

Warsaw University of Technology

Faculty of Electronics and Information Technology

Ignacio Azagra Villares

Senior Design Project Report
EVALUATION OF STEGANOGRAPHIC COST

FOR COVERT COMMUNICATION IN IP

NETWORKS

Project done under the supervision of

 Wojciech Mazurczyk, Ph.D, D.Sc.

Warszawa, June 2014

2

ABSTRACT

Network steganography encompasses the information hiding techniques that can be

applied in communication network environments and that utilize hidden data carriers

for this purpose. When describing a network steganography method despite the

features like steganographic bandwidth, undetectability and robustness also

steganographic cost should be considered. It is used as an indicator for the

degradation or distortion of the carrier caused by the application of the

steganographic method. In this master thesis we are going to evaluate how

steganographic cost is affected in two different scenarios when using different

steganographic methods, either separated or combined. We want to check the

existence of two phenomena that can take place when combining two or more

steganographic methods: superposition steganography and zero cost steganography.

3

TABLE OF CONTENTS

1. INTRODUCTION……………………………………………………………………………………………..Page 5

2. STEGANOGRAPHY HISTORY & BASICS…………….………………………………………………Page 7

 2.1 Characteristics of steganography and its relationship

 to cryptography…………………………………………………………………………………Page 7

 2.2 Recent cases of steganography usage………………………………………………Page 8

2.3 The origins and evolution of steganography…………………………………….Page 9

 2.4 Modern steganographic techniques………………………………………………...Page 10

 2.5 Network steganography……………………………………………………………………Page 12

 2.6 Steganographic cost………………………………………………………………………….Page 14

3. CONSIDERED STEGANOGRAPHIC SCENARIOS FOR IP NETWORKS ………………Page 17

 3.1 Scenario1: IP Fragmentation……………………………………………………………Page 17

 3.2 Scenario 2: HTTP Headers………………………………………………………………..Page 19

 3.3 Procedure…………………………………………………………………………………………Page 21

4. EXPERIMENTAL TEST-BED SETUP..Page 23

 4.1 Installation of the machines...Page 23

 4.2 Installation of the virtual network...Page 24

5. STEGANOGRAPHIC SCENARIOS AND METHODS IMPLEMENTATION.............Page 26

 5.1 IP Tables..Page 26

 5.2 IP Fragmentation-related methods..Page 27

 5.2.1 No Steganography..Page 29

4

 5.2.2 F1 Method..Page 31

 5.2.3 F3 Method..Page 35

 5.2.4 F1+F3 Methods...Page 36

 5.3 HTTP Related cases..Page 37

 5.3.1 No Steganography...Page 37

 5.3.2 F6 Method...Page 38

 5.3.3 F7 Method...Page 39

 5.3.4 F8 Method...Page 41

 5.3.5 F6+F7+F8 Methods..Page 42

6. SIMULATION AND ANALYSIS OF RESULTS..Page 43

 6.1 Simulation..Page 43

 6.1.1 Scenario 1..Page 43

 6.1.2 Scenario 2..Page 44

 6.2 Analysis of the results..Page 46

 6.2.1 Scenario 1: IP Fragmentation..Page 46

 6.2.2 Scenario 2: HTTP Connection..Page 49

7. CONCLUSIONS..Page 52

ANNEX 1: PROGRAMMING CODE..Page 53

ANNEX 2: BIBLIOGRAPHY AND REFERENCES...Page 80

5

1. INTRODUCTION

Stolen data, information leaks, spying on the net: These and other similar terms and

topics are subject to more and more debate. It is becoming apparent that studying and

understanding all these topics has a huge importance, since they are being used more

and more often. In fact, year 2011 was named by the media “the year of the hack” [1,

2], since there were a lot of data security breaches in different private companies and

governments. The amount of stolen data was estimated in petabytes [3].

Most of these security breaches can be attributed to Operation Shady RAT [4, 2].

Numerous institutions around the world were targeted: in order to get the computers

(or other electronic devices) infected, what they did was to deceive a lot of unaware

users to open a specially crafted email (phishing), which was implanting a back door on

their computers. Following this, the criminals were connecting to a website and

downloading different files, which seemed to be legitimate (mainly HTML and JPEG

files). But the truth is that the cybercriminals were encoding commands into these

pictures and crafted web pages, hiding and making them invisible to unaware third-

parties, smuggling them through firewalls into the different systems under attack.

Then, these control commands were ordering victim’s computer to obtain executable

code from remote servers, allowing an outsider the access to local files on the

compromised host [5]. These side channels in many cases remained open for months.

We are also witnessing in these last years the birth of a new kind of malware. In June

2010, Stuxnet [6], a computer worm was discovered. It was designed to affect Iranian

nuclear power plants [7]. The next year, a new worm called Duqu was also found. It

was pretty similar to Stuxnet, but unlike it, Duqu was used for extracting and stealing

data, sending the captured information hidden into seemingly innocent pictures, which

were traveling the network without raising any suspicion [8, 9, 2].

Nowadays, not only pictures are used as carriers. Music, videos, a packet traveling the

net… All of these elements can be used as carriers for secret data.

This process of embedding secret information into an innocent looking carrier is not a

recent invention – it has been known and used for ages by humankind. This is what we

call steganography. The inverse of steganography is called steganalysis, which

concentrates on the detection of covert communication.

The growing importance of steganography and steganalysis is what mainly motivated

this Master thesis, in which we are going to implement different scenarios and make

different trials in order to obtain some experimental results that will be helping us to

prove the existence of two phenomena that can take place when combining two or

6

more different steganographic methods: superposition steganography and zero cost

steganography.

The results obtained in this thesis are important, since after confirming the existence

of these two phenomena steganalyzers can take them into account, study them and

start thinking about how to detect or counter them, or even use them (Since

steganography has also some legal uses, like circumvention of web censorship and

surveillance [10] or computer forensics). In fact, based on the experimental results

provided in this thesis, a scientific paper for Security and Communication Networks

Journal has been published [11].

 The thesis is structured as it follows: since not everyone will be familiar with

steganography and its related terms and characteristics, we will start by giving some

background information about steganography history and basics. With this

background, we should be able to understand the two pehenomena whose existence

we want to prove: superposition steganography and zero cost steganography. After

that, we will proceed to explain the considered steganographic scenarios for IP

networks. Later, we will explain the experimental test-bed setup, and then we will

continue explaining the steganographic scenarios and methods implementation. We

will finish the thesis by commenting the obtained results and giving some final

conclusions related with them. Two annexes including the programming code and the

references and bibliography will also be included.

Let us start then by expanding on this steganography concept, explaining some cases

of its usage, its characteristics and history.

7

2. Steganography history & basics

2.1 Characteristics of Steganography and its Relationship to

Cryptography

Steganography is defined as the art of embedding secret messages (called

steganograms) in a certain carrier, in order to communicate them in a covert manner

[2]. With the use of steganography, we manage to hide the fact that we are sending a

message. In other words, if not detected, both the sender and receiver are made

“invisible”.

 Steganography is often mistaken with information hiding, because it isn’t possible to

establish a proper border between the two fields. There also exists a lack of a coherent

classification for the newly invented clandestine methods for communication. It’s not

strange for example for a method to be classified as steganographic and for another

method similar to the first one to be classified as an information hiding technique.

We can distinguish between what belongs to the spectrum of steganographic methods

and what doesn’t belong there just by looking at certain conditions that the method or

technique must fulfill in order for it to be considered steganographic [2]:

• The secret information must be embedded in a seemingly innocent carrier,

which camouflages it.

• The purpose of applying a steganographic technique is to hide the information

exchange from a third unaware party.

• The secrecy of the communication is guaranteed primarily by the way the

algorithm applied to the carrier camouflages the secret information, which

should be good enough to withstand detection attempts.

As for the carrier for the secret messages, we should try to find a carrier that fulfills the

next two requirements:

• It should be popular.

• The steganogram insertion-related modifications of the carrier must be

invisible to an unaware third party. Some degradation of the carrier caused by

the steganographic modifications is allowed, but the severity of this

degradation should be limited to a level low enough not to raise suspicion.

We must also note that steganography is confused a lot of times with cryptography,

since they both provide confidentiality to the communication. However, they are not

the same thing: steganography describes the techniques to create a hidden

communication channel, whereas cryptography is a designation of ongoing overt

message exchange, where all the information is unintelligible to unauthorized parties.

The table on Figure 1 [2

steganography.

Figure 1: Comparison of characteristics of steganography and cryptography

2.2 Recent Cases of Steganography Usage

• Steganographic methods

the attack on USA on 11th of September, 2001 [12, 13

images to hide all the

posted on publicly available websites

the secret information they were carrying) without anyone noticing it

communication could have passed unnotice

• In [15], the case of “Operation Twins” is recollected, an

2002 with the capture of

pedophile organization

were doing this with the ai

• Steganographic methods hav

someone at the U.S. Department of Justice smuggled sensitive financial data

out of the agency by embedding the data in several image files

• In 2010, a Russian spy ring

used digital image steganography to leak classified info

Moscow [17], and they did this for years until they were finally discovered.

8

[2] summarizes the differences between cryptography and

Comparison of characteristics of steganography and cryptography

Recent Cases of Steganography Usage

eganographic methods were utilized by Al Qaeda terrorists while planning

A on 11th of September, 2001 [12, 13]. The organization

hide all the instructions related with the attack. These

publicly available websites, where terrorists could access them (a d

the secret information they were carrying) without anyone noticing it

communication could have passed unnoticed for as long as three years [14

the case of “Operation Twins” is recollected, an operation

capture of the criminal group called “Shadowz Brotherhood”

pedophile organization involved in the distribution of child pornography

with the aid of different steganographic methods

Steganographic methods have also been used for data exfiltration. I

someone at the U.S. Department of Justice smuggled sensitive financial data

out of the agency by embedding the data in several image files [16

In 2010, a Russian spy ring (the so called “illegals”) was revealed. This group

used digital image steganography to leak classified information from USA to

], and they did this for years until they were finally discovered.

differences between cryptography and

Comparison of characteristics of steganography and cryptography [2]

terrorists while planning

The organization used

elated with the attack. These images were

, where terrorists could access them (a d

the secret information they were carrying) without anyone noticing it [13]. This

d for as long as three years [14].

operation that ended in

“Shadowz Brotherhood”, a

distribution of child pornography. They

d of different steganographic methods.

e also been used for data exfiltration. In 2008,

someone at the U.S. Department of Justice smuggled sensitive financial data

[16, 2].

) was revealed. This group

rmation from USA to

], and they did this for years until they were finally discovered.

9

• In March 2014, a new ZBOT malware appeared [18]. This malware was

downloading into different computers what seemed to be an innocent picture

of a sunset, but this picture had some steganographically hidden configuration

files which main objective was to get bank account information from the

victims.

2.3 The origins and evolution of steganography

Steganography is originally insipired in some of the skills displayed by either animals or

plants for their survival that ancient people noticed: mimicry, to be more precise.

Trying to imitate nature, the Ancient Greeks started to use steganography using

ordinary objects to carry their secret messages.

The first written evidence of the usage of a steganographic technique is attributed to

Herodotus, a Greek historian. According to him, the secret message was hidden and

carried by a hare corpse acting as some kind of game trophy [19]. Other famous Greek

techniques include the use of coated wooden tables, carrying carved messages only

readable after eliminating the wax coating.

 The Greek methods were pretty easy to implement and as the human civilization

progressed, new methods started to arise. With the popularization of parchment,

sympathetic inks appeared: some saps were used for writing texts that were

apparently invisible, but revealed after applying heat to the parchment [20].

 Romans brought more progress to steganography: they realized that the secret

message didn’t have to necessarily take written form. Consequently, new methods

were invented, like the Astragali [21], a small dice made of bone which holes could be

used to send a secret message.

More progress was made in the Medieval Ages. With the invention of papper, it

started to become apparent that they had to think about some way to differentiate

between different manufactures products. In order to solve this problem,

watermarking was invented [22]. We should note that, nowadays, digital image

steganography base on the same principle.

Another of the inventions that became popular during these times is the acrostic, a

textual steganographic method. Acrostic refers to pieces of writing, whose first letters

or syllables spell out a message [2]. The most famous example of such textual

steganography is attributed to a Dominican priest who, in 1499 hid in one of his books

a love confession which could be spelled out from the first letter of each of the

chapters of the book [23].

10

In the XVI century (The Renaissance), an Italian scientist discovered how to hide a

message inside a hard-boiled egg: We just need to write it on the shell using ink made

from a mixture of alum and vinegar. This solution penetrates the eggshell, being only

readable once the shell is removed.

In 1680 a new method was published. It consisted in hiding secret information using

the different musical notes as carrier for sending the secret message: each note and

their different combinations of the notes forming different chords corresponded to a

letter [2]. This method had the problem of someone trying to play the obtained

melodies, since they would sound pretty odd.

New steganographic were developed also during the Industrial Revolution.

Newspapers became pretty popular, and they started using them as the new

steganographic carrier, by making holes over selected letters, writing that way the

secret message.

In the period of the two World Wars, and also in the period of the Cold War, many new

techniques were developed, like the microdots: Punctuation marks with inserted

microscopic negatives of images or texts [24, 2]. New spread spectrum steganographic

techniques were also developed in the Second World War for guiding torpedoes [25].

These spread spectrum techniques were later used in the fields of digital media

steganography. Some old techniques, like the invisible inks, made a comeback in this

period also [26].

Thanks to the technological development, new techniques were developed in the 20
th

century. Among these inventions we could find the “subliminal channels”, which based

on cryptographic ciphers for the embedding of steganograms [2]. Their main principle

was to insert content into digital signatures [27].

2.4 Modern steganographic techniques

New modern steganographic techniques utilize the 20
th

 century’s inventions: Mainly,

computers and networking. Four main trends of development can be distinguished [2]:

• digital media steganography

• linguistic steganography

• file system steganography

• network steganography

11

Digital media steganography dates back to the 1970’s. In these years, researchers

focused on developing methods to secretly introduce some kind of invisible mark or

signature into a digital picture. A lot of different methods were proposed [28]. We can

classify the different algorithms they implemented for the embedding in digital

pictures depending on the alterations introduced by them, being these alterations

made on a bit level, or affecting the frequency domain characteristics, or exploiting

specific file format intricacies [2]. It is also possible to use a mix of all the mentioned

techniques. The transform domain provides for the most versatile medium of

embedding. Affecting of the image processing algorithms may involve, among others,

discrete cosine transform (DCT), discrete wavelet transform (DWT) or Fourier

transform [29, 30].

When using digital image steganography, we are trying to trick our eyes so they

perceive an altered image as an unaltered one [28]. The same principle can be applied

to the whole field of digital media steganography: what we are doing when using it is

to try to trick human senses.

Soon after starting to work with digital image steganography, experts noticed that it

was also possible to trick the auditory system. So they stared to work with audio files

and developing new techniques, like frequency masking, echo hiding, phase coding,

patchwork or spread spectrum. They also noticed that error correction coding was a

good supplemental carrier for audio steganography [28].

Next, steganographers took video files as target carrier. Most of the designed methods

were just adaptations of the algorithms used for audio and image files, but some

video-specific solutions were also designed, involving for example I-frames color space

[31] as steganographic carrier or P-frames and B-frames motion vectors.

Alongside digital media steganography, information hiding in text was further

developed, with methods that exploited various aspects of the written word, like

word-spacing, a technique that was used at the times of Margaret Thatcher [32]. More

advanced steganographic methods used syntactic and semantic structure of the text as

a carrier: Displacement of punctuation marks, word order changes, etc. It has reached

such a complexity that even apparently harmless SPAM messages may be a carrier of

steganography nowadays [33]. It was also revealed that x86 machine code could also

be used for carrying secret messages by using methods that exploited the same

principle as linguistic steganography [34].

The invention of a steganographic file system was a true discovery [35]. It became

apparent that information could be hidden even in isolated computing environments.

The main principle of steganogram preparation is similar to invisible inks: if you know

how to search for it, you will be able to reveal the encrypted files from a disk.

12

Alongside all the mentioned types of digital steganography, currently the target of

increased interest is the fourth mentioned trend of development: Network

steganography. We will now concentrate on this network steganography, since for this

work we will be using some network steganography’s techniques.

2.5 Network Steganography

Just like with the other methods, the main aim of network steganography is to hide

secret data in legitimate transmissions of users without destroying the hidden data

carrier used. The scope of the network steganography is limited to all information

hiding techniques that: (a) can be applied in communication networks to enable

hidden data exchange by crating convert communication channel; (b) are inseparably

bounded to the transmission process; (c) do not destroy the hidden data carrier.

It must be emphasized that the main difference between “classic” steganography and

the one utilized in networks is that the first relied on fooling human senses (as we have

seen with the digital media steganography, for example), while the latter tries to

deceive network devices (intermediate network nodes or end-user ones).

In network steganography a carrier is at least one network traffic flow. Typically,

carrier can be multi-dimensional, i.e. it offers many opportunities for information

hiding (called subcarriers). And a subcarrier is defined as a “place” or a timing of

“event” (e.g. a header field, padding or intended sequences of packets) in a carrier

where secret information can be hidden using single steganographic technique (Figure

2)

Figure 2: An Example of a carrier

The most favourable carriers for secret messages in communication networks must

have two features:

• Carriers should be popular i.e. usage of such carriers

as an anomaly itself. The more popular carriers are present and utilized in a

network the better, because they mask existence of hidden communication.

• Carrier modification related to embedding of steganogram should not be

“visible” to the third party not aware of the steganographic procedure.

Contrary to typical steganographic methods which utilize digital media

(pictures, audio and video files) as a cover for hidden data, network

steganography utilizes network connections i.e. comm

control elements and their basic intrinsic functionality.

Every network steganographic method can be described typically by the following set

of characteristics: its steganographic bandwidth (a

media steganography), its undetectability (also referred as se

Fridrich[30]), and its robustness. The term “steganographic bandwidth” refers to the

amount of secret data that can be sent per unit time when using a particular method.

Undetectability is defined as the inability to detect a steganogram within a certain

carrier. The most popular way to detect a steganogram is to analyze the statistical

properties of the captured data and compare them with the typical values for that

carrier. The last characteristic is robustness that is defined as the amount of alteration

13

An Example of a carrier and subcarriers based on VoIP connection example.

he most favourable carriers for secret messages in communication networks must

Carriers should be popular i.e. usage of such carriers should not be considered

as an anomaly itself. The more popular carriers are present and utilized in a

network the better, because they mask existence of hidden communication.

Carrier modification related to embedding of steganogram should not be

to the third party not aware of the steganographic procedure.

Contrary to typical steganographic methods which utilize digital media

(pictures, audio and video files) as a cover for hidden data, network

steganography utilizes network connections i.e. communication protocols’

control elements and their basic intrinsic functionality.

Every network steganographic method can be described typically by the following set

its steganographic bandwidth (also referred as capacity typically for

dia steganography), its undetectability (also referred as security in literature

]), and its robustness. The term “steganographic bandwidth” refers to the

amount of secret data that can be sent per unit time when using a particular method.

ectability is defined as the inability to detect a steganogram within a certain

carrier. The most popular way to detect a steganogram is to analyze the statistical

properties of the captured data and compare them with the typical values for that

he last characteristic is robustness that is defined as the amount of alteration

and subcarriers based on VoIP connection example.

he most favourable carriers for secret messages in communication networks must

should not be considered

as an anomaly itself. The more popular carriers are present and utilized in a

network the better, because they mask existence of hidden communication.

