | **Contador Kamstrup**
Descargar el programa de la pagina del fabricante con el modulo del contador, importarlo al ETS$ y seguir la programación con ese programa. Antes de añadir más módulos mejor ponerle una dirección más alta para evitar confusiones posteriores. |
| 21 | - | - | Anemómetro |
| 22 | - | - | Electroválvula |

Tabla 10: Material Panel 3
1.3.3 Disposición panel y esquema eléctrico

Anexo III: Panel 3 (Azul Oscuro) Frente.dwg
Anexo III: Panel 3 (Azul Oscuro) Trasera.dwg
Anexo III: Panel 3 (Azul Oscuro) Frente.pdf
Anexo III: Panel 3 (Azul Oscuro) Trasera.pdf

1.3.4 Propuesta practica

En este panel vamos a simular la instalación de un polideportivo.

PISTA

La iluminación de los focos la simulamos con las dos lámparas Halógenas, se podrá encender independientemente la luz de media pista o de la otra mitad de la pista. Una lona (persiana) en el techo partirá la pista en dos para poder usar las medias pistas por separado. Los pulsadores estarán a la salida a pista.

ENTRADA

Esta zona cuenta con unos ventanales así que el fluorescente se enciende solo cuando no hay suficiente luz.

VESTUARIOS

Cada uno de los dos vestuarios de jugadores cuenta con un fluorescente regulable y una luz azul. Esta se encenderá cuando el árbitro active el pulsador para hacer salir a los equipos a pista.

El vestuario del árbitro tendrá una lámpara softone regulable y una verde en la puerta para que se sepa cuando esta dentro.

El polideportivo cuenta con un contador para saber el consumo de la instalación. Realizaremos mediciones con solo las luces de la pista encendidas, con todas las luces encendidas y con todas encendidas pero los regulables al 50% de potencia. A estos datos se le restará el valor de la potencia obtenida cuando no hay ningún elemento conectado para obtener el valor del consumo real.
1.3.5 Manuales

Anexo III: Manuales
1.4 Panel 4 (verde)

1.4.1 Foto

Figura 12: Panel 4 Verde

1.4.2 Descripción del panel

Este es otro de los paneles existentes en el laboratorio. Lo característico de este panel es que la mayoría de los módulos son de “Siemens” y no de “ABB” como el resto de paneles. El funcionamiento es exactamente el mismo independientemente del fabricante del material. Eso es lo que queremos demostrar con este panel, además de mostrar más variedad de módulos.

De este panel como de los otros ya existentes se han aprovechado módulos para completar los paneles nuevos.

Los módulos de Siemens no disponen de tantas versiones como los de ABB pero aun así, se recomiendan usar las que se nombran a continuación.

El módulo “5WG1 450-1AB02” receptor IR va asociado al mando “5WG1 421-3AB11”. En él hay que seleccionar con las pestañas interiores que tiene que objeto queremos activar. De esta forma podemos tener mandos iguales en la misma estancia con un mismo receptor y que activen distintos objetos.
<table>
<thead>
<tr>
<th>Numero en el panel</th>
<th>Referencia</th>
<th>Versión Software más adecuada</th>
<th>Descripción / Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5WG1-121-1AB01</td>
<td>-</td>
<td>FA 500mA</td>
</tr>
<tr>
<td>2</td>
<td>5WG1-120-1AB01</td>
<td>-</td>
<td>FA 500mA</td>
</tr>
<tr>
<td>3</td>
<td>SW/S 2.1</td>
<td>1.1</td>
<td>Reloj</td>
</tr>
<tr>
<td>4</td>
<td>5WG1-191-1AB01</td>
<td>-</td>
<td>Acoplador bus-Carril Din</td>
</tr>
<tr>
<td>5</td>
<td>5WG1-148-1AB02</td>
<td>-</td>
<td>Pasarela comunicación</td>
</tr>
<tr>
<td>6</td>
<td>5WG1-521-1AB01</td>
<td>0.6</td>
<td>Modulo persiana Utilizamos los objetos del Canal A para asignar los grupos.</td>
</tr>
<tr>
<td>7-8</td>
<td>5WG1-560-1AB01</td>
<td>0.3</td>
<td>Salida 2c 230V AC</td>
</tr>
<tr>
<td>9</td>
<td>5WG1-561-1AB01</td>
<td>0.1</td>
<td>Salida 4c 230V AC</td>
</tr>
<tr>
<td>10</td>
<td>5WG1-191-1AB01</td>
<td>-</td>
<td>Acoplador bus-Carril Din</td>
</tr>
<tr>
<td>11</td>
<td>5WG1-527-1AB01</td>
<td>0.1</td>
<td>Dimmer Lámpara incandescente o Halógena</td>
</tr>
<tr>
<td>12</td>
<td>5WG1-450-1AB02</td>
<td>0.1</td>
<td>Receptor IR Con la configuración de las pestañas del mando IR tenemos que usa los objetos 0 y 1</td>
</tr>
<tr>
<td>13</td>
<td>ET/S 4.230</td>
<td>1.1</td>
<td>Entrada binaria 4c 230V AC Versión en la que podemos configurar el funcionamiento que queramos de la entrada, ON, OFF, CAMBIO</td>
</tr>
<tr>
<td>14</td>
<td>5WG1-191-1AB01</td>
<td>-</td>
<td>Acoplador bus-Carril Din</td>
</tr>
<tr>
<td>15-16-17-18</td>
<td>5WG1-110-2AB02</td>
<td>Depende de lo que acoplamos en este modulo</td>
<td>Acoplador bus empotrar</td>
</tr>
<tr>
<td>19</td>
<td>6120 U-500</td>
<td>Depende de lo que acoplamos en este modulo</td>
<td>Acoplador bus empotrar</td>
</tr>
<tr>
<td>20-21</td>
<td>5WG1-562-4AB01</td>
<td>0.1</td>
<td>Salida binaria 1c 230V</td>
</tr>
</tbody>
</table>
1.4.3 Disposición panel y esquema eléctrico

Anexo IV: Panel 4 (Verde) Frente.dwg
Anexo IV: Panel 4 (Verde) Trasera.dwg
Anexo IV: Panel 4 (Verde) Frente.pdf
Anexo IV: Panel 4 (Verde) Trasera.pdf

1.4.4 Propuesta practica

En este panel vamos a simular la instalación eléctrica de un chalet domótico.

ZONA EXTERIOR

Tenemos una puerta de entrada, que cuando se abre se enciende la sirena para avisar a los niños que entra un coche. En el coche llevaremos el mando a distancia que activara el motor de apertura de la puerta, (luz verde) y la luz de la entrada al garaje (amarilla). Cada uno con una tecla del mando IR.

La zona del jardín tiene un sensor crepuscular que enciende unas luces decorativas en el exterior del chalet, halógena 1 y halógena 2. Las luces se apagaran a las 12 de la noche.

ZONA INTERIOR

En el salón tenemos un punto de luz regulado (softone) y un toldo para cuando da el sol en la cristalera no nos deslumbre dentro del salón se controla con un pulsador y tiene la seguridad de que se recoge si hace mucho aire.
La zona de la cocina tiene un pulsador doble para encender un fluorescente y el extractor (ventilador) de forma independiente.

El buzón cuenta con una luz roja que indica que está lleno para salir a vaciarlo solo cuando sea necesario.

Cuando nos vamos de casa tenemos un pulsador que cierra la electroválvula del agua para evitar fugas.
1.4.5 Manuales

Anexo IV: Manuales
1.5 Panel 5 (Blanco)

1.5.1 Foto

Figura 16: Panel 5 Blanco

1.5.2 Descripción del panel

Antiguo panel que tenía instalado un sistema de corrientes portadoras X10.

Daba muchos fallos (interferencias en la red le afectan mucho), y como es un sistema anticuado que apenas se usa, se optó por sustituirlo por un panel KNX.

