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“Los principios y los finales son fluidos, largas cadenas de 
acontecimientos donde algunos eslabones parecen 
insignificantes y otros trascendentales, más en realidad 
todos tienen el mismo peso. Lo que puede parecer un 
instante dramático y único es tan sólo un vínculo entre lo 
que había antes y lo que viene después.” 
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1             

INTRODUCTION AND OBJECTIVES  

“The most difficult and complicated part of the writing process is the beginning”. 
A. B. Yehoshua  (1936) 

Over the last few years the spectacular fall in the cost of PV raw materials 

(particularly for polysilicon) combined with improved fabrication processes and scale 

economies have reduced manufacturing costs, and far faster than targeted by the 

industry, with top Chinese producers approaching costs of 0.50$/Wp in the 2013 PV 

module prices (REN21, 2014). Furthermore, solar PV was below retail electricity prices 

in several countries and particularly in a number of islands, such as the Canary Islands, 

which are deemed to be competitive without subsidies (Eclaeron, 2014). Consequently, 

in the last years the installed PV power worldwide has continued to grow (Masson et al., 

2013). In Figure 1.1  it is shown the solar PV total global capacity from 2004 to 2013.  

 

 

Figure 1.1: Solar PV total global capacity, 2004-2013 (REN21, 2014) 
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More than 39 GW was added in 2013, bringing total capacity to approximately 139 

GW (REN21, 2014). The average size of PV installations have also grown. Although 

historically these installations have been small and distributed, today the number of 

large-scale PV plants (from ten to several hundreds MWs) is considerably increasing 

(Shah et al., 2015). It is believed that the integration of large-scale PV to the grid would 

not be trivial, especially for the high penetration level. Utilities are expected to face some 

new non-traditional operational problems due to the distinctly different in dynamic 

characteristics of large-scale PV compared to conventional generators. 

The short-term variability of the PV power due to the intermittent nature of the solar 

resource poses one of the great challenges to those responsible for PV integration into 

electricity networks with conventional generators. While irradiance fluctuations can 

produce significant variations in the PV power output in a few seconds, the system 

operator response capacity is far away from this time scale, being 10 minutes the 

temporary window presented as the reaction capacity frontier for the grid operator. 

Therefore, any power fluctuation under this time scale might be a risk for the system 

stability. This problem alerted such grid operators and promoted research initiatives to 

study these fluctuations (Marcos et al., 2011a; Perpiñán et al., 2013) finding PV output 

ramp-rates of the rated capacity with variations from 45-90%/min for multi-MW solar 

plants (Hansen, 2007; Jolmson et al., 2012; Marcos et al., 2011a; Mills et al., 2011; van 

Haaren et al., 2014) being values high enough to compromise the grid stability in places 

with high PV power penetration levels. As a result, some transmission system operators 

(TSO) have issued new grid codes to address this matter, including new criteria to make 

it easier for the TSO to react appropriately against harmful power fluctuations, i.e., 

fluctuations with a time scale of less than 10 minutes (CRE, 2014; NERSA, 2012; 

PREPA, 2012). Such criteria include setting power variation maximum ramps for the power 

being fed into the network by intermittent generation plants. This ensures that the power 

variation of PV power generators does not exceed the dynamics with which conventional 

plants in the system may increase or reduce power, so that the production and consumption 

balance is not altered at any time. In order to set these values, potential power variation 

rates for thermal power plants, between 2.5%-4% of their nominal power per minute, being 

part of the manageable generation, is usually taken as a reference. In this way, for instance, 

the target specified in Mexico (CRE, 2014) varies from 1-5%/min. It is thereby ensured 

that the rest of the system, if provided with sufficient control capacity, may respond to any 
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rapid power changes in the intermittent power generation plants. Given the fact that PV 

power fluctuations are greater than the restrictions imposed, some type of energy storage 

system (ESS) is required in order to comply with the same.  

Although the decreasing cost of power electronics devices as well as the 

breakthrough of new technologies in the field of energy storage (Boicea, 2014; Bradbury 

et al., 2014; Luo et al., 2014; Zakeri and Syri, 2015) make it possible to incorporate ESS 

into renewable power systems (Arghandeh et al., 2014; Atwa and El-Saadany, 2010; 

Bozchalui and Sharma, 2014), the cost per power unit is a strong function of their 

capacity, and a too high cost is almost prohibitive for industrial and commercial 

acceptance. It is therefore essential to establish a method for optimizing the size and 

operation (losses, lifecycle...) of such ESS in order to meet both application constraints 

and increase the economic viability of the PV system with an ESS incorporated. There 

are different ways of using the ESS which allows to achieve the two latter objectives 

depending on the smoothing control strategy implemented. Likewise, it is logical to think 

that this control strategy selected in order to smooth out fluctuations will be a crucial 

decision and storage requirements will depend on the strategy chosen. 

When establishing the objectives of this thesis, there were only two strategies 

proposed in the state of the art, the moving average control (Datta et al., 2010; Han et 

al., 2012; Seo et al., 2010) and the ramp-rate control (Kakimoto et al., 2009; Khanh et 

al., 2010; Ruifeng and Saha, 2010; Wang and Ying-Hao, 2001). These studies deal with 

the implementation of these control strategies in small systems (a few kilowatts). 