Carrier modification related to embedding of steganogram should not be

to the third party not aware of the steganographic procedure.

Contrary to typical steganographic methods which utilize digital media

(pictures, audio and video files) as a cover for hidden data, network

unication protocols’

Every network steganographic method can be described typically by the following set

lso referred as capacity typically for

curity in literature

]), and its robustness. The term “steganographic bandwidth” refers to the

amount of secret data that can be sent per unit time when using a particular method.

ectability is defined as the inability to detect a steganogram within a certain

carrier. The most popular way to detect a steganogram is to analyze the statistical

properties of the captured data and compare them with the typical values for that

he last characteristic is robustness that is defined as the amount of alteration

steganogram can withstand without secret data being destroyed. A good

steganographic method should be as robust and hard to detect as possible while

offering the highest bandw

fundamental trade-off among these three measures necessary (Figure 3).

Figure 3: Relationship between characteristics of network steganography.

2.6 Steganographic cost

There is another characteristic

network steganography methods: t

be taken into account to indicate the degradation or distortion of the carrier caused by

the application of the steganographic

steganography, i.e. for hiding secret data in digital image, audio, video MSE (Mean

Square Error) or PSNR (Peak Signal

However, these parameters cannot be applied to dynam

network connections. For example, in the case of VoIP steganography methods, this

cost can be expressed, for example, by providing a measure of the conversation quality

degradation induced by applying a particular information hidi

fields of the protocol header are used as the hidden data carrier, then the cost is

expressed as a potential loss in that protocol’s functionality. It is also possible that an

information hiding method introduces steganographic cos

two different “planes”, e.g. it introduces voice quality degradation as well as it adds

additional delays to the overt traffic.

14

steganogram can withstand without secret data being destroyed. A good

steganographic method should be as robust and hard to detect as possible while

offering the highest bandwidth. However it must be noted that there is always a

off among these three measures necessary (Figure 3).

Figure 3: Relationship between characteristics of network steganography.

.6 Steganographic cost

There is another characteristic that we must take into account when evaluating

network steganography methods: the steganographic cost. This characteristic should

be taken into account to indicate the degradation or distortion of the carrier caused by

the application of the steganographic method (Figure 4). In digital media

steganography, i.e. for hiding secret data in digital image, audio, video MSE (Mean

Square Error) or PSNR (Peak Signal-to-Noise Ratio) were utilized for this purpose.

However, these parameters cannot be applied to dynamic, diverse carriers like

network connections. For example, in the case of VoIP steganography methods, this

cost can be expressed, for example, by providing a measure of the conversation quality

degradation induced by applying a particular information hiding technique. If certain

fields of the protocol header are used as the hidden data carrier, then the cost is

expressed as a potential loss in that protocol’s functionality. It is also possible that an

information hiding method introduces steganographic cost that can be experienced in

two different “planes”, e.g. it introduces voice quality degradation as well as it adds

additional delays to the overt traffic.

steganogram can withstand without secret data being destroyed. A good

steganographic method should be as robust and hard to detect as possible while

idth. However it must be noted that there is always a

off among these three measures necessary (Figure 3).

Figure 3: Relationship between characteristics of network steganography.

that we must take into account when evaluating

he steganographic cost. This characteristic should

be taken into account to indicate the degradation or distortion of the carrier caused by

method (Figure 4). In digital media

steganography, i.e. for hiding secret data in digital image, audio, video MSE (Mean-

Noise Ratio) were utilized for this purpose.

ic, diverse carriers like

network connections. For example, in the case of VoIP steganography methods, this

cost can be expressed, for example, by providing a measure of the conversation quality

ng technique. If certain

fields of the protocol header are used as the hidden data carrier, then the cost is

expressed as a potential loss in that protocol’s functionality. It is also possible that an

t that can be experienced in

two different “planes”, e.g. it introduces voice quality degradation as well as it adds

Figure 4: Relationship between steganographic cost and undetectability.

Therefore in general we can conclude that steganographic cost affects undetectability

and may be responsible for loss of carrier’s functionality or loss of carrier’s

performance (e.g. it results in longer connection or increased resources usage). The

relationship between steganogr

One can imagine a steganographic cost as a “zip” as it provides a view on how exactly

the carrier was affected by applying steganographic method. On the other hand

undetectability can be imagined as a

steganographic cost is exceeded (SC

detectable up to the point where the detection is trivial (SC

The effects of steganographic cost are threefold and form a vector for

steganographic method. Some steganographic methods affect the detectability, while

others affect the feature spectrum or the performance of the carrier. Others affect

multiple aspects simultaneously but in different extent. Besides splitting performa

and feature cost, both could be combined to functionality cost in order to achieve a

twofold view of steganographic cost.

Steganographic cost can also be important when more than one method is applied to

the same hidden data carrier. In this case, steg

relationships between steganographic methods applied to the same hidden data

carrier, and some of these relationships might be really interesting. For example,

despite general considerations, we think that is possible t

applied simultaneously to the same carrier affect each other in such a way that the

resulting total cost is lower than the overall cost of these two methods when applied

alone. We will be calling this situation superposition stegano

think that there can also be a special case of superposition steganography (that we will

be calling zero cost steganography) which occurs if at least one steganographic method

15

Figure 4: Relationship between steganographic cost and undetectability.

an conclude that steganographic cost affects undetectability

and may be responsible for loss of carrier’s functionality or loss of carrier’s

performance (e.g. it results in longer connection or increased resources usage). The

relationship between steganographic cost and undetectability is explained in Fig. 3.

One can imagine a steganographic cost as a “zip” as it provides a view on how exactly

the carrier was affected by applying steganographic method. On the other hand

undetectability can be imagined as a “switch” i.e. when the certain level of

steganographic cost is exceeded (SCD) then the steganographic method becomes

detectable up to the point where the detection is trivial (SCD100%).

The effects of steganographic cost are threefold and form a vector for

steganographic method. Some steganographic methods affect the detectability, while

others affect the feature spectrum or the performance of the carrier. Others affect

multiple aspects simultaneously but in different extent. Besides splitting performa

and feature cost, both could be combined to functionality cost in order to achieve a

twofold view of steganographic cost.

Steganographic cost can also be important when more than one method is applied to

the same hidden data carrier. In this case, steganographic cost allows observing the

relationships between steganographic methods applied to the same hidden data

carrier, and some of these relationships might be really interesting. For example,

despite general considerations, we think that is possible that two or more methods

applied simultaneously to the same carrier affect each other in such a way that the

resulting total cost is lower than the overall cost of these two methods when applied

alone. We will be calling this situation superposition steganography. Moreover, we

think that there can also be a special case of superposition steganography (that we will

be calling zero cost steganography) which occurs if at least one steganographic method

Figure 4: Relationship between steganographic cost and undetectability.

an conclude that steganographic cost affects undetectability

and may be responsible for loss of carrier’s functionality or loss of carrier’s

performance (e.g. it results in longer connection or increased resources usage). The

aphic cost and undetectability is explained in Fig. 3.

One can imagine a steganographic cost as a “zip” as it provides a view on how exactly

the carrier was affected by applying steganographic method. On the other hand

“switch” i.e. when the certain level of

) then the steganographic method becomes

The effects of steganographic cost are threefold and form a vector for each

steganographic method. Some steganographic methods affect the detectability, while

others affect the feature spectrum or the performance of the carrier. Others affect

multiple aspects simultaneously but in different extent. Besides splitting performance

and feature cost, both could be combined to functionality cost in order to achieve a

Steganographic cost can also be important when more than one method is applied to

anographic cost allows observing the

relationships between steganographic methods applied to the same hidden data

carrier, and some of these relationships might be really interesting. For example,

hat two or more methods

applied simultaneously to the same carrier affect each other in such a way that the

resulting total cost is lower than the overall cost of these two methods when applied

graphy. Moreover, we

think that there can also be a special case of superposition steganography (that we will

be calling zero cost steganography) which occurs if at least one steganographic method

16

is applied to another steganographic method in a way that it results in no additional

cost.

In this work, what we are going to do is to design two different steganographic

scenarios we thought about that will help us to prove if these superposition

steganography and zero cost steganography cases are feasible or not. Let us proceed

to explain this in more detail.

3. CONSIDERED STEGANOGR

In this thesis we intend to implement two different scenarios that will be helping us to

prove the existence of the two terms we me

steganography and zero cost steganography.

3.1 Scenario 1: IP Fragmentation

Let us consider a case where two simple steganographic met

in [36] are applied to an IP-

F1 method relies on the parity of the number of fragments that the packet was divided

into. SS (Steganogram Sender) is the source of the fragmentation and controls this

process. SS inserts single bit of hidden data by dividing each of IP packets into the

predefined number of fragments. For example, if the number of fragments is even

then it means that binary 0 is transmitted and in other case binary 1 (Figure 5). The

hidden data extraction is obvious as after the fragments reception SR utilizes the

number of the fragments o

was sent.

Of course if the statistical steganalysis based on number of fragments is performed to

detect irregularities in number of each packet’s fragments the F1 method is not hard

to detect.

Figure 5: F1 Steganographic method example.

The second method (F3) utilizes legitimate fragments with steganogram inserted into

payload for higher steganographic bandwidth and harder detection. SS is the source of

the fragmentation and controls the process

data instead of inserting user data into the payload of selected fragments.

17

3. CONSIDERED STEGANOGRAPHIC SCENARIOS FOR IP

NETWORKS

to implement two different scenarios that will be helping us to

prove the existence of the two terms we mentioned before: superposition

steganography and zero cost steganography.

.1 Scenario 1: IP Fragmentation

Let us consider a case where two simple steganographic methods F1 and F3 as defined

-based traffic flow.

on the parity of the number of fragments that the packet was divided

into. SS (Steganogram Sender) is the source of the fragmentation and controls this

process. SS inserts single bit of hidden data by dividing each of IP packets into the

of fragments. For example, if the number of fragments is even

then it means that binary 0 is transmitted and in other case binary 1 (Figure 5). The

hidden data extraction is obvious as after the fragments reception SR utilizes the

number of the fragments of each received IP packet to determine what hidden data

Of course if the statistical steganalysis based on number of fragments is performed to

detect irregularities in number of each packet’s fragments the F1 method is not hard

Figure 5: F1 Steganographic method example.

The second method (F3) utilizes legitimate fragments with steganogram inserted into

payload for higher steganographic bandwidth and harder detection. SS is the source of

the fragmentation and controls the process. During the fragmentation SS inserts secret

data instead of inserting user data into the payload of selected fragments.

APHIC SCENARIOS FOR IP

to implement two different scenarios that will be helping us to

ntioned before: superposition

hods F1 and F3 as defined

on the parity of the number of fragments that the packet was divided

into. SS (Steganogram Sender) is the source of the fragmentation and controls this

process. SS inserts single bit of hidden data by dividing each of IP packets into the

of fragments. For example, if the number of fragments is even

then it means that binary 0 is transmitted and in other case binary 1 (Figure 5). The

hidden data extraction is obvious as after the fragments reception SR utilizes the

f each received IP packet to determine what hidden data

Of course if the statistical steganalysis based on number of fragments is performed to

detect irregularities in number of each packet’s fragments the F1 method is not hard

The second method (F3) utilizes legitimate fragments with steganogram inserted into

payload for higher steganographic bandwidth and harder detection. SS is the source of

. During the fragmentation SS inserts secret

data instead of inserting user data into the payload of selected fragments.

To make the steganographic fragments distinguishable from others yet hard to detect

the following procedure was introduced. If SS and

for each fragment chosen for steganographic communication the following hash

function (H) is used to calculate Identifying Sequence (IS):

�� � ����

Where Fragment Offset and Identification denote values from these IP fragment

header fields and ||bits concatenation function. For every fragment used for hidden

communication the resulting IS will have different value due to the values change in a

Fragment Offset field. All IS bits or only selected ones are distributed across the

payload field in predefined manner. Thus, for each fragment SR can calculate

appropriate IS and verifies if it contains secret or user data. If the verification is

successful then the rest of the payload is considered as hidden data and extracted.

Then SR does not utilize this fragment in reassembly process of original IP packet.

Figure 6 illustrates an example of the proposed steganographic method. IP packet with

ID 345 is divided into four fragments (FR1

steganographic purposes, so inside its payload secret data is inserted together with

correct IS. Values in Fragment Offset and identification fields remain the same as in

other legitimate fragments. Wh

P1, P2 and P3, omits fragment F2 and use it only to extract secret data.

Figure 6: F3 Steganographic method example (H

Now let us consider the case when combined F1 a

simultaneously to the same hidden data carrier

F1 modulates a number of fragments that the packet is divided into and F3 inserts fake

18

To make the steganographic fragments distinguishable from others yet hard to detect

the following procedure was introduced. If SS and SR share a secret Steg

for each fragment chosen for steganographic communication the following hash

function (H) is used to calculate Identifying Sequence (IS):

��	||		
��
���	������	||	���������������

ere Fragment Offset and Identification denote values from these IP fragment

header fields and ||bits concatenation function. For every fragment used for hidden

communication the resulting IS will have different value due to the values change in a

Offset field. All IS bits or only selected ones are distributed across the

payload field in predefined manner. Thus, for each fragment SR can calculate

appropriate IS and verifies if it contains secret or user data. If the verification is

he rest of the payload is considered as hidden data and extracted.

Then SR does not utilize this fragment in reassembly process of original IP packet.

example of the proposed steganographic method. IP packet with

nto four fragments (FR1-FR4). Fragment FR2 is used for

steganographic purposes, so inside its payload secret data is inserted together with

correct IS. Values in Fragment Offset and identification fields remain the same as in

other legitimate fragments. While reassembling original packet, SR merges payloads

P1, P2 and P3, omits fragment F2 and use it only to extract secret data.

Figure 6: F3 Steganographic method example (H-header, P-payload, S

Now let us consider the case when combined F1 and F3 methods are applied

simultaneously to the same hidden data carrier – IP-based traffic flow (Figure 7).

F1 modulates a number of fragments that the packet is divided into and F3 inserts fake

To make the steganographic fragments distinguishable from others yet hard to detect

SR share a secret Steg-Key (SK) then

for each fragment chosen for steganographic communication the following hash

ere Fragment Offset and Identification denote values from these IP fragment

header fields and ||bits concatenation function. For every fragment used for hidden

communication the resulting IS will have different value due to the values change in a

Offset field. All IS bits or only selected ones are distributed across the

payload field in predefined manner. Thus, for each fragment SR can calculate

appropriate IS and verifies if it contains secret or user data. If the verification is

he rest of the payload is considered as hidden data and extracted.

Then SR does not utilize this fragment in reassembly process of original IP packet.

example of the proposed steganographic method. IP packet with

FR4). Fragment FR2 is used for

steganographic purposes, so inside its payload secret data is inserted together with

correct IS. Values in Fragment Offset and identification fields remain the same as in

ile reassembling original packet, SR merges payloads

P1, P2 and P3, omits fragment F2 and use it only to extract secret data.

payload, S-secret data).

nd F3 methods are applied

based traffic flow (Figure 7). Since

F1 modulates a number of fragments that the packet is divided into and F3 inserts fake

fragments then if used combined the total steganograph

undetectability. This is what we call superposition steganography.

Figure 7: Simultaneous utilization of F1 and F3 methods.

So, for this first scenario, we will have

be connected between them, with PC

A as the steganogram receiver (SR).

what kind of traffic later) directed

be sending some hidden information

studying how steganographic cost is affected in four different cases:

• Case 1: No steganography case, where we will be applying no steganographic

method over the information transf

other words, we will not be sending secret information in this case).

• Case 2: F1 method case, where we will use F1 steganographic method over the

IP traffic in order to send some secret information from PC

• Case 3: F3 method case, where we will use F3 steganographic method over the

IP traffic in order to send some secret information from PC

• Case 4: F1+F3 methods case, where we will use simultaneously both F1 and F3

steganographic methods over

information from PC

We will compare the obtained results for each of the cases

existence of the superposition steganography phenomena.

3.2 Scenario 2: HTTP Headers

We will now consider a case where three simple steganographic methods F6, F7 and F8

are applied to an HTTP-based traffic flow.

In order to steganographically send the secret information, method F6 changes the

case of the different HTTP header fields, F7 changes the ord

F8 changes the total number of header fields. Only method F8 introduces

19

fragments then if used combined the total steganographic cost will decrease and

undetectability. This is what we call superposition steganography.

Figure 7: Simultaneous utilization of F1 and F3 methods.

ario, we will have two virtual machines, PC-A and PC

tween them, with PC-B acting as the steganogram sender (SS), and PC

A as the steganogram receiver (SR).PC-B will be sending IP traffic (we will be specifying

) directed to PC-A, and alongside this normal IP traffic

ing some hidden information making use of IP fragmentation. Then, we will be

studying how steganographic cost is affected in four different cases:

Case 1: No steganography case, where we will be applying no steganographic

method over the information transference that happens between both PCs (in

other words, we will not be sending secret information in this case).

Case 2: F1 method case, where we will use F1 steganographic method over the

IP traffic in order to send some secret information from PC-B to

Case 3: F3 method case, where we will use F3 steganographic method over the

IP traffic in order to send some secret information from PC-B to PC

Case 4: F1+F3 methods case, where we will use simultaneously both F1 and F3

steganographic methods over the IP traffic in order to send some secret

information from PC-B to PC-A.

We will compare the obtained results for each of the cases in order to prove the

existence of the superposition steganography phenomena.

.2 Scenario 2: HTTP Headers

onsider a case where three simple steganographic methods F6, F7 and F8

based traffic flow.

In order to steganographically send the secret information, method F6 changes the

case of the different HTTP header fields, F7 changes the order of the header fields, and

F8 changes the total number of header fields. Only method F8 introduces

ic cost will decrease and

Figure 7: Simultaneous utilization of F1 and F3 methods.

A and PC-B. They will

steganogram sender (SS), and PC-

we will be specifying

A, and alongside this normal IP traffic we will

Then, we will be

Case 1: No steganography case, where we will be applying no steganographic

erence that happens between both PCs (in

other words, we will not be sending secret information in this case).

Case 2: F1 method case, where we will use F1 steganographic method over the

B to PC-A.

Case 3: F3 method case, where we will use F3 steganographic method over the

B to PC-A.

Case 4: F1+F3 methods case, where we will use simultaneously both F1 and F3

the IP traffic in order to send some secret

in order to prove the

onsider a case where three simple steganographic methods F6, F7 and F8

In order to steganographically send the secret information, method F6 changes the

er of the header fields, and

F8 changes the total number of header fields. Only method F8 introduces

steganographic cost by increasing the header’s size and thus the available space for

the remaining payload. Methods F6 and F7 modify the already created he

elements of F8 without degrading the functionality of the protocol or the performance

of the request. Thus, methods F6 and F7 add no additional steganographic cost, or are,

in other words zero cost methods in combination with F8. We i

Figure 8:

Figure 8: Three steganographic methods applied to the HTTP Request header.