En este panel tenemos instalada una de las fuentes de alimentación nuevas adquiridas este año “ZPS-160MPA” es del fabricante Zennio de 160mA (hasta 16 módulos).

En cuanto a los módulos recuperados tenemos el modulo de persiana “JA/S 2.230.1”. Un módulo con el que originalmente se podía controlar dos persiana, pero que en la actualidad solo funciona la salida B. En el caso de nuestro panel se puede aprovechar ya que solo tenemos una persiana instalada, lo único a tener en cuenta a la hora de asignar los objetos a los grupos, es que tenemos que usar los correspondientes a “Output B”.
La pasarela de comunicación es “2130 USB REG R2”. Es una pasarela de conexión USB, más moderna que las que usan el puerto “COM”. Más útil ya que la mayoría de los portátiles nuevos no disponen de ese puerto de comunicación y sí de USB. La pasarela estaba en el Almacén desaprovechada y se ha querido aprovechar su potencial.

En este panel tenemos también un modulo “DB/S 1.1”. Es una unidad de diagnosis, que dispone de 3 Leds (Verde: todo bien, Amarillo: parpadea cuando hay datos en el bus, Rojo: Problemas en el bus). Este módulo viene bien a la hora de hacer la práctica, porque vemos el estado del bus, sin estar monitorizándolo en el PC.

De cada módulo se han probado las diferentes versiones de Software y se detalla a continuación con cual se recomienda programar.

<table>
<thead>
<tr>
<th>Numero en el panel</th>
<th>Referencia</th>
<th>Versión Software más adecuada</th>
<th>Descripción / Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZPS-160MPA</td>
<td>-</td>
<td>Fuente alimentación 160mA</td>
</tr>
<tr>
<td>2</td>
<td>SA/S 4.16.1</td>
<td>2.0</td>
<td>Salida 4c 250V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Este modulo de salidas es de los más completos que hay, tiene opción de elegir contacto NA o NC y se puede hacer conexiones lógicas, para un uso normal usaremos Objetos (10, 30, 50, 70)</td>
</tr>
<tr>
<td>3</td>
<td>JA/S 2.230.1</td>
<td>2.0</td>
<td>Modulo Persiana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Usar la salida B en la programación, corresponde los conectores de la derecha.</td>
</tr>
<tr>
<td>4</td>
<td>2130 USB REG R2</td>
<td>-</td>
<td>Pasarela comunicación USB</td>
</tr>
<tr>
<td>5</td>
<td>ET/S 4.230</td>
<td>1.1</td>
<td>Entrada binaria 4c 230V AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Versión en la que podemos configurar el funcionamiento que queramos de la entrada, ON, OFF, CAMBIO</td>
</tr>
<tr>
<td>6</td>
<td>VB/S 2.2</td>
<td>-</td>
<td>Acoplador carril</td>
</tr>
<tr>
<td>7</td>
<td>ET/S 4.230</td>
<td>1.1</td>
<td>Entrada binaria 4c 230V AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Versión en la que podemos configurar el funcionamiento que queramos de la entrada, ON, OFF, CAMBIO</td>
</tr>
<tr>
<td>8</td>
<td>AT/S 2.16</td>
<td>6.1</td>
<td>Salida 2c 230V AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Este modulo de salidas tiene la peculiaridad con respecto a otros que nos permite hacer temporizaciones, el resto de módulos de salidas del laboratorio no nos dan esta opción.</td>
</tr>
<tr>
<td>9</td>
<td>DB/S 1.1</td>
<td>-</td>
<td>Unidad Diagnosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verde: todo bien</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Amarillo: cuando parpadea, datos en el bus</td>
<td>Rojo: Problema en el bus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6153 EB-500</td>
<td>6.1</td>
<td>Dimmer Fluorescente Módulo para regular un único Fluorescente</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>Lector Tarjeta</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>Lector Código</td>
</tr>
<tr>
<td>13</td>
<td>5WG1 110-2AB02</td>
<td>Dependiendo de lo que acoplamos en este modulo</td>
<td>Acoplador bus empotrable</td>
</tr>
<tr>
<td>14</td>
<td>6120 U-500</td>
<td>Dependiendo de lo que acoplamos en este modulo</td>
<td>Acoplador bus empotrable</td>
</tr>
<tr>
<td>15</td>
<td>TS/U 4.1</td>
<td>2.1 Regulación</td>
<td>Conector 4 pulsadores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2 Pulsadores</td>
<td>2.1 con esta versión tenemos la posibilidad de controlar los dos fluorescentes regulables (como la salida +.- esta cableada al balastro si vemos que no regula bien es que tenemos conectada las salidas al revés, cambiemos la A por la B y ya está)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1 Per/Reg.</td>
<td>Tecla 1 on. +luz salida A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tecla 2 off. –Luz salida A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tecla 3 on. +Luz salida B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tecla 4 off. –Luz salida B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2 con esta versión controlamos las 4 teclas de forma independiente, (versión en alemán), el uso mayoritario que es que cada vez que pulsemos cambie el estado de ON-OFF, lo conseguimos cambiando en parámetros “steigned UM” “steigender & faillender Flanke” “Kien zyklisches sender”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1 Con esta versión podemos regular un punto de luz Tecla A y B y controlar una persiana Tecla C y D</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>-</td>
<td>Puerta</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>-</td>
<td>Sensor Gas</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
<td>Termostato</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>-</td>
<td>Estación Meteorológica</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-</td>
<td>Buzón</td>
</tr>
</tbody>
</table>

Tabla 17: Material Panel 5
1.5.3 Disposición panel y esquema eléctrico

Anexo V: Panel 5 (Blanco) Frente.dwg
Anexo V: Panel 5 (Blanco) Trasera.dwg
Anexo V: Panel 5 (Blanco) Frente.pdf
Anexo V: Panel 5 (Blanco) Trasera.pdf

1.5.4 Propuesta practica

Este panel simulará la instalación domótica de un gimnasio:

ENTRADA

Cuando llega el dueño del gimnasio teclea el código en el teclado numérico y se enciende la luz verde que ilumina la fachada de la calle para que se sepa que está abierto el gimnasio.

ZONA PESAS

La zona de pesas se puede dividir en dos bajando una lona desde el techo (Simula la persiana) se controla desde un pulsador doble.

La sala tiene dos puntos de luz independiente (amarillo y azul) y un buzón de sugerencias que si hay una carta dentro encenderá una luz (verde pequeña). Para estos puntos de luz y para apagar la luz del buzón se usara el modulo TS/U y los pulsadores que tiene acoplados.

ZONA CLASES

Cuando llega un monitor mete su tarjeta de empleado y se enciende la luz de la clase (Halógeno 1).

BAÑOS

La luz de los baños será un fluorescente regulable que se controlara desde un pulsador doble.

SAUNA

Siempre que la puerta este abierta o baje de la temperatura de consigna se encenderá el calentador (bombilla roja) para que no baje la temperatura de la sauna.
1.5.5 Manuales

Anexo V: Manuales
1.6 Panel 6 (Blanco)

1.6.1 Foto

![Panel 6 Blanco](image)

1.6.2 Descripción del panel

En este panel también había instalado otro sistema domótico, el sistema AMIGO de Eunea que era un sistema descentralizado. Se decidió quitar por su obsolescencia, y su mal funcionamiento. En este panel también se ha proyectado un sistema domótico KNX. Los módulos se han recuperado de las estanterías y de los paneles que había funcionando anteriormente, ya que estaban muy sobredimensionados para lo que realmente se veía en las practica.

De todos los módulos de este panel el que tiene más posibilidades a la hora de programación es "STEUER MODUL 1-10V SMG-2" que es un regulador de fluorescentes.

Cuando lo agregamos al programa disponemos de 16 objetos. Para hacer la regulación de los fluorescentes usamos en el canal A (0 ON/OFF y 1 Claro/oscuco) y en Canal B (10 ON/OFF y 11
Claro/oscurito). Tiene una opción “Soft Switch” que podemos hacer una rampa de encendido progresivo, un rato encendido y un apagado progresivo. Objeto 3 (Canal A) y 13 (Canal B).

![Figura 20: Rampa Soft Switch](image)

En este panel vamos a usar el modulo “TS/U 4.1” para gobernar un punto de luz regulable (Teclas A y B) y el control básico de una Persiana (Teclas C y D) este modulo ofrece gran abanico de posibilidades y a bajo coste, además de poder usar pulsadores normales de una instalación de una vivienda.

De cada modulo se han probado las diferentes versiones de Software y se detalla a continuación con cual se recomienda programar.
<table>
<thead>
<tr>
<th>Numero en el panel</th>
<th>Referencia</th>
<th>Versión Software más adecuada</th>
<th>Descripción / Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FA 320mA</td>
<td>-</td>
<td>Fuente alimentación 320mA</td>
</tr>
</tbody>
</table>
| 2 | STEUER MODUL 1-10V SMG-2 | 1.4 | Regulador Fluorescentes
Canal A
Objeto 0 ON/OFF
Objeto 1 Claro/oscuro
Objeto 3 Soft Switch
Canal B
Objeto 10 ON/OFF
Objeto 11 Claro/oscuro
Objeto 13 Soft Switch |
| 3 | TRC 1 | - | Modulo Relé Telefónico |
| 4.5 | AT/S 2.16 | 6.1 | Salida 2c 230V AC
Este módulo de salidas tiene la peculiaridad con respecto a otros que nos permite hacer temporizaciones, el resto de módulos de salidas del laboratorio no nos dan esta opción. |
| 6 | EA/S 232 | - | Pasarela comunicación |
| 7 | 5WG1-560-1AB01 | 0.3 | Salida 2c 230V AC
En esta versión podemos añadir un retardo a la conexión o a la desconexión |
| 8 | 5WG1-260-1AB01 | 0.5 | Entrada binaria 4c 230V AC
Versión en la que podemos configurar el funcionamiento que queramos de la entrada, ON, OFF, CAMBIO |
| 9 | ET/S 4.230 | 1.1 | Entrada binaria 4c 230V AC
Versión en la que podemos configurar el funcionamiento que queramos de la entrada, ON, OFF, CAMBIO |
| 10 | VB/S 2.2 | - | Acoplador carril |
| 11 | BUSANKOPPLER UP 2070U | Depende de lo que acopлемos en este modulo | Acoplador bus empotrar |
| 12 | 6120 U-500 | Depende de lo que acopлемos en este modulo | Acoplador bus empotrar |
| 13 | TS/U 4.1 | 2.1 | Conector 4 pulsadores
2.1 con esta versión tenemos la posibilidad de controlar los dos fluorescentes regulables (como la salida +.- esta cableada al balastro si vemos que no regula bien es que tenemos conectada las salidas al revés, cambiamos la A por la B y ya está)
Tecla 1 on. +luz salida A
Tecla 2 off. –Luz salida A |
Tecla 3 on. +Luz salida B
Tecla 4 off. –Luz salida B
1.2 con esta versión controlamos las 4 teclas de forma independiente, (versión en alemán), el uso mayoritario que es que cada vez que pulsemos cambie el estado de ON-OFF, lo conseguimos cambiando en parámetros “steigned UM” “steigender & faillender Flanke” “Kien zykliches sender”
4.1 Con esta versión podemos regular un punto de luz Tecla A y B y controlar una persiana Tecla C y D

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>6152 EB-101-500</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modulo Persiana</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modulo de persiana sin opción de control de la celosía, tampoco es posible parar la persiana a media altura, es de los módulos más básicos de los de control de persiana y de los más económicos.</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 22: Material Panel 6

1.6.3 Disposición panel y esquema eléctrico

Anexo VI: Panel 6 (Blanco) Frente.dwg
Anexo VI: Panel 6 (Blanco) Trasera.dwg
Anexo VI: Panel 6 (Blanco) Frente.pdf
Anexo VI: Panel 6 (Blanco) Trasera.pdf

1.6.4 Propuesta practica

Este panel simulará la instalación domótica de una pequeña tienda de ropa:

La entrada del dueño es por el almacén, ahí con un pulsador doble encenderá y apagará la luz del almacén y de la tienda (halógena 1 y halógena 2).
TIENDA

En la tienda cada vez que entre alguien por la puerta se encenderá la alarma para que el dependiente se entere y acuda a atenderlo (sirena).
En la tienda con el modulo TS/4.1 y dos pulsadores subirá y bajará la reja del escaparate (simulado por la persiana).

ESCAPARATE

Estará iluminado con un fluorescente regulable desde el modulo TS/4.1.

La tienda cuenta con calefacción con caldera de gas y si hay una fuga cerrara la electroválvula de la entrada del gas.
1.6.5 Manuales

Anexo VI: Manuales
1.7 Panel 7 (Amarillo)

1.7.1 Foto

![Panel 7 Amarillo](image)

Figura 24: Panel 7 Amarillo

1.7.2 Descripción del panel

Este panel es uno de los que se han reaprovechado para instalar unos módulos domóticos Sistema KNX.
Antes tenía un sistema domótico centralizado de Simón, este sistema funcionaba muy bien, pero está obsoleto en la actualidad y no se fabrican módulos para este sistema. Además disponemos de otro panel que no se ha querido tocar para que en el laboratorio sigamos teniendo un sistema domótico centralizado.

El panel disponía de entradas a 24V. Para aprovechar al máximo el panel, al planificar el montaje se optó por usar módulos de entradas a 24V. Recuperados de otros paneles en los cuales no se aprovechaban al máximo.

Son el módulo “5WG1 261 1AB01 24V” de siemens. A sus entradas llevamos los 24V para generar la señal. Lo hacemos a través de los sensores de nivel, anemómetro, sensor gas, detector presencia.
Un módulo “**ET/S 4.24.2**” de ABB. Aun que son contactos libres de potencial, va alimentado a 24V y así aprovechamos la fuente de alimentación (aprovechada de SimonVis). Este módulo ya está cableado una parte hasta los sensores de la puerta, crepuscular y dos pulsadores. Así para evitar errores en las prácticas que se utilice.

La fuente alimentación del bus es una fuente “**JUNG**” de 640mA, con la cual podríamos alimentar hasta 64 módulos KNX. Aun que no tenemos tantos, la tenemos que usar por que tiene una salida que necesitamos para alimentar la Pasarela “**5WG1 148 1AB21**”. Nos permite acceder a la instalación desde cualquier puesto del laboratorio (la red de la Upna no deja conectarse a los paneles mediante wifi ni de fuera de la Upna).

Esta pasarela tiene la peculiaridad de que para asignarle la dirección IP (**172.18.69.252**) necesitamos otra pasarela de comunicación. Ya la tiene asignada usando la de otro panel y se le queda guardada hasta que se vuelva a modificar.

Otro modulo que solo tenemos en este panel es el regulador “**LR/S 2.2.1**” nos permite regular dos fluorescentes.

El resto de módulos del panel son “**AT/S 2.16**” 2 salidas que en la programación nos da opción de temporizar. “**AT/S 4.6**” 4 salidas 230V. “**6120 U-500**” 2 acopladores para conectar pulsadores, IR o detectores, así como el acoplador para carril con pistas de bus “**VS/S 2.1**”

Debido a la falta de presupuestos de la Upna este panel se queda con persiana, pero sin modulo para controlarla.

De cada modulo se han probado las diferentes versiones de Software y se detalla a continuación con cual se recomienda programar.