In this second scenario, we

connected between them. This time, PC

(SS) and PC-B as the steganogram receiver. PC

PC-A as a client machine that will constantly send HTTP Requests to the server. Of

course, steganographically hidden information will be sent on th

headers. Here, we will be analyzing

different cases:

• Case 1: No steganography case, where we will be applying no steganographic

method over the information transference that happens between bot

other words, we will not be sending secret information in this case).

• Case 2: F6 method case, where we will use F6 steganographic method over the

HTTP traffic in order to send some secret information from PC

• Case 3: F7 method case, whe

HTTP traffic in order to send some secret information from PC

• Case 4: F8 method case, where we will use F8 steganographic method over the

HTTP traffic in order to send some secret information from

• Case 5: F6+F7+F8 methods case, where we will use simultaneously F6, F7 and

F8 steganographic methods over the HTTP traffic in order to send some secret

information from PC

We will compare the obtained results for these five cases

existence of the zero cost steganography phenomena.

20

steganographic cost by increasing the header’s size and thus the available space for

the remaining payload. Methods F6 and F7 modify the already created he

elements of F8 without degrading the functionality of the protocol or the performance

of the request. Thus, methods F6 and F7 add no additional steganographic cost, or are,

in other words zero cost methods in combination with F8. We illustrate the exa

Figure 8: Three steganographic methods applied to the HTTP Request header.

we will have again 2 virtual machines (PC-A and PC

connected between them. This time, PC-A will be acting as the steganogram sender

s the steganogram receiver. PC-B will be acting as a WEB Server, with

as a client machine that will constantly send HTTP Requests to the server. Of

course, steganographically hidden information will be sent on these HTTP Requests’

be analyzing how steganographic cost is affected

Case 1: No steganography case, where we will be applying no steganographic

method over the information transference that happens between bot

other words, we will not be sending secret information in this case).

Case 2: F6 method case, where we will use F6 steganographic method over the

HTTP traffic in order to send some secret information from PC-A to PC

Case 3: F7 method case, where we will use F7 steganographic method over the

HTTP traffic in order to send some secret information from PC-A to PC

Case 4: F8 method case, where we will use F8 steganographic method over the

HTTP traffic in order to send some secret information from PC-A to PC

Case 5: F6+F7+F8 methods case, where we will use simultaneously F6, F7 and

F8 steganographic methods over the HTTP traffic in order to send some secret

information from PC-A to PC-B.

We will compare the obtained results for these five cases in order to prove

existence of the zero cost steganography phenomena.

steganographic cost by increasing the header’s size and thus the available space for

the remaining payload. Methods F6 and F7 modify the already created header

elements of F8 without degrading the functionality of the protocol or the performance

of the request. Thus, methods F6 and F7 add no additional steganographic cost, or are,

llustrate the example in

Figure 8: Three steganographic methods applied to the HTTP Request header.

A and PC-B) directly

the steganogram sender

B will be acting as a WEB Server, with

as a client machine that will constantly send HTTP Requests to the server. Of

ese HTTP Requests’

is affected in five

Case 1: No steganography case, where we will be applying no steganographic

method over the information transference that happens between both PCs (in

other words, we will not be sending secret information in this case).

Case 2: F6 method case, where we will use F6 steganographic method over the

A to PC-B.

re we will use F7 steganographic method over the

A to PC-B.

Case 4: F8 method case, where we will use F8 steganographic method over the

A to PC-B.

Case 5: F6+F7+F8 methods case, where we will use simultaneously F6, F7 and

F8 steganographic methods over the HTTP traffic in order to send some secret

in order to prove the

21

3.3 Procedure

The total work for the realization of this thesis can be divided into four clear different

parts:

• 1) Preparation of the scenarios: installation and preparation of the virtual

machines.

The first thing that we must do is to correctly install the virtual machines we

are going to use for the implementation of the thesis’s scenarios, as well as all

of the programs and instruments we are going to need in each virtual machine.

We will be using virtual machines working under Ubuntu’s Linux operating

system. We will also be needing to install some applications like Wireshark

(required for traffic analysis), g++ (because we are going to be working with

C++ and we will be needing the compilator), and at least in one of the virtual

machines we will have to install and correctly configure one HTTP server, so we

can have HTTP traffic between the virtual machines. With the correct

configuration of the virtual network that connects our machines, we will have

ended the first part of the master thesis.

• 2) Programming of each of the 9 cases.

Once we have our scenarios correctly implemented, the next thing we will have

to do is to prepare each of the nine study cases (previously mentioned in

Sections 3.1 and 3.2). In other words, we will have to implement the different

steganographic methods. Since we will have to manipulate some of the

packet’s information (like the headers in HTTP, or the number of fragments

when working with IP fragmentation) before sending them from one computer

to the other in order to send the hidden information, we will need to use IP-

Tables, a tool which will allow us to change the packets’ information before

sending them. Combining IP-Tables with C++ programming, we will implement

all of the study cases.

• 3) Simulation, analysis and evaluation of the results.

Once we have each case programmed, we will have to try them (around 10-20

times each, so we can calculate mean values and standard deviations) and then

to analyze the obtained results with the help of Wireshark, looking how

steganographic cost is affected on each case. We will then proceed to compare

the results in order to prove our hypothesis about super-position

steganography and zero-cost steganography.

22

• 4) Conclusions.

After analyzing all the results and comparing the cases between them, we will

conclude the work giving our final conclusions.

We will now proceed to describing total work in detail.

4. EXPERIMENTAL TEST

4.1 Installation of the machines

The first thing we have to do is to install the two virtual machi

with. We decided to use free software VirtualBox, a program that allows the user to

easily create virtual machines, giving them t

memory dedicated to the virtual machine, the operative system running in the

machine or the different connections and interfaces that the machine has.

After installing the program, we proceed to create

case, we named them PC-

Ubuntu (Linux) in both virtual machines.

to work with programs like Wireshark, or to download programming libraries

using Linux than when using Windows for exa

Linux operative system that

Figure 9: Virtual machine PCB using Ubuntu operating system, version 12.04.

After installing Ubuntu, we will

going to need, like Wireshark or g++ compiler. This is easily done by using

command.

We must note one important thing here: n

work. At first we tried to use version 10.10, but this version

Cannonical Ltd. Enterprise, which means that we were

that had no longer technical support nor updates.

23

EXPERIMENTAL TEST-BED SETUP

Installation of the machines

The first thing we have to do is to install the two virtual machines we are going to work

decided to use free software VirtualBox, a program that allows the user to

easily create virtual machines, giving them the choice to control things such as

memory dedicated to the virtual machine, the operative system running in the

machine or the different connections and interfaces that the machine has.

After installing the program, we proceed to create the two virtual machi

-A and PC-B. As for the operative system, we

Ubuntu (Linux) in both virtual machines. The main reason for it is that we

to work with programs like Wireshark, or to download programming libraries

using Linux than when using Windows for example. We chose Ubuntu because it i

that we are more familiar with.

Virtual machine PCB using Ubuntu operating system, version 12.04.

After installing Ubuntu, we will also have to install the programs and libraries we are

, like Wireshark or g++ compiler. This is easily done by using

one important thing here: not every Ubuntu version is

use version 10.10, but this version is no longer supporte

nterprise, which means that we were trying to work with a version

had no longer technical support nor updates. Because of this,

nes we are going to work

decided to use free software VirtualBox, a program that allows the user to

ce to control things such as the

memory dedicated to the virtual machine, the operative system running in the

machine or the different connections and interfaces that the machine has.

the two virtual machines. In our

. As for the operative system, we chose to use

The main reason for it is that we find it easier

to work with programs like Wireshark, or to download programming libraries when

chose Ubuntu because it is the

Virtual machine PCB using Ubuntu operating system, version 12.04.

also have to install the programs and libraries we are

, like Wireshark or g++ compiler. This is easily done by using apt-get

ot every Ubuntu version is valid for this

is no longer supported by

trying to work with a version

ecause of this, for example,

something as simple as to use

working, since it was no longer possible

and programs from Ubuntu’s servers.

order to avoid this kind of problems, l

In the future, if someone wants to repeat this work he will have to take into

that the version we ended up using (12.04, supported until 2017) might not be suitable

for the work by then.

4.2 Installation of the virtual network

After preparing the virtual machines, the next thing

virtual network connecting them. Each of the virtual machines has two interfaces:

of these interfaces will be

IP address via DHCP protocol. The other interface will be connected to an intern

network common to both machines, providing

between them. This interfaces

addresses, masks and gateways.

 This entire network configuration is

program, we have to select one of the virtual machines and then, without initiating the

machine, we access to the configuration menu. Inside this menu, going to the network

section, we are able to habilitate as many interfaces as

two of them, one connected to the internet (NAT) and another one connected to an

intern network. We must do this again with the other virtual machine.

Figure 10: Activation of the interfaces in VirtualBox.

24

something as simple as to use command “apt-get” to install new programs

working, since it was no longer possible to correctly access and to download some files

and programs from Ubuntu’s servers. We have to work with a supported version in

kind of problems, like the one we ended up choosing: version 12.04.

n the future, if someone wants to repeat this work he will have to take into

ended up using (12.04, supported until 2017) might not be suitable

allation of the virtual network

the virtual machines, the next thing we have to do is to

virtual network connecting them. Each of the virtual machines has two interfaces:

 directly connected to the internet, and will be obtaining

via DHCP protocol. The other interface will be connected to an intern

network common to both machines, providing a direct communicati

. This interfaces connected to the intern network will be having

, masks and gateways.

This entire network configuration is pretty easy to do: after initiating VirtualBox

program, we have to select one of the virtual machines and then, without initiating the

machine, we access to the configuration menu. Inside this menu, going to the network

section, we are able to habilitate as many interfaces as we want: We have to habilitate

two of them, one connected to the internet (NAT) and another one connected to an

intern network. We must do this again with the other virtual machine.

Figure 10: Activation of the interfaces in VirtualBox.

to install new programs wasn’t

download some files

We have to work with a supported version in

ended up choosing: version 12.04.

n the future, if someone wants to repeat this work he will have to take into account

ended up using (12.04, supported until 2017) might not be suitable

we have to do is to make the

virtual network connecting them. Each of the virtual machines has two interfaces: One

ternet, and will be obtaining its

via DHCP protocol. The other interface will be connected to an intern

a direct communication channel

be having fixed IP

fter initiating VirtualBox

program, we have to select one of the virtual machines and then, without initiating the

machine, we access to the configuration menu. Inside this menu, going to the network

we want: We have to habilitate

two of them, one connected to the internet (NAT) and another one connected to an

After activating both interfaces on each machine

correctly change the interface

interfaces connected to the intern network. The ones connected to the internet will be

using DHCP protocol to obtain their IP address. This

figures (Figure 11 and Figure 12).

Figure 11:

Figure 12:

25

g both interfaces on each machine, we must initiate the machines and

correctly change the interfaces’ configuration: we will be fixating IP address

interfaces connected to the intern network. The ones connected to the internet will be

protocol to obtain their IP address. This is illustrated in the next two

figures (Figure 11 and Figure 12).

Figure 11: Network interface’s configuration (I).

Figure 12: Network interface’s configuration (II).

, we must initiate the machines and

e will be fixating IP addresses for the

interfaces connected to the intern network. The ones connected to the internet will be

illustrated in the next two

26

5. STEGANOGRAPHIC SCENARIOS AND METHODS

IMPLEMENTATION

We will now proceed to describe how each of the steganographic methods used in this

Master thesis was implemented. In this section, we will be fairly descriptive: we will

focus on describing how the methods were implemented and how the problems

encountered were tackled, without making any reference to the implemented

programming code. Related programming code can be found in Annex 1.

5.1 IP TABLES

In order to capture and manipulate the packets, we are going to use netfilter/IP tables.

IP tables is a user space application program that allows a system administrator to

configure the tables provided by the Linux kernel firewall (implemented as different

Netfilter modules) and the chains and rules it stores. Different kernel modules and

programs are currently used for different protocols; iptables applies to IPv4, ip6tables

to IPv6, arptables to ARP, and ebtables to Ethernet frames.

iptables requires elevated privileges to operate and must be executed by user root,

otherwise it fails to function. On most Linux systems, iptables is installed as

/usr/sbin/iptables and documented in its man pages which can be opened using man

iptables when installed. It may also be found in /sbin/iptables, but since iptables is

more like a service rather than an "essential binary", the preferred location remains

/usr/sbin.

All packets passing through a host are traversing what we call iptables chains (see

figure below). There are three main types of these chains:

• INPUT – chain for incoming (received) packets that are intended for a process

running on the local machine

• OUTPUT – chain for packets that are being sent from a process running on the local

machine

• FORWARD – chain for packets that are being forwarded through the host (from one

network interface to another)

All our programs have a common part, which consists in a GTK graphic interface that

allows us to control the different chains with which IP Tables work.

the iptables chains, packets are in the kerne

space. Because of that, to perform modifications, packets from selected chains are put

to a special QUEUE chain. This chain does not appear in the normal/usual packet

traversing paths. Subsequently, the libnetfi

library mentioned in the previous section)

user space, where packet modifications take place. Following the modifications,

packets are returned to the QUEUE and continue trave

illustrate all this in the next figure.

Figure 14: IP Tables working scheme.

Lets explain now how must we modify the packets for each steganographic case.

5.2 IP FRAGMENTATION

We will start by explaining all the methods related with

Before explaining each one of them

are going to work with.

27

Figure 13: IP Tables Chains.

All our programs have a common part, which consists in a GTK graphic interface that

allows us to control the different chains with which IP Tables work. While traversing

the iptables chains, packets are in the kernel space, which is inaccessible from the user

space. Because of that, to perform modifications, packets from selected chains are put

to a special QUEUE chain. This chain does not appear in the normal/usual packet

traversing paths. Subsequently, the libnetfilter_queue module (the netfilter queue

library mentioned in the previous section) is used to send packets one by one to the

user space, where packet modifications take place. Following the modifications,

packets are returned to the QUEUE and continue traversing the iptables chains.

illustrate all this in the next figure.

Figure 14: IP Tables working scheme.

Lets explain now how must we modify the packets for each steganographic case.

P FRAGMENTATION-RELATED METHODS

will start by explaining all the methods related with the IP- fragmentation

Before explaining each one of them, we will be clarifying the kind of IP traffic that we

All our programs have a common part, which consists in a GTK graphic interface that

While traversing

l space, which is inaccessible from the user

space. Because of that, to perform modifications, packets from selected chains are put

to a special QUEUE chain. This chain does not appear in the normal/usual packet

(the netfilter queue

is used to send packets one by one to the

user space, where packet modifications take place. Following the modifications,

rsing the iptables chains. We

Lets explain now how must we modify the packets for each steganographic case.

fragmentation scenario.

we will be clarifying the kind of IP traffic that we

We decided to use ICMP echo requests

experiment.

This might seem to be a strange decision, since

sending user information. The use of other kind of traffic, like for example FTP traffic,

seems like a better option. And t

connection to send a file over which we would be introducing the hidden information

steganographically. The main reason for using ICMP echo requests

an FTP connection, as originally planned, is that

unknown reasons it wasn’t possible to analyze how

since Wireshark only presents the full FTP

fragmentation, as you can see in the figure bellow.

Figure 15: Wireshark capture of an FTP file transfer with interface MTU=500: Full

packets are presented, and it’s impossible to analyze fragmentation.

This problem disappears when using ICMP traffic:

to see all of the packet’s fragments o

ICMP traffic for the experiments (s

fragments for their analysis)

28

decided to use ICMP echo requests-replays carrying random data

This might seem to be a strange decision, since ICMP isn’t even normally us

sending user information. The use of other kind of traffic, like for example FTP traffic,

seems like a better option. And this was actually our first idea: t

connection to send a file over which we would be introducing the hidden information

The main reason for using ICMP echo requests-replays instead of

an FTP connection, as originally planned, is that when using an FTP connection, for

it wasn’t possible to analyze how IP fragmentation

since Wireshark only presents the full FTP-Data packets sent before any kind of

fragmentation, as you can see in the figure bellow.

Wireshark capture of an FTP file transfer with interface MTU=500: Full

packets are presented, and it’s impossible to analyze fragmentation.

disappears when using ICMP traffic: when using ICMP traffic, it’s

t’s fragments on Wireshark, and because of it we

P traffic for the experiments (since it’s vital for our thesis to be able to capture the

fragments for their analysis).

carrying random data for this

ICMP isn’t even normally used for

sending user information. The use of other kind of traffic, like for example FTP traffic,

actually our first idea: to use an FTP

connection to send a file over which we would be introducing the hidden information

replays instead of

when using an FTP connection, for

IP fragmentation was affected,

Data packets sent before any kind of

Wireshark capture of an FTP file transfer with interface MTU=500: Full

packets are presented, and it’s impossible to analyze fragmentation.

hen using ICMP traffic, it’s possible

n Wireshark, and because of it we decided to use

it’s vital for our thesis to be able to capture the

Figure 16: ICMP Packets captured: It’s possible to analyze IP Frag

5.2.1 No Steganography

As we already explained, we decided to work with ICMP Echo Request/Replies for this

scenario, sending packets that carry a total

data generated by ourselves in this case).

This might seem to be a strange choice. We chose to send packets carrying 1432 bytes

of data because of the network MTU and the way we want it to divide our packets:

we add to this data the 8

packet which total size equals 1460 bytes. B

decided to fixate (it is fixated to that number when starting the programs)

is divided into three fragments, and each one of the fragments carries their own 20

byte IP-Header. As a result, we end up having 3 fragments equally sized, w

equal to 500 bytes (not taking into account the Ethernet headers in any moment). We

illustrate this in the figure below.

Figure 17: Fragmentation of a 1432 byte

So, for the No Steganography case

prepared that directly send ICMP ping requests with this packet size of 1432 bytes. We

29

ICMP Packets captured: It’s possible to analyze IP Fragmentation.

already explained, we decided to work with ICMP Echo Request/Replies for this

scenario, sending packets that carry a total amount of 1432 bytes of data (r

data generated by ourselves in this case).

seem to be a strange choice. We chose to send packets carrying 1432 bytes

ecause of the network MTU and the way we want it to divide our packets:

we add to this data the 8-byte ICMP header and the 20-byte IP header, we have a

size equals 1460 bytes. Because of the MTU of 500 bytes we

t is fixated to that number when starting the programs)

is divided into three fragments, and each one of the fragments carries their own 20

sult, we end up having 3 fragments equally sized, w

ot taking into account the Ethernet headers in any moment). We

illustrate this in the figure below.

Figure 17: Fragmentation of a 1432 byte-length packet.

teganography case (described in Section 3.1), we have a script

prepared that directly send ICMP ping requests with this packet size of 1432 bytes. We

mentation.

already explained, we decided to work with ICMP Echo Request/Replies for this

amount of 1432 bytes of data (random

seem to be a strange choice. We chose to send packets carrying 1432 bytes

ecause of the network MTU and the way we want it to divide our packets: if

byte IP header, we have a

ecause of the MTU of 500 bytes we

t is fixated to that number when starting the programs), this packet

is divided into three fragments, and each one of the fragments carries their own 20-

sult, we end up having 3 fragments equally sized, with a size

ot taking into account the Ethernet headers in any moment). We

length packet.

, we have a script

prepared that directly send ICMP ping requests with this packet size of 1432 bytes. We

capture the pings with IP tables before sending th

just change all the data

generated by ourselves. This is done in order for the traffic to look closer to what real

traffic would look like, since the data carried originally by the ICMP packets consists

just in a cyclic numeric progression (0x00, 0x01, 0x02, …, 0xFF; repeated as many

times as needed), which is a pretty unrealistic representation of what real data would

look like. We can see the difference in the next 2 pictures.