<table>
<thead>
<tr>
<th>Numero en el panel</th>
<th>Referencia</th>
<th>Versión Software más adecuada</th>
<th>Descripción / Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FA 24V DC</td>
<td>-</td>
<td>Fuente Alimentación 24V DC</td>
</tr>
<tr>
<td>2</td>
<td>JUNG 640mA</td>
<td>-</td>
<td>FA 640mA</td>
</tr>
<tr>
<td>3</td>
<td>5WG1 148 1AB21</td>
<td>0.1</td>
<td>Pasarela comunicación Necesitamos otra pasarela para cargarle la dirección (172.18.69.252) y dirección Física (1.1.50)</td>
</tr>
<tr>
<td>4</td>
<td>LR/S 2.2.1</td>
<td>3.1</td>
<td>Dimmer Regulador Para usar el regulador elegimos la versión 3.1. Tiene la peculiaridad que al agregarlo al programa no salen los objetos, tenemos que entrar a parámetros y activar el canal a y b dependiendo de lo que queramos. En nuestro caso los dos, y así ya podemos seleccionar los objetos para hacer la regulación.</td>
</tr>
<tr>
<td>5</td>
<td>ET/S 4.24.2</td>
<td>0.1</td>
<td>Entrada binaria 4c 24V AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Versión en la que podemos configurar el funcionamiento que queramos de la entrada, ON, OFF, CAMBIO Este modulo tiene la peculiaridad de que sus contactos son libres de potencial y podemos usar el contacto de cualquier sensor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5WG1 261 1AB01 24V</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Entrada binaria 4c 24V AC/DC</td>
<td>Versión en la que podemos configurar el funcionamiento que queramos de la entrada, ON, OFF, CAMBIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AT/S 2.16</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>Salida 2c 230V AC</td>
<td>Este módulo de salidas tiene la peculiaridad con respecto a otros que nos permite hacer temporizaciones, el resto de módulos de salidas del laboratorio no nos dan esta opción.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AT/S 4.6</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Salida 4c 230V AC</td>
<td>Con esta versión podemos elegir si queremos que sea un contacto NA o NC y como queremos que actué si hay una caída y una vuelta de tensión en el Bus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>VB/S 2.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Conector 4 pulsadores</td>
<td>Con esta versión tenemos la posibilidad de controlar los dos fluorescentes regulables (como la salida +.- esta cableada al balastro si vemos que no regula bien es que tenemos conectada las salidas al revés, cambiamos la A por la B y ya está) Tecla 1 on. +Luz salida A Tecla 2 off. –Luz salida A Tecla 3 on. +Luz salida B Tecla 4 off. –Luz salida B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TS/U 4.1</td>
<td>2.1 Regulación 1.2 Pulsadores 4.1 Per/Reg.</td>
<td></td>
</tr>
<tr>
<td>4.1 Per/Reg.</td>
<td>Con esta versión controlamos las 4 teclas de forma independiente, (versión en alemán), el uso mayoritario que es que cada vez que pulsamos cambie el estado de ON-OFF, lo conseguimos cambiando en parámetros “steigned UM” “steigender & faillender Flanke” “Kien zyklisches sender”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6120 U-500</td>
<td>Dependente de lo que acoplemos en este modulo</td>
<td></td>
</tr>
<tr>
<td>Acoplador bus empotrar</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>Pulsador Doble</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>-</td>
<td>Puerta NA</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>Anemómetro 24V</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
<td>Buzón 24V</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>-</td>
<td>Electroválvula</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>-</td>
<td>Termostato</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
<td>Sensor nivel 24V</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>-</td>
<td>Sensor Gas</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-</td>
<td>Persiana</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>-</td>
<td>Sensor Presencia</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>-</td>
<td>Sensor Presencia</td>
</tr>
</tbody>
</table>

Tabla 25: Material Panel 7

1.7.3 Disposición panel y esquema eléctrico

Anexo VII: Panel 7 (Amarillo) Frente.dwg
Anexo VII: Panel 7 (Amarillo) Trasera.dwg
Anexo VII: Panel 7 (Amarillo) Frente.pdf
Anexo VII: Panel 7 (Amarillo) Trasera.pdf

1.7.4 Propuesta practica

Este panel simulará una Planta dedicada a oficinas. Esta planta de oficinas estará compuesta por tres zonas: hall entrada, zona de atención al cliente y despacho de dirección.

HALL ENTRADA

Si la puerta de entrada está abierta, se encenderá la sirena situada donde la secretaria. Se apagará una vez se cierre la puerta.

Cuando la iluminación sea baja se encenderá un fluorescente, si entra suficiente luz por la cristalera estará apagado.

Con un pulsador doble situado en la puerta nos aseguramos de que todas las luces están apagadas, al igual que el ventilador.

ZONA DE ATENCIÓN AL CLIENTE

Se iluminará con dos fluorescentes regulables, que se regularas desde el modulo TS/U con unos pulsadores acoplados a él.

Hay una fuente de agua con un detector de inundación detrás, si hay una fuga de agua la electroválvula cerrara la entrada de agua.

DESPACHO DE DIRECCIÓN
Si hay carta en el buzón, la bombilla verde estará encendida, en el caso contrario, estará apagada.

En el despacho hay dos pulsadores (acoplados a entradas) que encenderán el ventilador y la Halógena 1

Nota: puerta, crepuscular y los dos pulsadores del despacho, van conectados al modulo de entradas ET/S 4.24.2 que son contactos libres de potencial. Ya esta cableado una parte hasta el sensor.

1.7.5 Manuales

Anexo VII: Manuales
2 LONWORKS

2.1 Panel 8 (Blanco)

2.1.1 Foto

Figura 27: Panel 8 Blanco

2.1.2 Descripción del panel

Panel Blanco con sistema domótico LONWORKS. Los módulos “CSI-1000RC” “CSI-1000RL” “CSI-ZC4R” “CSI-PWR105” “CSI-NIU” y “STR350” son de Merli-Gerin. Estos módulos tienen muchas versiones de firmware, se recomienda usar las mencionadas en la tabla de todas las disponibles. En los módulos “CSI-NIU” cargar la del mecanismo que se va a colocar en cada modulo.

A parte de los módulos de Merli-Gerin, lo más interesante de este panel son los módulos “TAC XENTA 281 y 511”. Los dos módulos estaban en desuso, y se han recuperado. El TAC XENTA 281 se ha cableado por completo, faltaba sacar los bornes de los comunes de los contactos de entrada y de salida. En la práctica se propone una aplicación sencilla como toma de contacto con este módulo.
ALARMA DE CORREO (PASO A PASO)

La aplicación con el tac Xenta consiste en leer la señal de una fotocélula, 0,03V sin detectar y 11,7V cuando detecta. Con ese valor hacer que una lámpara normal parpadee. La fotocélula está en un buzón por lo tanto el parpadeo de la lámpara nos indicara que hay una carta. Para ir a recogerla.

Se necesitan 2 bloques, uno de entrada y otro de salida. El de entrada servirá para introducir el valor del sensor y el de salida actuará sobre la salida.

Para introducir un bloque en Menta se usa el botón derecho del ratón. Al presionarlo, se accede al siguiente menú:

Para insertar un bloque de entrada, se selecciona Simple Block y se elige el bloque Al (Analog Input), puesto que el sensor da una entrada analógica.
El siguiente paso es editar el bloque de entrada. Haciendo doble clic sobre el objeto accedemos a dos pantallas de configuración.

Figura 30: Edición del bloque

En la primera pantalla se da nombre a la entrada, en este caso sensor_buzon. A continuación, se pincha en Bind y se accede a otra pantalla. La señal de entrada está conectada a una entrada del módulo Xenta281, con lo cual en el apariado de Bind to, se selecciona Linear Analog Input y en la parte de la derecha, seleccionar Mod Number Xenta 281, Terminal Ref UI, Sensor de 0 a 10V y OK.

Una vez configurada la entrada, se sabe que a la salida del bloque de entrada se tiene la tensión que hay en el sensor. Recordando que un valor aproximadamente alrededor de 0,03V sin detectar y 11,7V cuando detecta. Se puede concluir que siempre que haya un valor mayor de 8V hay correo. Para trasladar esta idea a la programación, se utiliza un bloque de tipo Expression. Haciendo clic derecho, seleccionar Expression.

Figura 31: Edición del bloque expresión
Se dejan todos los valores por defecto y se introduce en la parte Expression la cadena de texto `A>8?1:0`. Esta es la manera de construir sentencias alternativas en Mema.

Su significado es que si la entrada A es mayor que 8, la salida del bloque de expresión es 1 y en caso contrario será 0.

El siguiente paso es unir la caja Al con la XPR. Para ello, se pincha a la salida del bloque Al y el cursor se convierte en un aspa. Se lleva el aspa a la entrada del bloque XPR' hasta que se trasforme en un cuadrado. En este momento pinchamos y se crea el enlace.

![Figura 32: Estado de la programación](image)

Cuando la salida del bloque XPR es 1 es que hay correo en el buzón. Para pasar esta información al sistema de supervisión, se usa un bloque llamado Alarm, que está dentro de la lista de los Simple Block. Se inserta el bloque Alarm y se conecta a la salida del bloque XPR. Para configurarlo, se hace doble clic encima y accedemos al siguiente menú:

![Figura 33: Edición del bloque alarma](image)

En él, dentro de Identifier se escribe alarma_correo, en descripción se da una breve descripción de lo que hace el bloque y a continuación se pincha en Edit. Aquí se pueden configurar los textos que aparecen en el sistema de supervisión al dispararse la alarma.
Lo siguiente es hacer que la salida parpadee cuando se activa la alarma del correo. Para ello se hace uso de otro bloque llamado OSC (Oscilador). Su salida es una señal binaria cuadrada de duración puede definirse editando los parámetros del bloque.

Uniendo la salida del bloque oscilador con la salida del bloque de alarma mediante un bloque AND, se consigue que la salida parpadee siempre y cuando haya correo en el buzón.

Ya solo falta unir la señal al bloque de salida que active la salida física del módulo. Para ello está disponible dentro de los Simple Block un bloque llamado DO (Digital Output). Se inserta el bloque, se conecta y se configuran su parámetro.

Al unir todas las cajas entre sí, obtenemos el siguiente esquema:

Para acabar definitivamente con la programación del correo, habrá que aislar esta parte de código del resto del programa. Para ello se seleccionan todos los bloques y se convierten en un módulo. Para llevar a cabo esta tarea, una vez seleccionados todos los bloques, se hace un clic derecho y se pincha la opción module del menú desplegable y se le da el nombre de correo, tal y como se indica en la siguiente figura.
Al pinchar en OK, puede comprobarse que en la parte superior de todas las cajas seleccionadas aparece la palabra correo. Esto quiere decir que el módulo se ha creado con éxito. Se guarda el programa con el nombre Xenta281.mta y se continúa con la programación.

Antes de descargar el programa al módulo, se procede a crear el archivo XIF que permitirá dar de alta el Xenta 281 en LonMaker. Para ello, se accede al menú Commands/Generate.

Una vez generado el XIF, ya se puede descargar la programación al Xenta. Esta descarga se hará mediante un cable RS232. Se conecta adecuadamente el cable al ordenador y se pincha en el botón de Online y en download.

<table>
<thead>
<tr>
<th>Numero en el panel</th>
<th>Referencia</th>
<th>Versión firmware más adecuada</th>
<th>Descripción / Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TR 32</td>
<td>-</td>
<td>Fuente de alimentación 24 VAC</td>
</tr>
<tr>
<td></td>
<td>TAC XENTA 281</td>
<td>-</td>
<td>MÓDULO LÓGICO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entradas: 4 Analógicas/2Digitales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analógicas:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U1-U2 con el mismo común MU 1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U3-U4 con el mismo común MU 3-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Digitales:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X1-X2 con el mismo común MX 1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salidas: 3 0-10V/ 3 ON-OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-10V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y1-Y2 con el mismo común MY 1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y3 con común MY 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Digitales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>K1-K2-K3 la fase ya estaba conectada al común de estas salidas.</td>
</tr>
</tbody>
</table>
2.1.3 Disposición panel y esquema eléctrico

Anexo VIII: Panel 8 (Blanco) Frente.dwg
Anexo VIII: Panel 8 (Blanco) Trasera.dwg
Anexo VIII: Panel 8 (Blanco) Frente.pdf
Anexo VIII: Panel 8 (Blanco) Trasera.pdf

2.1.4 Propuesta practica

Este panel simulará una instalación domótica en la suite de un hotel

En esta práctica vamos a usar tanto los módulos Merlin-Gerin como el TAC 281

ILUMINACIÓN

Zona comedor consta de dos fluorescentes regulables y zona de la cama de una bombilla softone todo gobernado desde el mismo pulsador.

Terraza tiene un detector de movimiento que cuando se active encenderá la luz 1 minuto.

ILUMINACIÓN AMBIENTAL

Desde un mando a distancia se encenderán las luces ambientales para generar distintas escenas en la habitación, tecla 1-Roja 1, tecla 2-Roja 2, tecla 3-Verde, tecla 4 se goberaran los tres puntos de luz.

Con otra botonera controlamos la persiana de la habitación.
Con el TAC 281 vamos a avisar al servicio de habitaciones de que hemos elegido la cena de la carta y la hemos dejado en el buzón para que recojan el pedido y no los preparen lo más rápido posible por eso haremos que la luz que identifica a nuestra habitación (Halógena 1) parpadee hasta que recojan el pedido.

NOTA: para que las botoneras funcionen correctamente, la variable UCP_Type_41 debe valer “05” en todos los casos. La botonera de 4 canales se corresponde con la aplicación “PB-4”. El mando a distancia se debe considerar como una botonera de este tipo.
Figura 38: Plano practica Panel B

2.1.5 Manuales

Anexo VIII: Manuales
2.2 Panel 9 (Marrón)

2.2.1 Foto

![Figura 39: Panel 9 Marrón](image)

2.2.2 Descripción del panel

Con el panel Marrón lo que se ha hecho, ha sido utilizar la mitad de módulos en este panel y la otra mitad recolocarlos en el gris. Esto lo hemos podido hacer porque el equipo que se va a usar en prácticas para programar el panel marrón, tiene una tarjeta instalada que permite la comunicación con los módulos. Esta tarjeta estaba en el almacén y se ha configurado en el ordenador e instalado el software.

Los módulos de este panel son “INS-460” “INS-360” “INS-020” “ISN-23TE/V3”. Tienen distintas versiones de Firmware con distintos Bloques funcionales, una vez probados se recomiendan una versión en concreto y en que pins conectar los cables en el entorno Visio.
<table>
<thead>
<tr>
<th>Numero en el panel</th>
<th>Referencia</th>
<th>Versión firmware más adecuada</th>
<th>Descripción / Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>INS-460</td>
<td>A2B1302000001.XIF</td>
<td>Modulo 6Entradas/4Salidas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Con Esta versión de Firmware tenemos el bloque funcional que vemos a continuación. Las 6 entradas son:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 1: nvoEnt1y2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 2: nvoEnt3y4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 3: nvoEnt5y6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 4: nvoEnt7y8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 5: nvoEnt9y10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 6: nvoEnt11y12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Así conseguimos que cuando se cierre el contacto se active la entrada, si lo que queremos es el funcionamiento inverso tenemos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 1: nvoEnt1y2INV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 2: nvoEnt3y4INV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 3: nvoEnt5y6INV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 4: nvoEnt7y8INV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 5: nvoEnt9y10INV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 6: nvoEnt11y12INV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Las 4 salidas relé son:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salida 1: nviRele1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salida 2: nviRele2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salida 3: nviRele3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salida 4: nviRele4</td>
</tr>
<tr>
<td>2</td>
<td>FA 15 VDC 4A</td>
<td>-</td>
<td>Fuente Alimentación</td>
</tr>
<tr>
<td>4</td>
<td>INS-360</td>
<td>A091202000201.XIF</td>
<td>Dimmer Fluorescente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Esta versión de Firmware es para utilizar el modulo para regular unos fluorescentes, los pulsadores ya están conectados a la entrada 1 y 2 (la tres está libre porque solo disponemos de dos fluorescentes regulables y esta sin cablear) las entradas 4, 5 y 6 se pueden usar para configurar escenas. Los fluorescentes regulables se conectan a las salidas del modulo FR1 y FR2</td>
</tr>
<tr>
<td>5</td>
<td>INS-020</td>
<td>-</td>
<td>Nodo Lógico</td>
</tr>
<tr>
<td>6</td>
<td>ISN-23TE/V3</td>
<td>A080701000015.XIF</td>
<td>Modulo Persiana (A080700000013.XIF y A080700000024.XIF funcionan correctamente con la persiana) Pero al tenerla acoplada a unos interruptores el que mejor resultado nos da es” A080701000015.XIF”</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Puerta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Anemómetro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Buzón</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sensor inundación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Crepuscular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Termostato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Det. gas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 40: Material Panel 9