Figure 18: ICMP packet with data generated by

Figure 19: ICMP packet with the random data we generated.

We are using IP Tables to captur

of synchronization problems that we couldn’t solve:

lost. In order to solve this problem, we prepared

starts by generating these 2 pings that are going to get l

30

capture the pings with IP tables before sending them into the network and then we

 they are originally carrying by the random data stream

generated by ourselves. This is done in order for the traffic to look closer to what real

traffic would look like, since the data carried originally by the ICMP packets consists

ic progression (0x00, 0x01, 0x02, …, 0xFF; repeated as many

times as needed), which is a pretty unrealistic representation of what real data would

look like. We can see the difference in the next 2 pictures.

ICMP packet with data generated by the ICMP protocol

ICMP packet with the random data we generated.

e are using IP Tables to capture and modify the packets, and this gives us some ki

of synchronization problems that we couldn’t solve: the 2 first packets we s

n order to solve this problem, we prepared the script so it works as it follows: i

starts by generating these 2 pings that are going to get lost, then it waits 20 seconds

em into the network and then we

they are originally carrying by the random data stream

generated by ourselves. This is done in order for the traffic to look closer to what real

traffic would look like, since the data carried originally by the ICMP packets consists

ic progression (0x00, 0x01, 0x02, …, 0xFF; repeated as many

times as needed), which is a pretty unrealistic representation of what real data would

the ICMP protocol

ICMP packet with the random data we generated.

gives us some kind

he 2 first packets we send are

works as it follows: it

ost, then it waits 20 seconds

31

(so the user can start the wireshark capture, for example), and then it starts launching

the pings.

 This script solves the problem because the programs we are using for modifying the

packets have an int-type variable called “trigger”, which is used for those 2 initial pings

needed for synchronization: this variable works as a trigger that makes sure that no

information is sent until the third ping is sent, moment in which the trigger value is

reached. So, despite those 2 initial pings, no data (normal or hidden) is lost.

Of course, after changing all the data, our program recalculates both IP and ICMP

checksum before sending the packet back into the network. These checksums are

calculated by forming the ones’ complement of the ones’ complement sum of the

header's 16-bit words, and this is directly what our program does after fixating the

initial checksum values to 0. Check annex 1 if you want to look at the exact

programming code implemented for it.

We must note that these operations have a cost: we have to introduce the data and

recalculate the checksums, which takes some time, and so we have an increment in

the total connection time if we compare it with the case in which we don’t change the

packet’s data. There is no problem with it, since we are doing exactly the same

operation in all of the fragmentation cases, so the overtime for introducing the

randomly generated data will be affecting equally all of them.

5.2.2 F1 Method

For the second case of this scenario, we will have to implement F1 steganographic

method. This method relies on the parity of the number of fragments that the packet

was divided into.

For its implementation, we decided to send:

- 4 fragments if we want to send a secret binary 0.

- 3 fragments if we want to send a secret binary 1.

 So, if we compare it with the no steganography case, we are sending an extra

fragment (which is useful, since it carries normal information) every time we are

sending a secret 0.

 All of the sent fragments have the same size (500 bytes each, excluding Ethernet

header), since we think is more realistic to find similar sized fragments when you study

a real-life fragmentation scenario. Consequently, the full packets we are sending will

be having different sizes, depending on if a secret 0 or 1 is being sent.

Of course, we won’t be changing

packet depending on the secr

packets, and our program is the one that will be changing their size.

If you check the script prepared for this

in the CD annex to this paper)

case (trigger issue and all included). The only difference resides in the chosen ping size:

1912 bytes, so we obtain 4 e

Figure 20: Fragmentation of a 1912 byte

We are always generating and sending packets that carry 1912 bytes of data,

independently of the secret information we want to send.

of dat instead of 1432 because u

make a smaller packet from a big one than the other way around, so a packet of 1912

bytes (which is divided into 4 equally sized fragments) is generated

depending on if we need the packet to be divided into 4 or 3 fragments, it’s total

length is altered or not, as we can see in the figure below:

Figure 21: Resizing of the packets, F1 method.

32

changing the packet size by ourselves each time we send a

packet depending on the secret information we are sending: we will send equally sized

packets, and our program is the one that will be changing their size.

If you check the script prepared for this and the other steganographic cases

in the CD annex to this paper), you will see that it’s exactly the same as in the previous

rigger issue and all included). The only difference resides in the chosen ping size:

1912 bytes, so we obtain 4 equally sized fragments after the packet’s fragmentation.

Figure 20: Fragmentation of a 1912 byte-length packet.

We are always generating and sending packets that carry 1912 bytes of data,

independently of the secret information we want to send. We are sending 1912 bytes

ecause using my program and IP Tables, we found it easier to

make a smaller packet from a big one than the other way around, so a packet of 1912

hich is divided into 4 equally sized fragments) is generated

depending on if we need the packet to be divided into 4 or 3 fragments, it’s total

length is altered or not, as we can see in the figure below:

Figure 21: Resizing of the packets, F1 method.

by ourselves each time we send a

e will send equally sized

and the other steganographic cases (included

same as in the previous

rigger issue and all included). The only difference resides in the chosen ping size:

qually sized fragments after the packet’s fragmentation.

length packet.

We are always generating and sending packets that carry 1912 bytes of data,

sending 1912 bytes

found it easier to

make a smaller packet from a big one than the other way around, so a packet of 1912

hich is divided into 4 equally sized fragments) is generated and then,

depending on if we need the packet to be divided into 4 or 3 fragments, it’s total

Of course, when we do this a new issue appears: n

packet’s total size, so we can have the number of fragments we desire, and so we can

send the secret information without any problem. But we must also think about what

happens with the not hidden information

Unfortunately, if we cut the packet

that. So we had to come up with another way to solve this problem. Since we do all

this in the PC that is going to send both the normal file and the sec

have access to both files, what we decided to do is to reintroduce the normal, not

hidden information again into the packet after it has already been prepared to be

divided into 3 or 4 fragments.

We will try to illustrate it with an ex

00100 using F1 method. Let’s suppose we are using a file that, when sent, need to be

divided into 20 fragments. If we just send 1912 length packets with information and

we cut the total length of the packet

fragments, we would be seeing that, while the secret information would be correctly

received, we would be losing one of the fragments transporting not

information, as we illustrate in the next figure:

Figure 22: Fragment lost because of F1 method proposed implementation.

This problem is avoided when the program has direct acce

let’s think of the same example as above: s

method. But now, let’s suppose that our program has access not only to the secret

data, but also to the file of data we want to send. After obtaining a packet and altering

its length, what we can do is re

formed packet using the space we have: i

bytes will be written; if we just have 1432, only 1432 will be written.

 After the end of the secret transmission, since we know we are using a

steganographic method, we can make ou

33

e do this a new issue appears: now, we are able to change the

packet’s total size, so we can have the number of fragments we desire, and so we can

mation without any problem. But we must also think about what

happens with the not hidden information, the one carried by the IP packet.

Unfortunately, if we cut the packet, part of its information is lost, and we can’t afford

that. So we had to come up with another way to solve this problem. Since we do all

this in the PC that is going to send both the normal file and the secret file, and so we

have access to both files, what we decided to do is to reintroduce the normal, not

hidden information again into the packet after it has already been prepared to be

divided into 3 or 4 fragments.

illustrate it with an example: let’s imagine we want to send secret data

00100 using F1 method. Let’s suppose we are using a file that, when sent, need to be

divided into 20 fragments. If we just send 1912 length packets with information and

we cut the total length of the packet when we receive a 1 so it is divided into 3

fragments, we would be seeing that, while the secret information would be correctly

received, we would be losing one of the fragments transporting not

information, as we illustrate in the next figure:

gure 22: Fragment lost because of F1 method proposed implementation.

This problem is avoided when the program has direct access to the file we are sending:

ame example as above: sending the secret sequence 00100 using F1

, let’s suppose that our program has access not only to the secret

data, but also to the file of data we want to send. After obtaining a packet and altering

its length, what we can do is re-write the original data we want to send into the newly

et using the space we have: if we have 1912 bytes available to fill, 1912

bytes will be written; if we just have 1432, only 1432 will be written.

After the end of the secret transmission, since we know we are using a

steganographic method, we can make our application produce some extra packets that

we are able to change the

packet’s total size, so we can have the number of fragments we desire, and so we can

mation without any problem. But we must also think about what

he IP packet.

part of its information is lost, and we can’t afford

that. So we had to come up with another way to solve this problem. Since we do all

ret file, and so we

have access to both files, what we decided to do is to reintroduce the normal, not

hidden information again into the packet after it has already been prepared to be

et’s imagine we want to send secret data

00100 using F1 method. Let’s suppose we are using a file that, when sent, need to be

divided into 20 fragments. If we just send 1912 length packets with information and

when we receive a 1 so it is divided into 3

fragments, we would be seeing that, while the secret information would be correctly

received, we would be losing one of the fragments transporting not-secret

gure 22: Fragment lost because of F1 method proposed implementation.

ss to the file we are sending:

ending the secret sequence 00100 using F1

, let’s suppose that our program has access not only to the secret

data, but also to the file of data we want to send. After obtaining a packet and altering

write the original data we want to send into the newly

f we have 1912 bytes available to fill, 1912

After the end of the secret transmission, since we know we are using a

r application produce some extra packets that

will not be used to carry secret information, but to send the normal information that

has yet to be sent.

If for example, we know that we have sent a total of 400 secret 1’s, we will know that

after the secret transmission is finished we have yet to send 400 more fragments of

real information: 100 packets. Since we will be aware of this fact, we can adapt our file

or our application to it. For example, we can modify the file we are going to send,

filling the end of the file with useless data that will be replaced by the original one

after the steganographic method is applied on it. We illustrate this in the next figure:

Figure 23: F1 method correct implementation.

So, to sum it up, what our program does is

a secret 1 or 0 is being sent it ch

variable ret, which contains the captured packet’s length); and finally we introduce the

random data we generated into th

the no steganography case. On the receiver size, since we obtain full packets of

different lengths, we determine if a 0 or a 1 was sent by l

(again, stored in variable ret afte

One thing that we must notice is that we are working by altering and observing full

packets, instead of fragments:

single fragments with IP-tables and Net Filter: even when usin

it, we only managed to capture full packets. Luckily, it’s possible to implement all the

steganographic methods we want to implement by working with the full packets

instead of with the fragments.

34

will not be used to carry secret information, but to send the normal information that

If for example, we know that we have sent a total of 400 secret 1’s, we will know that

transmission is finished we have yet to send 400 more fragments of

real information: 100 packets. Since we will be aware of this fact, we can adapt our file

or our application to it. For example, we can modify the file we are going to send,

d of the file with useless data that will be replaced by the original one

after the steganographic method is applied on it. We illustrate this in the next figure:

Figure 23: F1 method correct implementation.

So, to sum it up, what our program does is to capture the packet; then depending on if

a secret 1 or 0 is being sent it changes the total packet length (by changing the value of

variable ret, which contains the captured packet’s length); and finally we introduce the

random data we generated into the newly obtained packet, the same way we did it in

the no steganography case. On the receiver size, since we obtain full packets of

different lengths, we determine if a 0 or a 1 was sent by looking at the packet’s length

gain, stored in variable ret after capturing the packet).

One thing that we must notice is that we are working by altering and observing full

packets, instead of fragments: we are doing so because we couldn’t manage to capture

tables and Net Filter: even when using the tools they offer for

it, we only managed to capture full packets. Luckily, it’s possible to implement all the

steganographic methods we want to implement by working with the full packets

instead of with the fragments.

will not be used to carry secret information, but to send the normal information that

If for example, we know that we have sent a total of 400 secret 1’s, we will know that

transmission is finished we have yet to send 400 more fragments of

real information: 100 packets. Since we will be aware of this fact, we can adapt our file

or our application to it. For example, we can modify the file we are going to send,

d of the file with useless data that will be replaced by the original one

after the steganographic method is applied on it. We illustrate this in the next figure:

to capture the packet; then depending on if

y changing the value of

variable ret, which contains the captured packet’s length); and finally we introduce the

e newly obtained packet, the same way we did it in

the no steganography case. On the receiver size, since we obtain full packets of

ooking at the packet’s length

One thing that we must notice is that we are working by altering and observing full

e are doing so because we couldn’t manage to capture

g the tools they offer for

it, we only managed to capture full packets. Luckily, it’s possible to implement all the

steganographic methods we want to implement by working with the full packets

5.2.3 F3 Method

Let’s go with F3 method now. This method

sections, utilizes legitimate fragments with steganogram inserted into payload for

higher steganographic bandwidth and harder detection. SS is the source of the

fragmentation and control the

data instead of inserting user data into the payload of selected fragments.

To make the steganographic fragments distinguishable from others yet hard to detect

the following procedure was introduced: i

for each fragment chosen for steganographic communication the following hash

function (H) is used to calculate what we call the Identifying Sequence (IS):

�� � ����

Where Fragment offset and

header fields, and || bits concatenation function. For every fragment used for hidden

communication, the resulting IS will have different value due to the values change in

the fragment offset and identification fields.

distributed across payload field in predefined manner. Thus, for each fragment SR can

calculate appropriate IS and verifies if it contains secret or user data. If the verification

is successful then the rest of the pa

Then, SR does not utilize this fragment in reassembly process of original IP packet.

So, when using this method, some

with the no steganography case, we are s

fragments that carry the information and one extra fragment per packet that carries

the hidden information.

35

F3 method now. This method, as we already described in previous

utilizes legitimate fragments with steganogram inserted into payload for

higher steganographic bandwidth and harder detection. SS is the source of the

fragmentation and control the process. During the fragmentation, SS inserts secret

data instead of inserting user data into the payload of selected fragments.

To make the steganographic fragments distinguishable from others yet hard to detect

wing procedure was introduced: if SS and SR share a secret Steg

for each fragment chosen for steganographic communication the following hash

function (H) is used to calculate what we call the Identifying Sequence (IS):

���|	
��
���	������|����������������

and Identification denote values from these IP fragment

header fields, and || bits concatenation function. For every fragment used for hidden

communication, the resulting IS will have different value due to the values change in

the fragment offset and identification fields. All IS bits or only selected ones are

distributed across payload field in predefined manner. Thus, for each fragment SR can

calculate appropriate IS and verifies if it contains secret or user data. If the verification

is successful then the rest of the payload is considered as hidden data and extracted.

Then, SR does not utilize this fragment in reassembly process of original IP packet.

So, when using this method, some extra fragments are generated: if we compare it

with the no steganography case, we are sending 4 fragments instead of 3: the same 3

fragments that carry the information and one extra fragment per packet that carries

Figure 24: F3 method description.

, as we already described in previous

utilizes legitimate fragments with steganogram inserted into payload for

higher steganographic bandwidth and harder detection. SS is the source of the

process. During the fragmentation, SS inserts secret

data instead of inserting user data into the payload of selected fragments.

To make the steganographic fragments distinguishable from others yet hard to detect

SS and SR share a secret Steg-Key (SK) then

for each fragment chosen for steganographic communication the following hash

function (H) is used to calculate what we call the Identifying Sequence (IS):

denote values from these IP fragment

header fields, and || bits concatenation function. For every fragment used for hidden

communication, the resulting IS will have different value due to the values change in

All IS bits or only selected ones are

distributed across payload field in predefined manner. Thus, for each fragment SR can

calculate appropriate IS and verifies if it contains secret or user data. If the verification

yload is considered as hidden data and extracted.

Then, SR does not utilize this fragment in reassembly process of original IP packet.

f we compare it

ending 4 fragments instead of 3: the same 3

fragments that carry the information and one extra fragment per packet that carries

36

For this method implementation, we are using 1912-length packets again. This time we

won’t be modifying their length, so we will always be obtaining 4 fragments per

packet.

We decided to use the second fragment for sending the secret information. There is no

special reason for this: we just didn’t want to make the programming code more

complicated. The normal data is introduced into the first, third and fourth fragments,

so even if we have 4 fragments, we are sending the same quantity of normal

information per packet that we were sending on the No Steganography case. Of

course, we do all this working with the full packet: since we know exactly how the

packet is going to be fragmented and which bytes are going to be in every packet,

there is no problem with doing it.

As for the second fragment, we fully use it to send 476 hidden bits (the total

fragment’s size minus the number of bytes occupied by the IS), so in this case we are

sending 476 bits per packet. We implement the method exactly as we described

before: first, we introduce into the first bytes of an array the Steg-Key (which is known

for both SS and SR), followed by the fragment offset (Known because we know it’s the

second fragment and the number of bytes carried by each fragment) and the packet ID

(extracted from the packet’s IP Header).

 Of course, all of this is affected by a hash function known by both sides of

communication. We decided to use the function hash(), already included in the

standard C++ libraries. With it, we obtain a 4 character string, which we put at the

beginning of the fragment. After this 4 character string, we introduce the 476 secret

bits we are sending. Finally, we recalculate both ICMP and IP header checksums, as in

the previous case.

In the receiving side, we just extract the correct fragments in order into a buffer (which

will contain the normal data) that can later give it to the application. After checking if

the second fragment has a correct identifying sequence, the 8 bits secretly sent are

extracted. The rest of the second fragment is discarded, since it’s useless.

5.2.4 F1+F3 Methods

In first scenario’s final case, we will be using F1 and F3 methods combined. Because F1

method modulates the number of fragments that the packet is divided into and F3

inserts fake fragments, we can use them combined in a way that will make the total

steganographic cost decrease and undetectability increase: we use F1 Method, with

which we are obtaining 4 or 3 fragments per packet, and then we also use F3 method

every time we have obtained 3 fragments using method F1, so we obtain an extra

fragment that makes us always have 4 fragments per packet. The steganographic cost

decrease we obtain when combining the two methods is what we call super-position

steganography. You can see how the method works in the figure below.

Figure 25: F1+F3 methods description.

For the implementation of this method, we

programs we had already made for the F1 and F3

byte-length pings, which will be divided into 4 fragments each. We

F1 method: if a 0 was sent, then we just fill the packet with the information we

generated and send it back to the network. If a 1 was sent, we apply

this packet: we introduce the normal information into the first, third and fourth

fragment and use the second one for introducing more hidden data. Of course, after all

these alterations, we recalculate both ICMP and IP Header

In the receiving side, it’s easy to extract the secret: a

search for the Identifying seque

know that a 0 was sent using method F1 and we save all the information contained by

the packet. If we find the IS, we know that a 1 was sent using method F1 and that

method F3 was also used, so we wri

secret information, then we extract the hidden information sent using F3 method in

the second fragment, and finally we save the information carried by the first, thi

fourth fragment.

5.3 HTTP RELATED CASES

We will now proceed to describe the HTTP scenario’s cases. We

what are we sending in the

of the used steganographic

5.3.1 No Steganography

In this scenario, we are going to work with HTTP protoco

(which works as a web server) for webpage index.html. We will be repeating this HTTP

Request a lot of times, and when using the steganographic methods, we w

altering the HTTP headers in order to send the secret information.