2.2.3 Disposición panel y esquema eléctrico

Anexo IX: Panel 9 (Marrón) Frente.dwg
Anexo IX: Panel 9 (Marrón) Trasera.dwg
Anexo IX: Panel 9 (Marrón) Frente.pdf
Anexo IX: Panel 9 (Marrón) Trasera.pdf
2.2.4 Propuesta practica

Como ya hemos comentado que el sistema LONWORKS está más encaminado a instalaciones más complejas. En este panel vamos a ver una parte de la instalación del NAVARRA ARENA.

Estos módulos corresponden a la zona de frontón del Recinto.

Tendremos dos fluorescentes regulables que gobernaremos con dos pulsadores (P1 y P2) para garantizar una correcta iluminación en la zona de juego. Si con esta regulación manual no es suficiente el crepuscular detectará la falta de luz y encenderá la bombilla SOFTONE.

Los ventanales cuentan con una lona exterior que se baja y se sube para dejar entrar más o menos luz. Así se evitan deslumbramientos y un calentamiento excesivo por acción del sol (sobre todo en verano). Se gobierna desde dos pulsadores. Se recogerá si hace mucho viento. Si el calor ha subido demasiado el termostato pondrá en marcha el ventilador para refrigerar esa zona.

La iluminación de la zona está gobernada por 4 interruptores que encienden Halógena 1, Halógena 2, Fluorescente 1 y fluorescente 2.
La zona cuenta con una salida de emergencia que si se abre acciona una sirena.

Hay una taquilla en la zona (buzón) si hay ropa dentro la luz roja estará encendida.
2.2.5 Manuales

Anexo IX: Manuales
2.3 Panel 11 (Gris)

2.3.1 Foto

Figura 43: Panel 11 Gris

Figura 44: Panel 11 Gris (Zona LonWorks)
2.3.2 Descripción del panel

En este panel conviven dos sistemas domóticos independientes. EHS, un sistema domótico basado en corrientes portadoras descatalogado y con la empresa que lo fabricaba desaparecida. Se han dejado seis modulo (3 Entradas/2 Salidas), los sensores e interruptores que se compartirán con el sistema LONWORKS. Además de un avisador de mensajes con los siguientes mensajes programados:

Mensaje 1: ¡Atención! Alarma técnica disparada.
Mensaje 3: ¡Atención! Alarma de presencia disparada.
Mensaje 12: Alarma atendida.
Mensaje 13: ¡Atención! Se ha detectado correo nuevo.
Mensaje 14: ¡Hola! ¡Bienvenido!

El sistema sigue funcionando y como el panel de X10 se desmontó, se opta por dejar un sistema de este tipo para estudiarlo en prácticas futuras.

Con respecto al sistema LONWORKS Tenemos 3 módulos “INS-460” con 6 Entradas/4 Salidas y un Modulo TAC XENTA 281 Que se sigue trabajando en el para ponerlo en funcionamiento, pero el servicio técnico de schneider electric no nos dan ninguna solución de momento.

Otra característica de que este panel es que tiene las salidas con el neutro ya cableado por la parte trasera.

EHS

El sistema domótico está enteramente desarrollado por Bioingeniería Aragonesa sobre la base del estándar europeo EHS, no utilizando material eléctrico específico. Esta característica le hace más flexible, permitiendo fácilmente modificaciones en el sistema para adaptarlo a necesidades específicas, ampliarlo o comunicarlo con otros sistemas.

Es un sistema domótico que, utilizando la red eléctrica para transmitir datos, permite el control y la automatización del hogar. Se trata de un sistema versátil, modular y fácil de instalar.

El sistema puede controlar todos los equipos conectados directa o indirectamente a la red eléctrica de la vivienda, como luces, calefacción, climatización, electrodomésticos, persianas eléctricas, electroválvulas, sistemas de riego,... o un simple enchufe.

Para la practica del EHS se reservan los pulsadores de entrada (a excepción del tirador) y las salidas:

- Amarilla.
- Sirena.
- Azul 1, 2 y 3.
- Mensajes de Alarma 3, 12, 13 y 14.

De esta forma si se necesitan los dos sistemas para hacer prácticas el mismo día, con un poco de organización por parte de los alumnos se pueden usar simultáneamente.
<table>
<thead>
<tr>
<th>Numero en el panel</th>
<th>Referencia</th>
<th>Versión firmware más adecuada</th>
<th>Descripción / Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jung</td>
<td>-</td>
<td>Fuente Alimentación 24 V AC</td>
</tr>
<tr>
<td>2-3-4</td>
<td>INS-460</td>
<td>A2B1302000001.XIF</td>
<td>Modulo 6Entradas/4Salidas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Con Esta versión de Firmware tenemos el bloque funcional que vemos a continuación. Las 6 entradas son:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 1: nvoEnt1y2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 2: nvoEnt3y4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 3: nvoEnt5y6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 4: nvoEnt7y8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 5: nvoEnt9y10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 6: nvoEnt11y12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Así conseguimos que cuando se cierre el contacto se active la entrada, si lo que queremos es el funcionamiento inverso tenemos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 1: nvoEnt1y2INV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 2: nvoEnt3y4INV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 3: nvoEnt5y6INV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 4: nvoEnt7y8INV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 5: nvoEnt9y10INV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrada 6: nvoEnt11y12INV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Las 4 salidas relé son:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salida 1: nviRele1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salida 2: nviRele2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salida 3: nviRele3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salida 4: nviRele4</td>
</tr>
<tr>
<td>5</td>
<td>TAC 281</td>
<td>-</td>
<td>MODULO LÓGICO (fuera de servicio)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entradas: 4 Analógicas/2Digitales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analógicas:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U1-U2 con el mismo común MU 1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U3-U4 con el mismo común MU 3-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Digitales:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X1-X2 con el mismo común MX 1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salidas: 3 0-10V/ 3 ON-OFF 0-10V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y1-Y2 con el mismo común MY 1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y3 con común MY 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Digitales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>K1-K2-K3 la fase ya estaba conectada al común de estas salidas.</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>Receptor IR</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>Det. Sonido</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>Reproductor de Mensajes</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>4 Pulsadores</td>
</tr>
</tbody>
</table>
2.3.3 Disposición panel y esquema eléctrico

Anexo X: Panel 11 (Gris) Frente.dwg
Anexo X: Panel 11 (Gris) Trasera.dwg
Anexo X: Panel 11 (Gris) Frente.pdf
Anexo X: Panel 11 (Gris) Trasera.pdf

2.3.4 Propuesta practica

Como ya hemos comentado que el sistema LONWORKS está más encaminado a instalaciones más complejas. En este panel vamos a ver una parte de la instalación del NAVARRA ARENA.

Cada modulo va a estar colocado en una zona del complejo deportivo.

ZONA ENTRADA

Tenemos un buzón de sugerencias, que cada vez que se eche una se incrementará el contador en uno, para que el bedel lo vacíe cuando llegue a 20. Así no hace viajes en vano ni se sobra de formularios de sugerencia (El contador se pone a cero del pulsador que tiene a la derecha). Al abrir el buzón saltara la sirena para evitar robos.

Hay tres entradas. Una directa a la pista con una barrera fotoeléctrica que detecta si entra alguien y se encenderá la luz roja para que el bedel controle si es una persona autorizada.

Las otras dos puertas son a los vestuarios. La de los locales está controlada por un teclado numérico (1234*) y la de los visitantes con un lector de tarjetas, que se manda al equipo.
visitante para que cada jugador tenga una. Cada vez que se meta el código o una tarjeta se encenderá una luz verde de que tiene acceso permitido.

VESTUARIO 1

En este vestuario tenemos un sensor de agua que nos activa la alarma 1 en caso de fuga. Dos pulsadores para encender los dos fluorescentes de manera independiente.

PISCINA CLIMATIZADA

En esta zona tenemos un termostato que encenderá la caldera (ventilador) si baja la temperatura del agua. Un sensor de gas que cerrará el gas si hay una fuga en la sala de calderas.

Un pulsador de tirador para no mojar el mecanismo que encenderá los dos focos halógenos que iluminan la piscina.
2.3.5 Manuales

Anexo X: Manuales
3. CONCLUSIONES

Después de la realización del proyecto, se pueden extraer las siguientes conclusiones:

La ampliación del número paneles (en KNX de 4 a 7 y en LONWORKS de 2 a 3), tenemos una mayor disponibilidad de material para hacer las prácticas. Tras una pequeña inversión de 254€ por parte de la Upna, en dos fuente de alimentación. Se han podido aprovechar muchos módulos que estaban en el almacén sin utilizar cuyo valor ascendía a 3805.16€.

Con este material recuperado y otros módulos que se han cogido de los paneles existentes. Se han completado los paneles nuevos y ahora tenemos un laboratorio de domótica mas aprovechado. Cada panel tiene ahora un guion de práctica para aprovechar el material del que dispone cada uno, con un plano que ayuda a entender mejor la instalación que se propone.

Se ha creído conveniente hacer un esquema de situación y un esquema eléctrico de cada panel. En la vista frontal ubicamos cada elemento y sus bornes de conexión. En el esquema eléctrico (vista trasera) tenemos los conductores identificados. Estos esquemas ayudaran a la hora de hacer las prácticas y futuras modificaciones.

A la hora de hacer la programación en las practicas siempre surge la duda de que versión de software o firmware seleccionar para cada módulo. Los dispositivos de ABB y todos los de LONWORKS tienen muchas versiones. Muchas son muy similares y daría igual una que otra, pero otras hacen que los módulos no funcionen correctamente. Después de probarlas en los módulos se recomiendan unas en concreto para cada modulo.

Otro avance importante, es que ahora podemos usar el módulo TAC XENTA 281. Se pueden hacer gran variedad de aplicaciones que completan mucho el sistema LONWORKS. Estos módulos estaban colocados en los paneles pero sin darles uso. El problema que había con estos módulos era que tenían preparadas unas prácticas muy ambiciosas, que para su iniciación resultaban muy complicadas. Además no se podían probar en el panel por que no estaba cableado por completo.
4. LÍNEAS FUTURAS DE MEJORA

A continuación se proponen futuras mejoras y ampliaciones de los paneles domóticos del laboratorio, para completar la oferta domótica de la Upna.

Lo que primero tendríamos que completar es el panel amarillo que le falta un modulo de persiana que no se ha podido comprar por falta de presupuesto. Uno de los económicos ronda los 100€.

Con el material disponible se pueden sacar más partido a las pasarelas IP. La red de la Upna no deja conectarse a ellas desde el exterior, seria atractivo poder usarlas con alguna aplicación móvil disponible en GooglePlay o AppStore.

Todos los paneles son muy similares en cuanto a los módulos que tienen instalados. Estaría bien que en cada uno se intente destacar un aspecto concreto de la domótica. Por ejemplo el Azul oscuro se puede enfocar fácilmente hacia el ahorro energético.

Respecto al EibPort resolver los problemas que da a la hora de configurarlo para aprovechar la opción que tiene de mandar mails. El Tac Xenta 511 también ofrece mucho potencial de programación y visualizaciones que se puede exprimir más.

Los paneles están actualizados y con el cableado en buenas condiciones, pero los colores de los cables y las bornas inducen a confusión. Poner los colores adecuadamente con indica el REBT sería conveniente e incluso obligatorio.

- Neutro: Azul
- Fase: Negra, Marrón: Gris,
- Protección: Verde-Amarillo

El resto de mejoras que se proponen vienen frenadas por la falta de presupuesto. Pero para mejorar la oferta de material disponible en el laboratorio sería conveniente añadir:

- Pasarela KNX-LONWORKS: estas pasarelas ofrecen la posibilidad de integrar el sistema KNX y LONWORKS para aprovechar las ventajas que ofrece cada uno de los sistemas. Su precio está entre 650€ y 2400€.
- Pantalla Táctil: una pantalla táctil complementaria mucho los sistemas domóticos del laboratorio. Es un elemento muy común en cualquier instalación domótica y estaría muy bien poder contar con una. Su precio está entre 320€ y 4500€. Pero para ser algo atractivo de verdad tendría que rondar las 7´ y ser a color (1000€)
- Botonera: los pulsadores están algo anticuados y no son bonitos. Unas botoneras nuevas podrían resaltar mas el uso de la domótica, ya que la parte visual de la instalación también es un factor importante. Por ejemplo unos pulsadores capacitivos de ZENNIO que rondan los 150€ enriquecerían mas los paneles.
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN

Titulación:

INGENIERO TÉCNICO INDUSTRIAL ELÉCTRICO

Título del proyecto:

“ACTUALIZACIÓN Y AMPLIACIÓN DE PANELES DOMÓTICOS DE LA UPNA”

PRESUPUESTO

Alumno: Iñaki Tejado Villanueva
Tutor: Dr. César Elosúa Aguado
Pamplona, a 14 de Febrero de 2014
ÍNDICE

1. Presupuesto.. 3
 • Coste Mano de obra ... 3
 o Salario ... 3
 o Obligaciones Sociales .. 4
 o Coste Total de la Mano de Obra .. 4
 • Coste Material .. 5
 o Material Recuperado .. 5
 o Material Nuevo .. 6
 • Total Presupuesto .. 7

INDICE FIGURAS

Figura 1: Bases de cotización contingencias comunes de la seguridad social 3
1. PRESUPUESTO

Para la elaboración del presente proyecto se han tenido en cuenta los honorarios del ingeniero y los dispositivos domóticos, tanto nuevos como recuperados del almacén.

COSTE MANO DE OBRA

Este coste se obtiene de la suma del salario del ingeniero y las obligaciones sociales. Para ello, se ha consultado la página web de la seguridad social:

A fecha (12-2-2014)

http://www.seg-social.es/Internet_1/Trabajadores/CotizacionRecaudaci10777/Basesytiposdecotiza36537/index.htm

Salario

Para calcular el salario del ingeniero, se observa que pertenece al grupo 2 de cotización, con una base mínima de 872,10 €/mes y una base máxima de 3.425,70 €/mes.