37

Figure 25: F1+F3 methods description.

implementation of this method, we just combined in a proper way the

had already made for the F1 and F3 cases separately: we generate 1912

length pings, which will be divided into 4 fragments each. We start by using the

f a 0 was sent, then we just fill the packet with the information we

generated and send it back to the network. If a 1 was sent, we apply the F3 method to

e introduce the normal information into the first, third and fourth

e second one for introducing more hidden data. Of course, after all

these alterations, we recalculate both ICMP and IP Header-Checksums.

’s easy to extract the secret: after receiving the packet, we

search for the Identifying sequence (IS) we use with method F3: if we don’t find it, we

know that a 0 was sent using method F1 and we save all the information contained by

the packet. If we find the IS, we know that a 1 was sent using method F1 and that

method F3 was also used, so we write the secret one sent using F1 method into the

secret information, then we extract the hidden information sent using F3 method in

the second fragment, and finally we save the information carried by the first, thi

CASES

w proceed to describe the HTTP scenario’s cases. We will start by explaining

sending in the no steganography case, and after that we will

steganographic methods and the way we implemented them.

In this scenario, we are going to work with HTTP protocol: PCA will be requesting PCB

hich works as a web server) for webpage index.html. We will be repeating this HTTP

Request a lot of times, and when using the steganographic methods, we w

altering the HTTP headers in order to send the secret information.

d in a proper way the

e generate 1912

start by using the

f a 0 was sent, then we just fill the packet with the information we

the F3 method to

e introduce the normal information into the first, third and fourth

e second one for introducing more hidden data. Of course, after all

Checksums.

fter receiving the packet, we

f we don’t find it, we

know that a 0 was sent using method F1 and we save all the information contained by

the packet. If we find the IS, we know that a 1 was sent using method F1 and that

te the secret one sent using F1 method into the

secret information, then we extract the hidden information sent using F3 method in

the second fragment, and finally we save the information carried by the first, third and

start by explaining

will explain each

implemented them.

l: PCA will be requesting PCB

hich works as a web server) for webpage index.html. We will be repeating this HTTP

Request a lot of times, and when using the steganographic methods, we will be

Unlike the first scenario’s No steganography case, in which we had to alter the packet

in order to introduce the random data generated by ourselves, in this case we don’t

have to modify the HTTP request, so we

second scenario.

This script basically asks a lot of times for the index.html page, using the following

order:

Wget 10.0.1.2/index.html --

Since they end up being stored on the PC, we dele

after each request.

It’s important to note that, in the script, we send a normal request and then we wait

for 20 seconds before sending the rest of the request. This first request is sent

because, just like on the previous fragmentation cases, when capturing the packets

using IP Tables for their modification in the steganographic cases, there are some

synchronization issues that are again solved using a trigger in our programs, so no

information is sent on this first HTTP request. The 20 second wait time is so we can

start the wireshark capture.

5.3.2 F6 Method

The first steganographic method we

basically changes the case of one or more of the header fields, using capital or small

letters depending on the information we want to send. We can use for example small

letters for representing secret 0’s and c

total header length is not altered by the usage of this method.

For its implementation, we

the case of the word Agent. Since it has 5 letters, we are

packet. We can see an example on the next image:

38

Figure 26: HTTP scenario.

Unlike the first scenario’s No steganography case, in which we had to alter the packet

in order to introduce the random data generated by ourselves, in this case we don’t

have to modify the HTTP request, so we just have to run the script we prepared for th

This script basically asks a lot of times for the index.html page, using the following

--no -cache

Since they end up being stored on the PC, we delete the obtained index.html page

important to note that, in the script, we send a normal request and then we wait

for 20 seconds before sending the rest of the request. This first request is sent

because, just like on the previous fragmentation cases, when capturing the packets

ables for their modification in the steganographic cases, there are some

synchronization issues that are again solved using a trigger in our programs, so no

information is sent on this first HTTP request. The 20 second wait time is so we can

shark capture.

method we will describe is the F6 method. This method

basically changes the case of one or more of the header fields, using capital or small

letters depending on the information we want to send. We can use for example small

letters for representing secret 0’s and capital letters for representing secret

total header length is not altered by the usage of this method.

For its implementation, we decided to only use the User-Agent header, modifying only

the case of the word Agent. Since it has 5 letters, we are able to send 5 secret bits per

packet. We can see an example on the next image:

Unlike the first scenario’s No steganography case, in which we had to alter the packet

in order to introduce the random data generated by ourselves, in this case we don’t

have to run the script we prepared for the

This script basically asks a lot of times for the index.html page, using the following

te the obtained index.html page

important to note that, in the script, we send a normal request and then we wait

for 20 seconds before sending the rest of the request. This first request is sent

because, just like on the previous fragmentation cases, when capturing the packets

ables for their modification in the steganographic cases, there are some

synchronization issues that are again solved using a trigger in our programs, so no

information is sent on this first HTTP request. The 20 second wait time is so we can

will describe is the F6 method. This method

basically changes the case of one or more of the header fields, using capital or small

letters depending on the information we want to send. We can use for example small

letters for representing secret 1’s. The

Agent header, modifying only

able to send 5 secret bits per

Figure 27: Wireshark capture, F6 method.

The case modification is pretty easy to do: a

program has a pointer to the Agent word in the

on the secret information we want to send, it changes the case of the letters by adding

or subtracting the fixed quantity that separates small and capital letters in ASCII code:

32. After doing this, we recalculate both I

then we send the packet back to the network.

On the receiving side, we just check the ASCII code for the Agent word in the User

Agent header in order to know if a secret 1 or 0 was sent.

5.3.3 F7 Method

We will now explain F7 method. This method works by changing the order of the

header fields, so depending on the secret information we are sending

be following one order or the other. At least 2 headers are required for the

implementation of this method. The total header length is not altered by the usage of

this method.

For its implementation, we

When we are sending a secret 0, they are in their predetermined order

Accept header, then the Host one), and when we are sending a sec

changed (first the host header, then the Accept one).

39

Figure 27: Wireshark capture, F6 method.

fication is pretty easy to do: after capturing the HTTP Request, our

program has a pointer to the Agent word in the User-Agent header. Then, depending

on the secret information we want to send, it changes the case of the letters by adding

or subtracting the fixed quantity that separates small and capital letters in ASCII code:

32. After doing this, we recalculate both IP and TCP header checksums, so they fit, and

then we send the packet back to the network.

On the receiving side, we just check the ASCII code for the Agent word in the User

Agent header in order to know if a secret 1 or 0 was sent.

now explain F7 method. This method works by changing the order of the

header fields, so depending on the secret information we are sending

order or the other. At least 2 headers are required for the

method. The total header length is not altered by the usage of

For its implementation, we decided to use the Host header and the Accept header.

When we are sending a secret 0, they are in their predetermined order

en the Host one), and when we are sending a secret 1, their order is

irst the host header, then the Accept one).

fter capturing the HTTP Request, our

Agent header. Then, depending

on the secret information we want to send, it changes the case of the letters by adding

or subtracting the fixed quantity that separates small and capital letters in ASCII code:

P and TCP header checksums, so they fit, and

On the receiving side, we just check the ASCII code for the Agent word in the User-

now explain F7 method. This method works by changing the order of the

header fields, so depending on the secret information we are sending the headers will

order or the other. At least 2 headers are required for the

method. The total header length is not altered by the usage of

decided to use the Host header and the Accept header.

When we are sending a secret 0, they are in their predetermined order (first the

ret 1, their order is

Figure 28: Wireshark capture, F7 method (I).

Figure 29: Wireshark capture, F7 method (II).

This method is pretty easy to implemen

and then only when we have to send a secret 1 we just change the header’s order

using an auxiliary buffer. After this, we recalculate IP and TCP header

we send the packets back to the network.

One the receiving side, we just look which header is first by looking at the ASCII code of

the first letter in the first header: j

or 1 was sent.

40

Figure 28: Wireshark capture, F7 method (I).

Figure 29: Wireshark capture, F7 method (II).

pretty easy to implement too: first we capture the HTTP request packet,

and then only when we have to send a secret 1 we just change the header’s order

using an auxiliary buffer. After this, we recalculate IP and TCP header

we send the packets back to the network.

One the receiving side, we just look which header is first by looking at the ASCII code of

st letter in the first header: just with that, we are able to determine if a secret 0

irst we capture the HTTP request packet,

and then only when we have to send a secret 1 we just change the header’s order

using an auxiliary buffer. After this, we recalculate IP and TCP header-checksums and

One the receiving side, we just look which header is first by looking at the ASCII code of

ust with that, we are able to determine if a secret 0

41

5.3.4 F8 Method

The next method we will be explaining is the F8 method. This method changed the

total number of header fields in order to send the secret information: depending on

the total number of header fields sent per packet, we will know if a secret 0 or 1 was

sent. The total header length is altered when using this method.

In our case, what we decided to do is to send a total number of 4 header fields when

sending a secret 0 (the ones normally generated when making our HTTP Request:

User-Agent, Accept, Host and Connection) and a number of just 3 header fields when

sending a secret 1 (eliminating in this case the Connection Header field). So, we either

send the packet without altering it or we make it shorter eliminating one header field.

Again, we decided to make the packet shorter instead of longer because we found it

easier to do with netfilter and IP Tables than making it longer.

In the receiving side, initially we just checked the total packet length in order to see if a

secret 0 or 1 had been sent.

 Unfortunately, when doing this, something really bad was happening: the HTTP

connection was constantly resetting. After some research, we discovered that the

problem was in the TCP connection and the ACK method that it uses.

We will try to illustrate the problem: let’s imagine our application has created a 200

byte-length packet and it sends it into the network. This packet is captured by our

program and modified, so it ends up having only a total amount of 180 bytes for

example. It reaches the receiving side of the connection and, since it’s a correct packet,

the receiving side just extracts it and sends back an ACK packet to the sending side.

And here is where the problem resides: the sending side receives an ACK confirmation

for 180 bytes, and since it sent a 200 byte-length packet, it assumes that the last bytes

were lost and so it retransmits this last 20 bytes.

This retransmission reaches the receiving side again, but since they only carry the last

part of an HTTP request without header and anything the receiving side doesn’t know

what to do with this data, and so the connection crashes.

We tried to solve this problem modifying the ACK numbers, but it didn’t solve

anything. The main problem is that, no matter how much we modify the packet, the

application that originally generated it knows how it was, and so it notices if something

is going wrong with the connection and so it ends up resetting it.

After much thinking, we came out with a solution, the one we finally implemented: on

the sending side, the program used is the same (we eliminate the connection header

field when sending a 1), but on the receiving side, after looking at the packet’s length

and determining if a secret 0 or 1 had been sent, we reconstruct the eliminated header

field in case a secret 1 was sent before sending the packet to the ap

this, the receiving side sends back to the sending side an ACK number that matches its

expectations, and so the connection doesn’t reset and ends up in a proper way.

Of course, this solution is not 100% per

up resetting, we can see some strange packets in wireshark every time we send a 1.

These aren’t incorrect packets, but packets that wireshark marks as strange, since even

though everything works fine there is something that doesn’t fit with

numbers. Wireshark makes the interpretation that the connection went fine, and that

there was a packet which it didn’t capture but reached the destiny correctly following

another possible network route or path. You can see these strange packets in

figure below, obtained every time a 1 is being sent:

Figure 30: Wireshark capture, strange packets obtained when trying F8 method.

After many trials we weren’t able to eliminate the appearance of at least some of

these strange packets, but at least

without the connection resetting. And, since the appearance of this kind of packets

would be not that strange in bigger networks with multiple paths, we think that it’s not

that big of a problem.

5.3.5 F6+F7+F8 methods

For the final case, we just used F6, F7 and F8 methods all together, working as we

described earlier. For its implementation, we just combined the already made

programs for the individual cases.

So, in the sending side, we first apply F8 metho

to the captured packet. After receiving it, we extract the secret information the exact

same way.

42

field in case a secret 1 was sent before sending the packet to the application. By doing

this, the receiving side sends back to the sending side an ACK number that matches its

expectations, and so the connection doesn’t reset and ends up in a proper way.

Of course, this solution is not 100% perfect: even though the connecti

up resetting, we can see some strange packets in wireshark every time we send a 1.

These aren’t incorrect packets, but packets that wireshark marks as strange, since even

though everything works fine there is something that doesn’t fit with

numbers. Wireshark makes the interpretation that the connection went fine, and that

there was a packet which it didn’t capture but reached the destiny correctly following

another possible network route or path. You can see these strange packets in

figure below, obtained every time a 1 is being sent:

Figure 30: Wireshark capture, strange packets obtained when trying F8 method.

After many trials we weren’t able to eliminate the appearance of at least some of

these strange packets, but at least we managed for the F8 method to work as it should

without the connection resetting. And, since the appearance of this kind of packets

would be not that strange in bigger networks with multiple paths, we think that it’s not

For the final case, we just used F6, F7 and F8 methods all together, working as we

described earlier. For its implementation, we just combined the already made

programs for the individual cases.

So, in the sending side, we first apply F8 method, then F6 method and then F7 method

to the captured packet. After receiving it, we extract the secret information the exact

plication. By doing

this, the receiving side sends back to the sending side an ACK number that matches its

expectations, and so the connection doesn’t reset and ends up in a proper way.

ven though the connection doesn’t end

up resetting, we can see some strange packets in wireshark every time we send a 1.

These aren’t incorrect packets, but packets that wireshark marks as strange, since even

though everything works fine there is something that doesn’t fit with the ACK

numbers. Wireshark makes the interpretation that the connection went fine, and that

there was a packet which it didn’t capture but reached the destiny correctly following

another possible network route or path. You can see these strange packets in the

Figure 30: Wireshark capture, strange packets obtained when trying F8 method.

After many trials we weren’t able to eliminate the appearance of at least some of

we managed for the F8 method to work as it should

without the connection resetting. And, since the appearance of this kind of packets

would be not that strange in bigger networks with multiple paths, we think that it’s not

For the final case, we just used F6, F7 and F8 methods all together, working as we

described earlier. For its implementation, we just combined the already made

d, then F6 method and then F7 method

to the captured packet. After receiving it, we extract the secret information the exact

43

6. SIMULATION AND ANALYSIS OF RESULTS

6.1 Simulation

With all the programs done, the next step is to make all the simulations, in order to get

the results so we can analyze them and see if we were right with the superposition

steganography’s and the zero cost steganography’s hypothesis.

6.1.1 Scenario 1

For the first scenario (IP-fragmentation), as we already know, we have two virtual

machines, PC-A and PC-B. They are connected to the internet and to a common intern

network (network 10.0.1.0/24). PC-B is the steganogram sender (SS), and PC-A acts as

the steganogram receiver (SR). We prepared a pair of scripts that make PC-B send a

total amount of 2400 ICMP echo request packets (altered by PC-B itself so they carry

random data as we mentioned) directed to PC-A, via the intern network that connects

them. The random data carried is always generated the same way and so it’s always

the same stream of random information, no matter the steganographic method

applied, so we are sending the same normal, not hidden information in every

transmission.

PC-B further alters the packets that are going to be sent depending on the

steganographic method we are implementing. Then, PC-A (the SR) will be receiving

them and, before sending back the echo reply, separating the normal and the secret

information. Only the interfaces connected to the intern network will be needed: the

internet interfaces aren’t used on this scenario.

We will be capturing all the packets on the SR side (PC-A) with Wireshark. The time of

the capture will always starts once the first fragment of the first data packet is

captured, and we will be sending the same number of packets on each simulation. The

network MTU is equal to 500 bytes, and that’s the size that all the fragments will be

having on this scenario (the total length of the packets and, with it, the total number of

fragments they are fragmented into will vary depending on the steganographic

method utilized). We will be making 10 simulations per case, so a total of 40

simulations for the first scenario.

The secret information that we are sending is t the first chapter of book “El ingenioso

Hidalgo Don Quixote de la Mancha” (we translated each character into their respective

ASCII code, and that’s what we send).

We illustrate the scenario on the next figure.

Figure 31: ICMP Scenario depiction.

6.1.2 Scenario 2

The second scenario is pretty similar to the

machines (PC-A and PC-B), connected directly to the internet and to an intern network.

This time, PC-B will be acting as a WEB Server, and PC

same HTTP Request for the webpage “in

the command:

Wget 10.0.1.2/index.html --

This command allows us to request for a webpage without using Firefox or any other

web browser, and it makes sure that

(since we are going to ask for the webpage multiple times

cache to affect our results).

PC-A acts as the steganogram sender (SS) this time: i

HTTP request packets (depending on the

the network. Once they arrive to the server on PC

the secret information is extracted. Then, PC

back to PC-A. Once again, the internet interfa

44

Figure 31: ICMP Scenario depiction.

etty similar to the first one: again, we have the same 2 virtual

B), connected directly to the internet and to an intern network.

B will be acting as a WEB Server, and PC-A will be constantly making the

same HTTP Request for the webpage “index.html”, a total number of 900 times,

-- no - cache

allows us to request for a webpage without using Firefox or any other

and it makes sure that we don’t have problems with the browser

ince we are going to ask for the webpage multiple times, and we don’t want for the

).

anogram sender (SS) this time: it changes the HTTP Headers of the

epending on the applied method) before sending them into

arrive to the server on PC-B (the steganogram receiver, SR),

the secret information is extracted. Then, PC-B sends the asked webpage “index.html”

A. Once again, the internet interfaces aren’t used on the scenario.

gain, we have the same 2 virtual

B), connected directly to the internet and to an intern network.

A will be constantly making the

a total number of 900 times, using

allows us to request for a webpage without using Firefox or any other

lems with the browser’s cache

, and we don’t want for the

t changes the HTTP Headers of the

applied method) before sending them into

he steganogram receiver, SR),

B sends the asked webpage “index.html”

ces aren’t used on the scenario.

The capture will be realized on PC

the capture will always be starting once the first HTTP connection packet for the first

request is captured. We will be making the same

with the previous scenario, we will be m

amount of 50 simulations for this scenario).

Again, the secret information that we are sending is

ingenioso Hidalgo Don Quixote de la Mancha”.

We illustrate the second scenario in the figure below.

Figure 32: HTTP Scenario depiction.

45

The capture will be realized on PC-B this time (SR side), using Wireshark. The time of

the capture will always be starting once the first HTTP connection packet for the first

request is captured. We will be making the same number of requests each time.

with the previous scenario, we will be making 10 simulations per case (s

amount of 50 simulations for this scenario).

rmation that we are sending is the first chapter of book “El

algo Don Quixote de la Mancha”.

We illustrate the second scenario in the figure below.

Figure 32: HTTP Scenario depiction.

B this time (SR side), using Wireshark. The time of

the capture will always be starting once the first HTTP connection packet for the first

number of requests each time. As

aking 10 simulations per case (so a total

the first chapter of book “El

46

6.2 Analysis of the results

We will now present a summary of the obtained results, including some charts and

graphics. We will also discuss them in order to see if we are right or not with our

hypothesis. All the 90 obtained captures are included in the CD annex to this paper.

6.2.1 Scenario 1: IP Fragmentation

For this scenario, we decided to use the total connection time and the distribution of

the number of fragments obtained per packet in order to measure the steganographic

cost and its variations.

These are the time results obtained for the first scenario:

Figure 33: IP Fragmentation, table of times.

Each obtained time makes reference to the total connection time, from the moment

when the first ICMP echo request packet is sent, until the moment when the last ICMP

echo reply is fully received. As we said, we made 10 different captures per method,

and so we used them to obtain a mean time and a standard deviation per case.

Assuming these times follow a normal distribution, we drew the resulting distributions

for each of the methods, using for it the calculated means and standard deviations:

No Steganography ICMP Total Time (s) F1 Method Total Time(s) F3 Method Total Time (s) F1+F3 Methods Total time (s)

76,273770 73,102758 79,503706 77,850667

73,996007 73,203190 81,625881 77,906488

73,560484 74,343157 81,470780 77,858460

74,496355 73,456459 81,180423 78,403213

74,557246 72,631783 80,791409 77,948830

74,393596 73,930039 80,160926 79,086417

75,185952 74,227908 80,502305 77,786762

75,948565 73,579992 81,038079 78,239853

74,885760 74,717068 80,750701 78,138004

74,471930 74,294615 80,699552 78,322218

MEAN 74,7769665 73,7486969 80,7723762 78,1540912

STD. DEVIATION 0,790502148 0,6267261 0,592942475 0,372156939

47

Figure 34: Time Distribution for each of the Methods, Scenario 1

We also took measures about other aspects related with the fragments and packets

distributions for each case, as you can see in the next charts:

Figure 35: Fragment size for each case.

Figure 36: Total number of packets for each case.

Figure 37: Total number of fragments sent for each case.

Figure 38: Number of fragments each packet is fragmented into for each case.

Of all these measures, we mainly used the ones obtained for the total number of

fragments sent for each case.

0

0,2

0,4

0,6

0,8

1

1,2

70,0 72,0 74,0 76,0 78,0 80,0 82,0 84,0

No Steganography

F1 Method

F3 Method

F1+F3 Method

Including Ethernet header, 514 bytes every fragment for all the conexions.

FRAGMENTS SIZE

TOTAL NUMBER OF PACKETS.

2400 in every case

No Steganography F1 Method F3 Method F1+F3 Methods

 7200 fragments. 8498 fragments. 9600 fragments. 9600 fragments.

TOTAL NUMBER OF FRAGMENTS SENT.

No Steganography F1 Method F3 method F1+F3 Methods

3 fragments per IP packet. 1498 packets into 4 fragments 4 fragments per IP packet. 4 fragments per IP packet.

902 packets into 3 fragments.

NUMBER OF FRAGMENTS EACH PACKET IS FRAGMENTED INTO

48

We will start by analyzing the time results. We can see by looking at Figure 34 that the

mean connection time is almost the same for the No Steganography and the F1

Method cases, being this duration bigger for F3 method and for F1 and F3 methods

combined.

 If we think about the obtained values, we can tell that something seems strange: the

logical thinking is that the total connection time for the No Steganography case should

be smaller than the connection time for the F1 method, but F1 Method’s connection

mean time is smaller than in the No Steganography case. Nevertheless, when you

think about it, this obtained result makes sense: if you check the programming code

for the No Steganography case and the F1 method case (Annex 1), you will see that

they are pretty similar. In both cases the whole packet is captured, the random data is

introduced and both IP and ICMP header checksums are recalculated. The only

difference is that, on F1’s case, we sometimes make the whole packet smaller before

doing all this, which suppose just an extra instruction. Because of the difference

between both methods’ programming codes being that small, similar connection

times should be expected in our case, and so a result like the one we obtained (with a

difference in their mean times that is smaller than a second) is totally plausible.

We should notice that, if we hadn’t used modified ICMP packets for the No

Steganography case, the obtained times would have differed more, with the No

Steganography case’s time being probably a little bit smaller than the F1 method’s

time.

We also see that the time obtained for the F3 method is considerably bigger than the

times obtained for the No Steganography and F1 methods: the connection last for

around 5 or 6 seconds more. This is logical, since F3 Method is the most complex of the

used methods, in which we have to calculate in both sides of the connection a hash

function over an IS (Identifying Sequence) that changes in every iteration.

So, we have that the No Steganography and F1 Method cases have similar connection

times, with F3 method case having a connection time that last for about 5 seconds

longer. In the F1+F3 methods case, when both methods are applied simultaneously,

the intuition is that the connection will last even longer. However, the resulting

connection time is only about 3 seconds longer. Therefore the duration of the

connection in case of the joint methods is shorter as in case of F3 applied alone. This

implies that if methods F1 and F3 are combined the resulting steganographic cost is

lower as compared to the steganographic cost of the single method (the one that

introduces higher steganographic cost). This is the effect we call super-position

steganography that we wanted to prove with the experiment explained on this paper.

49

 Let us go now with the analysis of the other obtained results.

The first thing that we analyzed is the size of each of the fragments. We prepared the

sent packets for this experiment so each and every of the fragments would be of the

same size: 500 bytes per fragment (not including the 14 Ethernet header bytes). As

expected, in all the captures, the size of all the fragments is 500 bytes, which is the

interface fixed MTU for this scenario.

 Let us talk now about the total number of fragments sent on each of the connections

(Figure 37). When we compare the distribution of the number of fragments per packet

the situation is similar to what we obtained when analyzing the times. The F1 method

introduces irregularities in the number of fragments per packet, while F3 increases the

overall number of fragments per packet. Since the third-party observer does not

possess the knowledge of how many fragments the packets will be divided into in

advance, the F3 technique can be considered less detectable. However it must be

noted that in the joint-method’s case the resulting number of fragments per packet is

the same as for the case when F3 is applied alone, as we can see in Figure 37. It is the

same number of fragments since irregularities introduced by F1 are “smoothed” by the

second method making the overall steganographic cost for the F1+F3 methods’ case

the same as for the F3 method’s case. Therefore the overall steganographic cost is not

elevated.

We can reach a similar conclusion when analyzing the number of fragments each

packet is fragmented into (Figure 38).

6.2.2 Scenario 2: HTTP Connection

Let us go with scenario 2. Here, what we want to see is that, when combined with F8

method, F6 and F7 methods are 0-cost steganographic methods. In this scenario, in

order to analyze the steganographic cost we will be measuring the total connection

time and the distribution of the HTTP headers size.

 You can see the different connection times obtained for each of the steganographic

cases in the next figure:

Figure 39: HTTP Scenario, t

Each obtained time makes reference

the first SYN TCP packet is sent

ACK is sent closing the last

each case a mean time and a standard deviation. We drew all the time distributions

assuming they follow a normal distribution: y

Figure 40: Time distribution for each of the methods, scenario 2.

We also analyzed how the protocol performance

in order to see if we can proof our

Header length for each case. In the next chart, you can see the obtained results.

Figure 41: HTTP header lengths for each of the cases.

NoStegHTTP total time (s).

66,826009

66,443482

67,587337

67,587136

67,945304

68,362785

67,575615

68,053174

65,903195

67,159170

MEAN 67,3443207

STD DEVIATION 0,725514862

No Steg F6 method

178 bytes, 900 packets. 178 bytes, 900 packets.

50

Figure 39: HTTP Scenario, table of times.

Each obtained time makes reference to the total connection time: from the moment

TCP packet is sent starting the first connection, until the moment the last

closing the last one. Just like we did with the first scenario, we obtained for

each case a mean time and a standard deviation. We drew all the time distributions

normal distribution: you can see them below.

Time distribution for each of the methods, scenario 2.

the protocol performance was affected by each

in order to see if we can proof our hypothesis. For it, as we told, we analyzed the HTTP

Header length for each case. In the next chart, you can see the obtained results.

Figure 41: HTTP header lengths for each of the cases.

NoStegHTTP total time (s). Method F6 total time (s). Method F7 total time (s). Method F8 total time (s).

73,806067 73,983599 73,252588

74,163563 74,020009 72,441612

73,899322 73,358913 72,464690

72,903730 72,750580 73,820218

74,138459 73,042230 73,542648

72,515376 73,981025 73,583339

74,729640 74,352792 72,738383

75,085206 73,456017 72,953182

73,661615 73,978436 74,403576

73,642392 73,294256 72,582144

73,854537 73,6217857 73,178238

0,723907853 0,487735009 0,621871387

F6 method F7 method F8 method

178 bytes, 900 packets. 178 bytes, 900 packets. 178 bytes, 497 packets.

154 bytes, 403 packets.

HTTP HEADER LENGTH

rom the moment

moment the last

, we obtained for

each case a mean time and a standard deviation. We drew all the time distributions

Time distribution for each of the methods, scenario 2.

affected by each of the methods,

we analyzed the HTTP

Header length for each case. In the next chart, you can see the obtained results.

Method F8 total time (s). Method F6+F7+F8 total time (s).

72,692545

73,052037

73,849342

73,261461

73,589569

74,834103

74,290865

73,547481

73,548531

73,006379

73,5672313

0,60398567

F6+F7+F8 methods

178 bytes, 511 packets.

154 bytes, 389 packets.

51

We will start talking about the obtained times. By inspecting the overall connection

time we can observe that after applying each of the steganographic methods alone the

resulting connection time increases by about 6 seconds when comparing it with the No

Steganography case. The same result is achieved for the F6+F7+F8 combined methods

case. Therefore simultaneous utilization of all three methods does not influence the

total connection time. This is the zero cost steganography phenomena we wanted to

prove with this experiment, and we can understand why are we calling it like that with

the obtained results: adding additional methods to the existing one does not influence

the resulting steganographic cost.

If we analyze the obtained header lengths, we can see that when using F8 method

alone some irregularities are introduced in HTTP headers sizes. For the F6+F7+F8

combined methods’ case, where two more methods are added, the irregularities are

still present but they are similar as in case of F8 method applied alone. Thus we can

conclude that, in the F6+F7+F8 combined methods’ case, the resulting total

steganographic cost is not higher than in case of method F8 applied alone.

52

7. CONCLUSIONS

Our obtained experimental results show that it is feasible to combine multiple

steganographic methods to the same carrier in a way that the overall steganographic

cost caused by these methods is lower as in case of a separate combination of these

methods (super-position steganography). Results additionally show that multiple

steganographic methods can be combined with another method without causing any

additional cost, which is a special case of super-position steganography called zero cost

steganography.

This is an important result: knowing about the existence of these two phenomena will

allow steganalayzers to think about possible ways of countering future steganographic

techniques that will try to exploit one of these two phenomena where more than one

steganographic method is combined without making the total steganographic cost

increase.

We must also remark that steganography has also some legal usages, so a lot of legal

organizations (like governments for example) will be able to use superposition

steganography or zero cost steganography, in order to increase the steganographic

bandwidth they are obtaining with their actual methods without increasing the

steganographic cost.

The results obtained in this thesis have served as a basis of a scientific paper which is

currently under consideration for publication in Security and Communication Networks

Journal [11].

53

ANNEX 1: PROGRAMMING CODE

We will be including all the implemented programming code in this section. We will

start by showing the parts of the code that are common to all of the cases, in both

transmission and reception: needed libraries and common variables, the code related

with the GTK graphic interface, the different functions we implemented and the main

program. After that, we will focus on one of the functions, function which is different

depending on the used method, and on if we are on the sending or on the receiving

side. We will finally present the full compilation line that we have to use in order to

compile our programs.

• Needed libraries and common variables

#include <stdlib.h>
#include <netinet/in.h>
#include <linux/netfilter.h>
#include <libnetfilter_queue/libnetfilter_queue.h>
#include <gtk/gtk.h>

#include <iostream>

using namespace std;

//Variables
//Variables must be static and global
//so they can be seen in every threat

#define YES_IT_IS (1)
#define NO_IT_IS_NOT (0)
typedef unsigned short u16;
char buf[4096];
unsigned char dane[4096];
int rv;
int i, tmp;

struct nfq_handle *h;
struct nfq_q_handle *qh;
struct nfnl_handle *nh;
int fd;

//global GTK variables
GtkWidget *window;
GtkWidget *label_iptables_control;
GtkWidget *text;
GtkWidget *vbox;
GtkTextBuffer *buffer;
GtkTextIter iter;

GtkTextMark *insert_mark;
GtkWidget *table;
GtkWidget *button_iptables_INPUT_add;
GtkWidget *button_iptables_INPUT_delete;
GtkWidget *button_iptables_OUTPUT_add;

54

GtkWidget *button_iptables_OUTPUT_delete;
GtkWidget *button_iptables_FORWARD_add;
GtkWidget *button_iptables_FORWARD_delete;
GtkWidget *port;
GtkWidget *port_label;

• Function unsignedShortToInt, which converses an unsigned short char variable

into an int variable

//Short to Int
static unsigned int unsignedShortToInt(unsigned char b[])
{
 int i = 0;
 i |= b[0] & 0xFF;
 i <<= 8;
 i |= b[1] & 0xFF;
 return i;
}

• Function csum, which calculates the total sum for the IP/ICMP/TCP checksum

//Part of checksum
unsigned short csum (unsigned short *buf, int nwords)
{
 unsigned long sum;
 for (sum = 0; nwords > 0; nwords--)
 {
 sum += *buf++;
 }
 sum = (sum >> 16) + (sum & 0xffff);
 sum += (sum >> 16);

 return ((unsigned short) ~sum);
}

• GTK related functions.

typedef struct
{
 GtkWidget *label;
 int what;
} yes_or_no_args;

G_LOCK_DEFINE_STATIC (yes_or_no);
static volatile int yes_or_no = YES_IT_IS;

void destroy(GtkWidget *widget, gpointer data)
{
 gtk_main_quit();
}

55

//main thread for net
void *network_thread(void *args)
{

 //main loop for packets
 while ((rv = recv(fd, buf, sizeof(buf), 0)) && rv >= 0) {

 //packet handler
 nfq_handle_packet(h, buf, rv);

 }
}

//action for button IPtables OUTPUT Add
void akcja_iptables_OUTPUT_add(GtkWidget *widget, gpointer
window)
{
 system("iptables -A OUTPUT -p icmp -j QUEUE");
 gtk_text_buffer_insert(buffer, &iter, "[ON] Enabled IPtables
OUTPUT\n", -1);
 gtk_widget_set_sensitive(button_iptables_INPUT_add,false);
 gtk_widget_set_sensitive(button_iptables_OUTPUT_add,false);
 gtk_widget_set_sensitive(button_iptables_FORWARD_add,false);

gtk_widget_set_sensitive(button_iptables_INPUT_delete,false);

gtk_widget_set_sensitive(button_iptables_FORWARD_delete,false);

}

//action for button IPtables OUTPUT Delete
void akcja_iptables_OUTPUT_delete(GtkWidget *widget, gpointer
window)
{
 system("iptables -D OUTPUT -p icmp -j QUEUE");
 gtk_text_buffer_insert(buffer, &iter, "[OFF] Disabled
IPtables OUTPUT\n", -1);
 gtk_widget_set_sensitive(button_iptables_INPUT_add,true);
 gtk_widget_set_sensitive(button_iptables_OUTPUT_add,true);
 gtk_widget_set_sensitive(button_iptables_FORWARD_add,true);
 gtk_widget_set_sensitive(button_iptables_INPUT_delete,true);

gtk_widget_set_sensitive(button_iptables_OUTPUT_delete,true);

gtk_widget_set_sensitive(button_iptables_FORWARD_delete,true);

}

//action for button IPtables INPUT Add
void akcja_iptables_INPUT_add(GtkWidget *widget, gpointer
window)
{

56

 system("iptables -A INPUT -p icmp -j QUEUE");
 gtk_text_buffer_insert(buffer, &iter, "[ON] Enabled IPtables
INPUT\n", -1);
 gtk_widget_set_sensitive(button_iptables_INPUT_add,false);
 gtk_widget_set_sensitive(button_iptables_OUTPUT_add,false);
 gtk_widget_set_sensitive(button_iptables_FORWARD_add,false);

gtk_widget_set_sensitive(button_iptables_OUTPUT_delete,false);

gtk_widget_set_sensitive(button_iptables_FORWARD_delete,false);
}

//action for button IPtables INPUT Delete
void akcja_iptables_INPUT_delete(GtkWidget *widget, gpointer
window)
{
 system("iptables -D INPUT -p icmp -j QUEUE");
 gtk_text_buffer_insert(buffer, &iter, "[OFF] Disabled
IPtables INPUT\n", -1);
 gtk_widget_set_sensitive(button_iptables_INPUT_add,true);
 gtk_widget_set_sensitive(button_iptables_OUTPUT_add,true);
 gtk_widget_set_sensitive(button_iptables_FORWARD_add,true);
 gtk_widget_set_sensitive(button_iptables_INPUT_delete,true);

gtk_widget_set_sensitive(button_iptables_OUTPUT_delete,true);

gtk_widget_set_sensitive(button_iptables_FORWARD_delete,true);

}

//action for button IPtables FORWARD Add
void akcja_iptables_FORWARD_add(GtkWidget *widget, gpointer
window)
{
 system("iptables -A FORWARD -p icmp -j QUEUE");
 gtk_text_buffer_insert(buffer, &iter, "[ON] Enabled IPtables
FORWARD\n", -1);
 gtk_widget_set_sensitive(button_iptables_INPUT_add,false);
 gtk_widget_set_sensitive(button_iptables_OUTPUT_add,false);
 gtk_widget_set_sensitive(button_iptables_FORWARD_add,false);

gtk_widget_set_sensitive(button_iptables_INPUT_delete,false);

gtk_widget_set_sensitive(button_iptables_OUTPUT_delete,false);
}

//action for button IPtables FORWARD Delete
void akcja_iptables_FORWARD_delete(GtkWidget *widget, gpointer
window)
{
 system("iptables -D FORWARD -p icmp -j QUEUE");
 gtk_text_buffer_insert(buffer, &iter, "[OFF] Disabled
IPtables FORWARD\n", -1);
 gtk_widget_set_sensitive(button_iptables_INPUT_add,true);
 gtk_widget_set_sensitive(button_iptables_OUTPUT_add,true);
 gtk_widget_set_sensitive(button_iptables_FORWARD_add,true);

57

 gtk_widget_set_sensitive(button_iptables_INPUT_delete,true);

gtk_widget_set_sensitive(button_iptables_OUTPUT_delete,true);

gtk_widget_set_sensitive(button_iptables_FORWARD_delete,true);

}

• Main function, which calls the graphic interface for modifying the packets

//main program function
int main(int argc, char *argv[])
{

system("clear");

 //adding netfilter module for kernel
 int result = system("modprobe iptable_filter");

 GError *error = NULL;
 yes_or_no_args yes_args, no_args;

 /* init threads */
 g_thread_init(NULL);
 gdk_threads_init();

 /* init gtk */
 gtk_init(&argc, &argv);

 /* create a window */
 window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW(window), "Packet
modifier");
 gtk_window_set_position(GTK_WINDOW(window),
GTK_WIN_POS_CENTER);
 gtk_widget_set_size_request (window, 450, 450);
 gtk_window_set_resizable(GTK_WINDOW(window), TRUE);

 text = gtk_text_view_new();
 gtk_text_view_set_editable(GTK_TEXT_VIEW (text), FALSE);
 port = gtk_entry_new();
 gtk_entry_set_text(GTK_ENTRY(port),"1234");
 port_label = gtk_label_new("DST UDP PORT:");

 buffer = gtk_text_view_get_buffer(GTK_TEXT_VIEW(text));

 gtk_text_buffer_get_iter_at_offset(buffer, &iter, 0);