<table>
<thead>
<tr>
<th>Grupo de Cotización</th>
<th>Categorías Profesionales</th>
<th>Bases mínimas euros/mes</th>
<th>Bases máximas euros/mes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ingenieros y Licenciados.Personal de alta dirección no incluido en el artículo 1.3.c) del Estatuto de los Trabajadores</td>
<td>1.051,50</td>
<td>3.425,70</td>
</tr>
<tr>
<td>2</td>
<td>Ingenieros Técnicos, Mimos y Ayudantes Titulados</td>
<td>872,10</td>
<td>3.425,70</td>
</tr>
<tr>
<td>3</td>
<td>Jefes Administrativos y de Taller</td>
<td>759,70</td>
<td>3.425,70</td>
</tr>
<tr>
<td>4</td>
<td>Auxiliares no Titulados</td>
<td>753,00</td>
<td>3.425,70</td>
</tr>
<tr>
<td>5</td>
<td>Oficiales Administrativos</td>
<td>753,00</td>
<td>3.425,70</td>
</tr>
<tr>
<td>6</td>
<td>Subalternos</td>
<td>753,00</td>
<td>3.425,70</td>
</tr>
<tr>
<td>7</td>
<td>Auxiliares Administrativos</td>
<td>753,00</td>
<td>3.425,70</td>
</tr>
<tr>
<td>8</td>
<td>Oficiales de primera y segunda</td>
<td>25,10</td>
<td>114,19</td>
</tr>
<tr>
<td>9</td>
<td>Oficiales de tercera y Especialistas</td>
<td>25,10</td>
<td>114,19</td>
</tr>
<tr>
<td>10</td>
<td>Peones</td>
<td>25,10</td>
<td>114,19</td>
</tr>
<tr>
<td>11</td>
<td>Trabajadores menores de dieciocho años, cualquiera que sea su categoría profesional</td>
<td>25,10</td>
<td>114,19</td>
</tr>
</tbody>
</table>

Figura 1: Bases de cotización contingencias comunes de la seguridad social.

Se ha elegido la media de estas dos bases, siendo esta 2148,90 €/mes. O 71,63 €/día.

<table>
<thead>
<tr>
<th>Días Trabajados</th>
<th>Salario Diario</th>
<th>Sueldo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>194</td>
<td>71,63 €</td>
<td>13.896,22 €</td>
</tr>
</tbody>
</table>
Obligaciones Sociales

<table>
<thead>
<tr>
<th>CONTINGENCIAS</th>
<th>EMPRESA</th>
<th>TRABAJADORES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comunes</td>
<td>23,6</td>
<td>4,7</td>
<td>28,3</td>
</tr>
<tr>
<td>Desempleo Tipo General</td>
<td>5,5</td>
<td>1,55</td>
<td>7,05</td>
</tr>
<tr>
<td>FOGASA</td>
<td>0,2</td>
<td>0</td>
<td>0,2</td>
</tr>
<tr>
<td>Formación Profesional</td>
<td>0,6</td>
<td>0,1</td>
<td>0,7</td>
</tr>
</tbody>
</table>

36,25%

<table>
<thead>
<tr>
<th>Sueldo Total</th>
<th>% obligaciones</th>
<th>Total Obligaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.896,22 €</td>
<td>36,25%</td>
<td>5.037,38 €</td>
</tr>
</tbody>
</table>

TOTAL MANO DE OBRA

<table>
<thead>
<tr>
<th>COSTE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salario</td>
<td>13.896,22 €</td>
</tr>
<tr>
<td>Obligaciones</td>
<td>5.037,38 €</td>
</tr>
</tbody>
</table>

18.933,60 €
COSTE MATERIAL

Material Recuperado

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Referencia</th>
<th>Descripción</th>
<th>Precio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6120 U-500</td>
<td>Acoplador bus empotrar</td>
<td>90,6€</td>
<td>271,8€</td>
</tr>
<tr>
<td>17</td>
<td>5WG1 193 8AB01</td>
<td>Clema bus</td>
<td>1,28€</td>
<td>21,76€</td>
</tr>
<tr>
<td>1</td>
<td>ET/S 4.230</td>
<td>Entrada binaria 4c 230V AC</td>
<td>225€</td>
<td>225€</td>
</tr>
<tr>
<td>1</td>
<td>AT/S 4.16.1</td>
<td>Modulo Salidas 4 Canales</td>
<td>334€</td>
<td>334€</td>
</tr>
<tr>
<td>1</td>
<td>SV/S 30.320</td>
<td>FA 320mA</td>
<td>265€</td>
<td>265€</td>
</tr>
<tr>
<td>1</td>
<td>5WG1 110-2AB02</td>
<td>Acoplador bus empotrar</td>
<td>90,6€</td>
<td>90,6€</td>
</tr>
<tr>
<td>1</td>
<td>BUSANKOPPLER UP 2070U</td>
<td>Acoplador bus empotrar</td>
<td>90,6€</td>
<td>90,6€</td>
</tr>
<tr>
<td>1</td>
<td>5WG1 261 1AB01</td>
<td>Entrada binaria 4c AC/DC</td>
<td>252€</td>
<td>252€</td>
</tr>
<tr>
<td>3</td>
<td>TS/U 4.1</td>
<td>Conector 4 Pulsadores</td>
<td>60€</td>
<td>180€</td>
</tr>
<tr>
<td>1</td>
<td>LR/S 2.2.1</td>
<td>Dimmer 2 canales</td>
<td>323,2€</td>
<td>323,2€</td>
</tr>
<tr>
<td>1</td>
<td>JA/S 2.230.1</td>
<td>Modulo persiana</td>
<td>235€</td>
<td>235€</td>
</tr>
<tr>
<td>1</td>
<td>STEUER MODUL 1-10V SMG-2</td>
<td>Dimmer 2 canales</td>
<td>270,4€</td>
<td>270,4€</td>
</tr>
<tr>
<td>1</td>
<td>SPANNUNGSVERSONGUNG 640mA</td>
<td>FA 640mA</td>
<td>374€</td>
<td>374€</td>
</tr>
<tr>
<td>1</td>
<td>2130 USB REG R2</td>
<td>Pasarela comunicación USB</td>
<td>251€</td>
<td>251€</td>
</tr>
<tr>
<td>1</td>
<td>5WG1 148 1AB21</td>
<td>Pasarela comunicación IP</td>
<td>299€</td>
<td>299€</td>
</tr>
<tr>
<td>1</td>
<td>DB/S 1.1</td>
<td>Unidad Diagnosis Carril Din</td>
<td>77€</td>
<td>77€</td>
</tr>
<tr>
<td>2</td>
<td>DB/S 1.1</td>
<td>Acoplador bus Carril Din</td>
<td>22,4€</td>
<td>44,8€</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>Placa comunicación Lonworks</td>
<td>200€</td>
<td>200€</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>3805,16€</td>
<td></td>
</tr>
</tbody>
</table>

NOTA: Mucho de este material está descatalogado por los fabricantes, aun que deseemos no es posible comprarlo nuevo. Pero todos tienen módulos similares a precio parecido.
Material nuevo

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Referencia</th>
<th>Descripción</th>
<th>Precio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ZN1PS-160MPA</td>
<td>Fuente alimentación 160mA ZENNIO</td>
<td>127€</td>
<td>254€</td>
</tr>
</tbody>
</table>

TOTAL

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material recuperado</td>
<td>3805.16€</td>
</tr>
<tr>
<td>Material nuevo</td>
<td>254€</td>
</tr>
</tbody>
</table>

4059.16€
TOTAL PRESUPUESTO

<table>
<thead>
<tr>
<th>PRESUPUESTO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mano de Obra</td>
<td>18.933,60 €</td>
</tr>
<tr>
<td>Material</td>
<td>4059,16</td>
</tr>
<tr>
<td></td>
<td>22.992,76 €</td>
</tr>
</tbody>
</table>

El coste total del proyecto ascenderá a VEINTIDÓS MIL NOVECIENTOS NOVENTA Y DOS EUROS CON SETENTA Y SEIS CÉNTIMOS DE EUROS.

Pamplona, 10 Febrero de 2014

Fdo.: Iñaki Tejado Villanueva