 GtkWidget *scrolled_window;
 scrolled_window = gtk_scrolled_window_new (NULL, NULL);
gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW
(scrolled_window),GTK_POLICY_AUTOMATIC, GTK_POLICY_ALWAYS);

 gtk_scrolled_window_add_with_viewport (GTK_SCROLLED_WINDOW
(scrolled_window), text);

58

 g_signal_connect(window, "destroy",G_CALLBACK(destroy),
NULL);

 gtk_container_set_border_width(GTK_CONTAINER (window), 10);

 table = gtk_table_new(4, 3, TRUE);
 gtk_table_set_row_spacings(GTK_TABLE(table), 2);
 gtk_table_set_col_spacings(GTK_TABLE(table), 2);

gtk_table_attach_defaults(GTK_TABLE(table),
label_iptables_control, 1, 2, 0, 1);
 button_iptables_OUTPUT_add =
gtk_button_new_with_label("OUTPUT [ON]");
 button_iptables_OUTPUT_delete =
gtk_button_new_with_label("OUTPUT [OFF]");

 button_iptables_INPUT_add = gtk_button_new_with_label("INPUT
[ON]");
 button_iptables_INPUT_delete =
gtk_button_new_with_label("INPUT [OFF]");

 button_iptables_FORWARD_add =
gtk_button_new_with_label("FORWARD [ON]");
 button_iptables_FORWARD_delete =
gtk_button_new_with_label("FORWARD [OFF]");

 gtk_table_attach_defaults(GTK_TABLE(table),
button_iptables_OUTPUT_add , 1, 2, 1, 2);
 gtk_table_attach_defaults(GTK_TABLE(table),
button_iptables_OUTPUT_delete , 2, 3, 1, 2);

 gtk_table_attach_defaults(GTK_TABLE(table),
button_iptables_INPUT_add , 1, 2, 2, 3);
 gtk_table_attach_defaults(GTK_TABLE(table),
button_iptables_INPUT_delete , 2, 3, 2, 3);

 gtk_table_attach_defaults(GTK_TABLE(table),
button_iptables_FORWARD_add , 1, 2, 3, 4);
 gtk_table_attach_defaults(GTK_TABLE(table),
button_iptables_FORWARD_delete , 2, 3, 3, 4);

 gtk_table_attach_defaults(GTK_TABLE(table), port_label , 0,
1, 1, 2);
 gtk_table_attach_defaults(GTK_TABLE(table), port , 0, 1, 2,
3);

 vbox = gtk_vbox_new(FALSE, 1);
 gtk_container_add(GTK_CONTAINER(window), vbox);

 gtk_box_pack_start(GTK_BOX(vbox), scrolled_window, TRUE,
TRUE, 0);
 gtk_box_pack_start(GTK_BOX(vbox), table, FALSE, FALSE, 0);

 gtk_widget_show_all(window);

59

 //acctions for buttons
 g_signal_connect(G_OBJECT(button_iptables_OUTPUT_add),
"clicked", G_CALLBACK(akcja_iptables_OUTPUT_add), (gpointer)
window);
 g_signal_connect(G_OBJECT(button_iptables_OUTPUT_delete),
"clicked", G_CALLBACK(akcja_iptables_OUTPUT_delete), (gpointer)
window);
 g_signal_connect(G_OBJECT(button_iptables_INPUT_add),
"clicked", G_CALLBACK(akcja_iptables_INPUT_add), (gpointer)
window);
 g_signal_connect(G_OBJECT(button_iptables_INPUT_delete),
"clicked", G_CALLBACK(akcja_iptables_INPUT_delete), (gpointer)
window);
 g_signal_connect(G_OBJECT(button_iptables_FORWARD_add),
"clicked", G_CALLBACK(akcja_iptables_FORWARD_add), (gpointer)
window);
 g_signal_connect(G_OBJECT(button_iptables_FORWARD_delete),
"clicked", G_CALLBACK(akcja_iptables_FORWARD_delete), (gpointer)
window);

 //printf("opening library handle\n");
 h = nfq_open();
 if (!h) {
 fprintf(stderr, "error during nfq_open()\n");
 exit(1);
 }

 //printf("unbinding existing nf_queue handler for AF_INET
(if any)\n");
 if (nfq_unbind_pf(h, AF_INET) < 0) {
 fprintf(stderr, "error during nfq_unbind_pf()\n");
 exit(1);
 }

 //printf("binding nfnetlink_queue as nf_queue handler for
AF_INET\n");
 if (nfq_bind_pf(h, AF_INET) < 0) {
 fprintf(stderr, "error during nfq_bind_pf()\n");
 exit(1);
 }

 //printf("binding this socket to queue '0'\n");
 qh = nfq_create_queue(h, 0, &cb, NULL);
 if (!qh) {
 fprintf(stderr, "error during nfq_create_queue()\n");
 exit(1);
 }

 //printf("setting copy_packet mode\n");
 if (nfq_set_mode(qh, NFQNL_COPY_PACKET, 0xffff) < 0) {
 fprintf(stderr, "can't set packet_copy mode\n");
 exit(1);

60

 }

 nh = nfq_nfnlh(h);
 fd = nfnl_fd(nh);

 //therad for net
 if (!g_thread_create(network_thread, &yes_args, FALSE,
&error))
 {
 g_printerr ("Failed to create NET thread: %s\n", error-
>message);
 return 1;
 }

 //main GTK loop
 gdk_threads_enter();
 gtk_main();

 gdk_threads_leave();
//}

 return 0;
}

• ICMP No Steganography case, main function for modifying the packets,sender

side

int trigger=2;

//MAIN FUNCTION FOR modyfying packets
static int cb(struct nfq_q_handle *qh, struct nfgenmsg
*nfmsg,
 struct nfq_data *nfa, void *data)
{

 char *data2;
 int ret = nfq_get_payload(nfa, &data2);
 if (ret >= 0)

 for(int i=0; i<ret; i++)
 {
 dane[i] = (unsigned char)data2[i];

 }

if (trigger>=0)
 {
 srand(8);
 }

for (int i=28; i<ret; i++)
 {
 dane[i]=rand()%16;
 }

61

trigger=trigger-1;

 //IP checksum
 u16 ip_header[10];

 dane[10] = 0x00;
 dane[11] = 0x00;

 for(int i=0; i<10; i++)
 {
 ip_header[i] = unsignedShortToInt(dane+2*i);
 }

 u16 ip_header_sum = csum(ip_header,10);
 u16 ip_header_sum_begin = ip_header_sum;
 ip_header_sum_begin >>= 8;
 dane[10] = ip_header_sum_begin;
 dane[11] = ip_header_sum;

 //ICMP checksum
 u16 icmp_message[(ret-20)/2];

 dane[22] = 0x00;
 dane[23] = 0x00;

 for(int i=0; i<(ret-20)/2; i++)
 {
 icmp_message[i] =
unsignedShortToInt(dane+20+2*i);
 }

 u16 icmp_message_sum = csum(icmp_message,(ret-
20)/2);
 u16 icmp_message_sum_begin = icmp_message_sum;
 icmp_message_sum_begin >>= 8;
 dane[22] = icmp_message_sum_begin;
 dane[23] = icmp_message_sum;

gtk_text_buffer_insert(buffer, &iter, "Packet captured\n", -
1);

 return nfq_set_verdict(qh, id, NF_ACCEPT, ret, dane);
}

• ICMP No Steganography case, main function for modifying the packets, receiver

side

//MAIN FUNCTION FOR modyfying packets

static int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg,

 struct nfq_data *nfa, void *data)

{

 char *data2;

 int ret = nfq_get_payload(nfa, &data2);

 if (ret >= 0)

62

 for(int i=0; i<ret; i++)

 {

 dane[i] = (unsigned char)data2[i];

 }

if (trigger==0)

{
dane[1]=dane[1];

std::cout<< " ";

}

else if (trigger!=0)

{
trigger=trigger-1;

}

gtk_text_buffer_insert(buffer, &iter, "Packet captured\n", -1);

 return nfq_set_verdict(qh, id, NF_ACCEPT, ret, dane);

}

• F1 Method case, main function for modifying the packets, sender side

//Introduce a message made with 1’s and 0’s.

int message[]={}

int position=0;

int length=sizeof(message)/sizeof(message[0]);

int trigger=2;

//MAIN FUNCTION FOR modyfying packets
static int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg,

 struct nfq_data *nfa, void *data)

{

 char *data2;

 int ret = nfq_get_payload(nfa, &data2);

 if (ret >= 0)

 for(int i=0; i<ret; i++)

 {

 dane[i] = (unsigned char)data2[i];

 }

if (trigger>=0)

 {

 srand(8);

 }

if (message[position]==1)

 {

 ret=1460;

 }

for (int i=28; i<ret; i++)

63

 {

 dane[i]=rand()%16;

 }

 //IP checksum

 u16 ip_header[10];

 dane[10] = 0x00;

 dane[11] = 0x00;

 for(int i=0; i<10; i++)

 {

 ip_header[i] = unsignedShortToInt(dane+2*i);

 }

 u16 ip_header_sum = csum(ip_header,10);

 u16 ip_header_sum_begin = ip_header_sum;

 ip_header_sum_begin >>= 8;

 dane[10] = ip_header_sum_begin;

 dane[11] = ip_header_sum;

 //ICMP checksum

 u16 icmp_message[(ret-20)/2];

 dane[22] = 0x00;

 dane[23] = 0x00;

 for(int i=0; i<(ret-20)/2; i++)

 {

 icmp_message[i] =
unsignedShortToInt(dane+20+2*i);

 }

 u16 icmp_message_sum = csum(icmp_message,(ret-
20)/2);

 u16 icmp_message_sum_begin = icmp_message_sum;

 icmp_message_sum_begin >>= 8;

 dane[22] = icmp_message_sum_begin;

 dane[23] = icmp_message_sum;

if (trigger<=0)

{
position=position+1;

}

trigger=trigger-1;

if(position==length)

 {

 position=0;

 //system("iptables -D OUTPUT -p icmp -j QUEUE");

 }

gtk_text_buffer_insert(buffer, &iter, "Packet captured\n", -1);

 return nfq_set_verdict(qh, id, NF_ACCEPT, ret, dane);

}

64

• F1 method case, main function for modifying the packets, receiver side

int message[4096];

int position=0;

int trigger=2;

//MAIN FUNCTION FOR modyfying packets

static int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg,

 struct nfq_data *nfa, void *data)

{

 char *data2;

 int ret = nfq_get_payload(nfa, &data2);

 if (ret >= 0)

 for(int i=0; i<ret; i++)

 {

 dane[i] = (unsigned char)data2[i];

 }

if (trigger==2)

 {

 std::cout<< "\nThe secret message received is, starting from
the third digit: ";

 }

if (ret==1940)

 {

 message[position]=0;

 std::cout<<message[position];

 }

else if (ret==1460)

 {

 message[position]=1;

 std::cout<<message[position];

 }

if (trigger<=0)

{
position=position+1;

}

trigger=trigger-1;

gtk_text_buffer_insert(buffer, &iter, "Packet captured\n", -1);

 return nfq_set_verdict(qh, id, NF_ACCEPT, ret, dane);

}

• F3 method case, main function for modifying the packets, sender side

//Introduce a message made with 1’s and 0’s.

int message[]={}

int length=sizeof(message)/sizeof(message[0]);

int position=0;

65

unsigned char sk[2]={0x56,0x65};

char IS[5]={0x00,0x00,0x00,0x00,0x00};

unsigned long int change=0;

char ISaux[10];

int trigger=2;

//MAIN FUNCTION FOR modyfying packets

static int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg,

 struct nfq_data *nfa, void *data)

{

 char *data2;

 int ret = nfq_get_payload(nfa, &data2);

 if (ret >= 0)

 for(int i=0; i<ret; i++)

 {

 dane[i] = (unsigned char)data2[i];

 }

if (trigger>=0)

 {

 srand(8);

 }

//PACKET modification

for (int i=28; i<500; i++)

 {

 dane[i]=rand()%16;

 }

for (int i=980; i<1940; i++)

 {

 dane[i]=rand()%16;

 }

for (int i=0; i<5; i++)

 {

 if (i<2)

 {

 IS[i]=sk[i];

 }

 else if (i==2)

 {

 IS[i]=0x3c;

 }

 else if (2<i<5)

 {

 IS[i]=dane[i+1];

 }

 }

std::string chain (IS);

std::hash<std::string> final;

size_t hashed=final(IS);

change=hashed;

sprintf(ISaux,"%ld",change);

for (int i=0;i<4;i++)

66

 {

 dane[i+500]=ISaux[i];

 }

for (int i=504; i<980; i++)

 {

 dane[i]=message[i-504+position];

 }

if (trigger<=0)

{
position=position+476;

}

trigger=trigger-1;

if(position>=length-476)

 {

 position=0;

 //system("iptables -D OUTPUT -p icmp -j QUEUE");

 }

 //IP checksum

 u16 ip_header[10];

 dane[10] = 0x00;

 dane[11] = 0x00;

 for(int i=0; i<10; i++)

 {

 ip_header[i] = unsignedShortToInt(dane+2*i);

 }

 u16 ip_header_sum = csum(ip_header,10);

 u16 ip_header_sum_begin = ip_header_sum;

 ip_header_sum_begin >>= 8;

 dane[10] = ip_header_sum_begin;

 dane[11] = ip_header_sum;

 //ICMP checksum

 u16 icmp_message[960];

 dane[22] = 0x00;

 dane[23] = 0x00;

 for(int i=0; i<960; i++)

 {

 icmp_message[i] = unsignedShortToInt(dane+20+2*i);

 }

 u16 icmp_message_sum = csum(icmp_message,960);

 u16 icmp_message_sum_begin = icmp_message_sum;

 icmp_message_sum_begin >>= 8;

 dane[22] = icmp_message_sum_begin;

 dane[23] = icmp_message_sum;

gtk_text_buffer_insert(buffer, &iter, "Packet captured\n", -1);

 return nfq_set_verdict(qh, id, NF_ACCEPT, ret, dane);

}

67

• F3 Method case, main function for modifying the packets, receiver side

int message[4096];

int length=324573;

int position=0;

unsigned char sk[2]={0x56,0x65};

char IS[5]={0x00,0x00,0x00,0x00,0x00};

unsigned long int change=0;

char ISaux[10];

unsigned char IScomp[10];

int trigger=2;

//MAIN FUNCTION FOR modyfying packets

static int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg,

 struct nfq_data *nfa, void *data)

{

 u_int32_t id = print_pkt(nfa);

 //printf("entering callback\n");

 char *data2;

 int ret = nfq_get_payload(nfa, &data2);

 if (ret >= 0)

 for(int i=0; i<ret; i++)

 {

 dane[i] = (unsigned char)data2[i];

 }

//PACKET modification

if (trigger==2)

 {

 std::cout<< "\nThe secret message received is, starting from
the third digit: ";

 }

for (int i=0; i<500; i++)

 {

 dane2[i]=dane[i];

 }

for (int i=980; i<1940; i++)

 {

 dane2[i-480]=dane[i];

 }

for (int i=0;i<5;i++)

 {

 if (i<2)

 {

 IS[i]=sk[i];

 }

 else if (i==2)

 {

 IS[i]=0x3c;

 }

 else if (2<i<5)

68

 {

 IS[i]=dane[i+1];

 }

 }

std::string chain (IS);

std::hash<std::string> final;

size_t hashed=final(IS);

change=hashed;

sprintf(ISaux,"%ld",change);

for (int i=0; i<4;i++)

 {

 IScomp[i]=ISaux[i];

 }

if ((dane[500]==(IScomp[0])) && (dane[501]==(IScomp[1])) &&
(dane[502]==(IScomp[2])) && (dane[503]==(IScomp[3])))

 {

 //length=dane[505];

 for (int i=0; i<476; i++)

 {

 message[i+position]=dane[i+504];

 std::cout<<message[i+position];

 }

 if (trigger<=0)

 {

 position=position+476;

 }

 }

if (position==length-1)

 {

 system("iptables -D INPUT -p icmp -j QUEUE");

 std::cout<< ".\n";

 }

trigger=trigger-1;

gtk_text_buffer_insert(buffer, &iter, "Packet captured\n", -1);

 return nfq_set_verdict(qh, id, NF_ACCEPT, ret, dane);

}

When combining F1 and F3 Methods, we use the previously shown code combined.

• F6 Method case, main function for modifying the packets, sender side

//Introduce a message made with 1’s and 0’s.

int message[]={};
int length=sizeof(message)/sizeof(message[0]);

int puntero=143;

int punteromessage=0;

int trigger=1;

69

//MAIN FUNCTION FOR modyfying packets

static int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg,

 struct nfq_data *nfa, void *data)

{

 u_int32_t id = print_pkt(nfa);

 //printf("entering callback\n");

 char *data2;

 int ret = nfq_get_payload(nfa, &data2);

 if (ret >= 0)

 for(int i=0; i<ret; i++)

 {

 dane[i] = (unsigned char)data2[i];

 }

//Checking if this is desired port p will be port number from
window field. packet will be sent without modification

int p = atoi((char*) gtk_entry_get_text(GTK_ENTRY(port)));

//porrt is 16 bit number so two unsigned char for 8 older bits and
and 8 younger bits must be compared to desired port

if ((dane[22]==(p>>8))&&(dane[23]==(p&255))&& (ret>60))

{
if (trigger==0)

{
for (int i=0; i<5; i++)

 {

 if (message[punteromessage+i]==0)

 {

 if (dane[puntero]<=0x5a)

 {

 dane[puntero]=dane[puntero]+0x20;

 }

 }

 else if (message[punteromessage+i]==1)

 {

 if (dane[puntero]>0x5a)

 {

 dane[puntero]=dane[puntero]-0x20;

 }

 }

 puntero=puntero+1;

 }

puntero=143;

punteromessage=punteromessage+5;

length=length-5;

if (length==0)

 {

 length=sizeof(message)/sizeof(message[0]);

 punteromessage=0;

 //system("iptables -D OUTPUT -p TCP -j QUEUE");

 }

 //IP checksum

70

 u16 ip_header[10];

 dane[10] = 0x00;

 dane[11] = 0x00;

 for(int i=0; i<10; i++)

 {

 ip_header[i] = unsignedShortToInt(dane+2*i);

 }

 u16 ip_header_sum = csum(ip_header,10);

 u16 ip_header_sum_begin = ip_header_sum;

 ip_header_sum_begin >>= 8;

 dane[10] = ip_header_sum_begin;

 dane[11] = ip_header_sum;

 //TCP checksum

 u16 tcp_header[((ret-20)/2)+6];

 dane[36] = 0x00;

 dane[37] = 0x00;

 danetcp[0] = 0x00;

 danetcp[1] = dane[9];

 for(int i=0; i<(ret-20)/2; i++)

 {

 tcp_header[i] = unsignedShortToInt(dane+20+2*i);

 }

 for(int i=0; i<4; i++)

 {

 tcp_header[i+(ret-20)/2] =
unsignedShortToInt(dane+12+2*i);

 }

 tcp_header[((ret-20)/2)+4]= unsignedShortToInt(danetcp);

 tcp_header[((ret-20)/2)+5]= ret-20;

 u16 tcp_header_sum = csum(tcp_header,((ret-20)/2)+6);

 u16 tcp_header_sum_begin = tcp_header_sum;

 tcp_header_sum_begin >>= 8;

 dane[36] = tcp_header_sum_begin;

 dane[37] = tcp_header_sum;

}

else if (trigger!=0)

{
trigger=trigger-1;

}

gtk_text_buffer_insert(buffer, &iter, "Packet captured\n", -1);

}

 return nfq_set_verdict(qh, id, NF_ACCEPT, ret, dane);

}

71

• F6 method case, main function for modifying the packets, receiver side

int message[4096];

int puntero=143;

int punteromessage=0;

int trigger=1;

//MAIN FUNCTION FOR modyfying packets

static int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg,

 struct nfq_data *nfa, void *data)

{

 u_int32_t id = print_pkt(nfa);

 //printf("entering callback\n");

 char *data2;

 int ret = nfq_get_payload(nfa, &data2);

 if (ret >= 0)

 for(int i=0; i<ret; i++)

 {

 dane[i] = (unsigned char)data2[i];

 }

//Checking if this is desired port p will be port number from
window field. packet will be sent without modification

int p = atoi((char*) gtk_entry_get_text(GTK_ENTRY(port)));

//porrt is 16 bit number so two unsigned char for 8 older bits and
and 8 younger bits must be compared to desired port

if ((dane[22]==(p>>8))&&(dane[23]==(p&255))&& (ret>60))

{

if (trigger==0)

{
for (int i=0; i<5; i++)

 {

 if (dane[puntero+i]>0x5a)

 {

 message[punteromessage]=0;

 std::cout<<message[punteromessage];

 punteromessage=punteromessage+1;

 }

 else if (dane[puntero+i]<=0x5a)

 {

 message[punteromessage]=1;

 std::cout<<message[punteromessage];

 punteromessage=punteromessage+1;

 }

 }

}

else if (trigger!=0)

{
std::cout<< "\nThe secret message received is: ";

trigger=trigger-1;

}

gtk_text_buffer_insert(buffer, &iter, "Packet captured\n", -1);

72

}

 return nfq_set_verdict(qh, id, NF_ACCEPT, ret, dane);

}

• F7 Method case, main function for modifying the packets, Sender side

//Introduce a message made with 1’s and 0’s.

int message[]={};
int length=sizeof(message)/sizeof(message[0]);

int puntero=175;

int punteromessage=0;

int trigger=1;

//MAIN FUNCTION FOR modyfying packets

static int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg,

 struct nfq_data *nfa, void *data)

{

 u_int32_t id = print_pkt(nfa);

 //printf("entering callback\n");

 char *data2;

 int ret = nfq_get_payload(nfa, &data2);

 if (ret >= 0)

 for(int i=0; i<ret; i++)

 {

 dane[i] = (unsigned char)data2[i];

 }

//Checking if this is desired port p will be port number from
window field. packet will be sent without modification

int p = atoi((char*) gtk_entry_get_text(GTK_ENTRY(port)));

//porrt is 16 bit number so two unsigned char for 8 older bits and
and 8 younger bits must be compared to desired port

if ((dane[22]==(p>>8))&&(dane[23]==(p&255))&& (ret>60))

{

if (trigger==0)

{

if (message[punteromessage]==1)

 {

 for (int i=0; i<13;i++)

 {

 daneaux[i]=dane[puntero+i];

 }

 for (int i=0; i<16;i++)

 {

 dane[puntero+i]=dane[puntero+i+13];

 }

 for (int i=16;i<29;i++)

 {

73

 dane[puntero+i]=daneaux[i-16];

 }

 }

punteromessage=punteromessage+1;

length=length-1;

if (length==0)

 {

 length=sizeof(message)/sizeof(message[0]);

 punteromessage=0;

 //system("iptables -D OUTPUT -p TCP -j QUEUE");

 }

 //IP checksum

 u16 ip_header[10];

 dane[10] = 0x00;

 dane[11] = 0x00;

 for(int i=0; i<10; i++)

 {

 ip_header[i] = unsignedShortToInt(dane+2*i);

 }

 u16 ip_header_sum = csum(ip_header,10);

 u16 ip_header_sum_begin = ip_header_sum;

 ip_header_sum_begin >>= 8;

 dane[10] = ip_header_sum_begin;

 dane[11] = ip_header_sum;

 //TCP checksum

 u16 tcp_header[((ret-20)/2)+6];

 dane[36] = 0x00;

 dane[37] = 0x00;

 danetcp[0] = 0x00;

 danetcp[1] = dane[9];

 for(int i=0; i<(ret-20)/2; i++)

 {

 tcp_header[i] = unsignedShortToInt(dane+20+2*i);

 }

 for(int i=0; i<4; i++)

 {

 tcp_header[i+(ret-20)/2] =
unsignedShortToInt(dane+12+2*i);

 }

 tcp_header[((ret-20)/2)+4]= unsignedShortToInt(danetcp);

 tcp_header[((ret-20)/2)+5]= ret-20;

 u16 tcp_header_sum = csum(tcp_header,((ret-20)/2)+6);

 u16 tcp_header_sum_begin = tcp_header_sum;

 tcp_header_sum_begin >>= 8;

 dane[36] = tcp_header_sum_begin;

 dane[37] = tcp_header_sum;

}

else if (trigger!=0)

74

{
trigger=trigger-1;

}

gtk_text_buffer_insert(buffer, &iter, "Packet captured\n", -1);

}

 return nfq_set_verdict(qh, id, NF_ACCEPT, ret, dane);

}

• F7 method case, main function for modifying the packets, receiver side

int message[4096];

int puntero=175;

int punteromessage=0;

int trigger=1;

//MAIN FUNCTION FOR modyfying packets

static int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg,

 struct nfq_data *nfa, void *data)

{

 u_int32_t id = print_pkt(nfa);

 //printf("entering callback\n");

 char *data2;

 int ret = nfq_get_payload(nfa, &data2);

 if (ret >= 0)

 for(int i=0; i<ret; i++)

 {

 dane[i] = (unsigned char)data2[i];

 }

//Checking if this is desired port p will be port number from
window field. packet will be sent without modification

int p = atoi((char*) gtk_entry_get_text(GTK_ENTRY(port)));

//porrt is 16 bit number so two unsigned char for 8 older bits and
and 8 younger bits must be compared to desired port

if ((dane[22]==(p>>8))&&(dane[23]==(p&255))&& (ret>60))

{

if (trigger==0)

{

if (dane[puntero]==0x41)

 {

 message[punteromessage]=0;

 std::cout<<message[punteromessage];

 punteromessage=punteromessage+1;

 }

else if (dane[puntero]==0x48)

 {

 message[punteromessage]=1;

 std::cout<<message[punteromessage];

 punteromessage=punteromessage+1;

 }

75

}

else if (trigger!=0)

{
std::cout<< "\nThe secret message received is: ";

trigger=trigger-1;

}

gtk_text_buffer_insert(buffer, &iter, "Packet captured\n", -1);

}

 return nfq_set_verdict(qh, id, NF_ACCEPT, ret, dane);

}

• F8 method case, main function for modifying the packets, sender side

//Introduce a message made with 1’s and 0’s.

int message[]={}
int length=sizeof(message)/sizeof(message[0]);

int puntero=175;

int punteromessage=0;

int trigger=1;

//MAIN FUNCTION FOR modyfying packets

static int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg,

 struct nfq_data *nfa, void *data)

{

 u_int32_t id = print_pkt(nfa);

 //printf("entering callback\n");

 char *data2;

 int ret = nfq_get_payload(nfa, &data2);

 if (ret >= 0)

 for(int i=0; i<ret; i++)

 {

 dane[i] = (unsigned char)data2[i];

 }

//Checking if this is desired port p will be port number from
window field. packet will be sent without modification

int p = atoi((char*) gtk_entry_get_text(GTK_ENTRY(port)));

//porrt is 16 bit number so two unsigned char for 8 older bits and
and 8 younger bits must be compared to desired port

if ((dane[22]==(p>>8))&&(dane[23]==(p&255))&& (ret>60))

{

if (trigger==0)

{

if (message[punteromessage]==1)

 {

 dane[ret-26]=0x0d;

 dane[ret-25]=0x0a;

76

 ret=ret-24;

 dane[3]=ret;

 }

punteromessage=punteromessage+1;

length=length-1;

if (length==0)

 {

 length=sizeof(message)/sizeof(message[0]);

 punteromessage=0;

 //system("iptables -D OUTPUT -p TCP -j QUEUE");

 }

 //IP checksum

 u16 ip_header[10];

 dane[10] = 0x00;

 dane[11] = 0x00;

 for(int i=0; i<10; i++)

 {

 ip_header[i] = unsignedShortToInt(dane+2*i);

 }

 u16 ip_header_sum = csum(ip_header,10);

 u16 ip_header_sum_begin = ip_header_sum;

 ip_header_sum_begin >>= 8;

 dane[10] = ip_header_sum_begin;

 dane[11] = ip_header_sum;

 //TCP checksum

 u16 tcp_header[((ret-20)/2)+6];

 dane[36] = 0x00;

 dane[37] = 0x00;

 danetcp[0] = 0x00;

 danetcp[1] = dane[9];

 for(int i=0; i<(ret-20)/2; i++)

 {

 tcp_header[i] = unsignedShortToInt(dane+20+2*i);

 }

 for(int i=0; i<4; i++)

 {

 tcp_header[i+(ret-20)/2] =
unsignedShortToInt(dane+12+2*i);

 }

 tcp_header[((ret-20)/2)+4]= unsignedShortToInt(danetcp);

 tcp_header[((ret-20)/2)+5]= ret-20;

 u16 tcp_header_sum = csum(tcp_header,((ret-20)/2)+6);

 u16 tcp_header_sum_begin = tcp_header_sum;

 tcp_header_sum_begin >>= 8;

 dane[36] = tcp_header_sum_begin;

 dane[37] = tcp_header_sum;

}

77

else if (trigger!=0)

{
trigger=trigger-1;

}

gtk_text_buffer_insert(buffer, &iter, "Packet captured\n", -1);

}

 return nfq_set_verdict(qh, id, NF_ACCEPT, ret, dane);

}

• F8 method case, main function for modifying the packets, receiver side

int message[4096];

int puntero=175;

int punteromessage=0;

int trigger=1;

//MAIN FUNCTION FOR modyfying packets

static int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg,

 struct nfq_data *nfa, void *data)

{

 u_int32_t id = print_pkt(nfa);

 //printf("entering callback\n");

 char *data2;

 int ret = nfq_get_payload(nfa, &data2);

 if (ret >= 0)

 for(int i=0; i<ret; i++)

 {

 dane[i] = (unsigned char)data2[i];

 }

//Checking if this is desired port p will be port number from
window field. packet will be sent without modification

int p = atoi((char*) gtk_entry_get_text(GTK_ENTRY(port)));

//porrt is 16 bit number so two unsigned char for 8 older bits and
and 8 younger bits must be compared to desired port

if ((dane[22]==(p>>8))&&(dane[23]==(p&255))&& (ret>60))

{

if (trigger==0)

{
if (ret==230)

 {

 message[punteromessage]=0;

 std::cout<<message[punteromessage];

 punteromessage=punteromessage+1;

 }

else if (ret<230)

 {

 message[punteromessage]=1;

 std::cout<<message[punteromessage];

 punteromessage=punteromessage+1;

 for (int i=0;i<24;i++)

78

 {

 dane[214+i]=header[i];

 }

 ret=ret+24;

 dane[3]=ret;

 }

 //IP checksum

 u16 ip_header[10];

 dane[10] = 0x00;

 dane[11] = 0x00;

 for(int i=0; i<10; i++)

 {

 ip_header[i] = unsignedShortToInt(dane+2*i);

 }

 u16 ip_header_sum = csum(ip_header,10);

 u16 ip_header_sum_begin = ip_header_sum;

 ip_header_sum_begin >>= 8;

 dane[10] = ip_header_sum_begin;

 dane[11] = ip_header_sum;

 //TCP checksum

 u16 tcp_header[((ret-20)/2)+6];

 dane[36] = 0x00;

 dane[37] = 0x00;

 danetcp[0] = 0x00;

 danetcp[1] = dane[9];

 for(int i=0; i<(ret-20)/2; i++)

 {

 tcp_header[i] = unsignedShortToInt(dane+20+2*i);

 }

 for(int i=0; i<4; i++)

 {

 tcp_header[i+(ret-20)/2] =
unsignedShortToInt(dane+12+2*i);

 }

 tcp_header[((ret-20)/2)+4]= unsignedShortToInt(danetcp);

 tcp_header[((ret-20)/2)+5]= ret-20;

 u16 tcp_header_sum = csum(tcp_header,((ret-20)/2)+6);

 u16 tcp_header_sum_begin = tcp_header_sum;

 tcp_header_sum_begin >>= 8;

 dane[36] = tcp_header_sum_begin;

 dane[37] = tcp_header_sum;

}

else if (trigger!=0)

{
std::cout<< "\nThe secret message received is: ";

trigger=trigger-1;

}

79

gtk_text_buffer_insert(buffer, &iter, "Packet captured\n", -1);

}

 return nfq_set_verdict(qh, id, NF_ACCEPT, ret, dane);

}

When combining F6, F7 and F8 Methods, we use the previously shown code combined.

• Main Compilation command

g++ -std=c++0x –o pogram_name program_name.cc –lnfnetlink –

lnetfilter_queue –lgthread-2.0 –w ‘pkg-config gtk+-2.0 --cflags --libs’

80

ANNEX 2: BIBLIOGRAPHY AND REFERENCES

[1] M. J. Gross, “Exclusive: Operation Shady RAT - unprecedented cyber-espionage

campaign and intellectual-property bonanza,” Vanity Fair, August 2011.

[2] E. Zielinska, W. Mazurczyk, K. Szczypiorski – Development trends in steganography,

Warsaw University of Technology, Poland.

[3] D. Alperovitch, Revealed: operation Shady RAT. McAfee, 2011,

http://www.mcafee.com/us/resources/-white-papers/wp-operation-shady-rat.pdf.

[4] K. Srivastava, “Congress wants answers on world‟s largest security breach,” August

2011, http://-www.mobiledia.com/news/102480.html.

[5] H. Lau, “The truth behind the Shady RAT,” McAffe report, August 2011,

http://www.symantec.com/-connect/blogs/truth-behind-shady-rat.

[6] N. Falliere, L. Murchu, and E. Chien, “W32.Stuxnet dossier,” White paper, Symantec

Corp., Security Response, 2011.

[7] T. Chen, “Stuxnet, the real start of cyber warfare?[editor‟s note],” IEEE Network,

vol. 24, no. 6, pp. 2–3, 2010.

[8] D. Goodin, “Duqu spawned by ‟well-funded team of competent coders‟ - World‟s

first known modular rootkit does steganography, too,” The Register, November 2011.

[9] Symantec, “W32.Duqu - the precursor to the next Stuxnet (version 1.4),” November

2011, http://-

www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers

/-w32_duqu_the_precursor_to_the_next_stuxnet_research.pdf.

[10] P. Wayner, Disappearing Cryptography - Information Hiding: Steganography &

Watermarking. Morgan Kaufmann, 2009.

[11] W. Mazurczyk, S. Wendzel, I. Azagra, K. Szczypiorski – On Importance of

Steganographic Cost for Network Steganography, Warsaw University of Technology,

Poland; Fraunhofer FKIE,Germany; Universidad Pública de Navarra, Spain.

[12] J. Kelley, Terror groups hide behind Web encryption, ser. USA Today, may 2001,

http://-www.usatoday.com/tech/news/2001-02-05-binladen.htm.

[13] D. Sieberg, “Bin Laden exploits technology to suit his needs,” CNN, September

2001, http://-edition.cnn.com/2001/US/09/20/inv.terrorist.search/.

81

[14] T. Kellen, “Hiding in plain view: Could steganography be a terrorist tool?” SANS

Institute InfoSec Reading Room, 2001,

http://www.sans.org/reading_room/whitepapers/stenganography/hiding-plain-view-

steganography-terrorist-tool_551.

[15] R. Bryant, Ed., Investigating Digital Crime. John Wiley & Sons, 2008, ch. 1, pp. 1–

24.

[16] S. Adee, “Spy vs. spy,” IEEE Spectrum magazine, August 2008,

http://spectrum.ieee.org/computing/-software/spy-vs-spy/1.

[17] N. Shachtman, FBI: Spies Hid Secret Messages on Public Websites, ser. Wired, jun

2010, http://-www.wired.com/dangerroom/2010/06/alleged-spies-hid-secret-

messages-on-public-websites/.

[18] Jennifer Gumban, “Sunsets and cats can be hazardous to your online bank

account”, TrendLabs, March 2014, http://blog.trendmicro.com/trendlabs-security-

intelligence/sunsets-and-cats-can-be-hazardous-to-your-online-bank-account/

[19] A. De Sélincourt, Herodotus: The histories. Penguin Books, 1954.

[20] S. Singh, The code book: the secret history of codes and codebreaking. Fourth

Estate, 2000.

[21] D. Smith, “Number Games and Number Rhymes: The Great Number Game of

Dice,” The Teachers College Record, vol. 13, no. 5, pp. 39–53, 1912.

[22] B. Rudin and R. Tanner, Making paper: a look into the history of an ancient craft.

Rudins, 1990.

[23] I. Cox, Digital watermarking and steganography. Morgan Kaufmann, 2008.

[24] W. White, The microdot: History and application. Phillips Publications, 1992.

[25] H. Markey and G. Antheil, “Secret communication system,” Aug. 11 1942, US

Patent 2,292,387.

[26] D. Kahn, “The history of steganography,” in Information Hiding. Springer, 1996,

pp. 1–5.

[27] G. Simmons, “The prisoners‟ problem and the subliminal channel,” in Advances in

Cryptology: Proceedings of Crypto, vol. 83, 1984, pp. 51–67.

[28] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,” IBM

systems journal, vol. 35, no. 3&4, pp. 313–336, 1996.

82

[29] N. Johnson and S. Jajodia, “Steganalysis of images created using current

steganography software,” in Information Hiding. Springer, 1998, pp. 273–289.

[30] J. Fridrich, Steganography in digital media - Principles, Algorithms, and

Applications. Cambridge University Press, 2010.

[31] Y. Wang and E. Izquierdo, “High-capacity data hiding in MPEG-2 compressed

video,” in Proceeding of the 9th International Workshop on Systems, Signals and Image

Processing, Manchester, UK, 2002, pp. 212–218.

[32] R. Anderson, “Stretching the limits of steganography,” in Information Hiding.

Springer, 1996, pp. 39–48.

[33] A. Castiglione, A. De Santis, U. Fiore, and F. Palmieri, “An asynchronous covert

channel using SPAM,” Computers & Mathematics with Applications, 2011.

[34] R. El-Khalil and A. Keromytis, “Hydan: Hiding information in program binaries,”

Information and Communications Security, pp. 287–291, 2004.

[35] R. Anderson, R. Needham, and A. Shamir, “The steganographic file system,” in

Information Hiding. Springer, 1998, pp. 73–82.

[36] W. Mazurczyk, K. Szczypiorski - Evaluation of Steganographic Methods for

Oversized IP Packets In: Telecommunication Systems: Modelling, Analysis, Design and

Management, Volume 49, Issue 2 (2012), pp. 207-217.

	MASTER THESIS -- IGNACIO AZAGRA VILLARES