However, storage requirements have been scarcely addressed. Power and energy 

storage capacity have only been derived from some rather simple and intuitive 

considerations regarding PV output profiles: sudden drops from full power to 0, which is 

obviously the maximum conceivable fluctuation, were assumed in Kakimoto et al., 2009 

in order to determine the size of the required ESS (a double-layer capacitor is proposed 

in this case). Somewhat more realistically, a drop from full power to 10% in 2 s was 

assumed in Hund et al., 2010 to conclude that relatively small batteries suffice. In short, 

there was not any specific engineering rule in order to calculate energy and power 

storage requirements to smooth out short-term PV output variability implementing these 

strategies. Likewise, the impact of each strategy on the ESS losses and lifecycle has not 

been yet evaluated, two key factors that may become decisive in a project viability. From 
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here arises the first objective of this thesis: to propose a method to calculate, for any PV 

plant size and maximum allowable ramp-rate, the energy storage requirements alike for 

these two strategies and the effect in the ESS losses and lifecycle. In addition, it is also 

proposed as a second objective to study the viability of improving these known strategies 

and try to find out new ones trying to optimize the requirements of the ESS capacity, 

losses and lifecycle requirements to the utmost. These objectives are dealt with in 

chapters 3 and 4. 

Everything mentioned up to now has dealt with the fluctuations smoothing at a 

single PV plant level. However, it is well-known that short-term power fluctuations 

generated by an ensemble of geographical dispersed large PV plants are considerable 

reduced compared with a single one (A. E. Curtright and Apt, 2008; Hossain and Ali, 

2014; Lave et al., 2012, 2011; Marcos et al., 2012; Murata and Otani, 1997; Otani et al., 

1997; Perez et al., 2012; Sengupta and Keller, 2011; Wiemken et al., 2001). This 

phenomenon has raised two new issues that can be taken into account in order to 

correctly integrate distributed PV generation.  

The first one is motivated by the possibility of further optimization of the ESS 

required to smooth out short-term PV power variability. It now makes sense to consider 

allocating an ESS in a network node in which a number of PV plants converge, expecting 

some savings in terms of the ESS capacity required to limit the total ramp-rate 

fluctuations. This is of particular interest in islands with stand-alone power grids. 

Therefore, in the same way as it is interesting to dispose a methodology to calculate the 

minimum energy storage requirements and the maximum power at a single PV plant, 

another objective of this thesis is to develop a similar methodology for a centralized ESS 

solution at a PV fleet. The work related to this objective is shown in Chapter 5. 

The second issue is motivated from the point of view of both TSO and distribution 

system operators (DSO). Currently, new grid codes that have motivated the above 

mentioned objectives, are based on the imposition of a maximum allowable ramp-rate 

restriction. This restriction is the result of the knowledge of the TSOs of its own grids 

together with the expected effect of dispersed PV generation. However, up to now there 

are only tools that enable to simulate the fluctuations at a single PV plant (Marcos et al., 

2011b) but not at a PV fleet. The simulated production profiles of a PV fleet could prove 
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extremely useful for the TSO and DSO, and even more so today when PV technology is 

gaining strength in distributed generation. It would allow to plan energy reserves, 

redesign grid codes, plan new PV projects studying its impact in the main electrical grid 

and even it could be integrated in the grid operator simulation tools. In this way, the 

development of a model that enables to simulate the power generated by a PV fleet was 

set as another objective of this thesis. This model is also presented in chapter 5. 

All the proposals of this thesis have been validated through high resolution real 

operational data taken from large PV plants with powers varying 1 to 45 MWp with a total 

power greater than 60 MWp. It is therefore a database with no comparison in the state 

of the art which provides an exceptional framework for the grid integration of large-scale 

PV plants. The database fully description will be the beginning of this document in 

chapter 2. Finally, the conclusions of this thesis dissertation, the contributions which have 

given raise and the future lines are dealt in chapter 6. 
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2                    

THE PV OBSERVATORY  

“A few observation and much reasoning lead to error; many observations and a little reasoning to truth.” 
Alexis Carrel (1873-1944) 

2.1 INTRODUCTION 

The study of PV power fluctuations demands the proper equipment to be able to 

monitor the PV power injected into the grid at a MW level. Firstly, a sampling time small 

enough is necessary to be coherent with the fast occurrence of these fluctuations, i.e., 

sample periods of at least few seconds. Secondly, as the objective of this study is the 

grid integration of large-scale PV plants, it is necessary to study this fluctuations as seen 

by the grid operator, a fact that implies synchronized measurements of this power. This 

allows to add the PV power generated of different PV plants and study the dynamics of 

the aggregation of different PV plants. Next sections explain the two databases used in 

this study. 

2.2 MOURA PV PLANT  

One of the database used in this work is taken from Moura PV plant, which is 

located in Amareleja (South Portugal) PV plant. This plant occupies an area of 250 Ha 

and includes 2520 solar trackers with a rated output of 17.7 to 18.8 kWp, up to a total 

peak power of 45.6 MWp. The corresponding inverter power, Pn, is 38.5 MW and the 

ground cover ratio (GCR) is 0.162. The trackers are one-vertical axis models, with the 

receiving surface tilted 45o from the horizontal. The plant is divided into 70 units, each 

comprising 36 tracking systems connected to a 550 kW DC/AC inverter. The minimum 
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and maximum distances between the units, are 220 meters and 2.5 km respectively. 

Thanks to extensive monitoring, 5 s synchronized records of the output power of all the 

inverters are available from May 2010. From this work, data was taken not only of the 

entire PV plant but also of 5 sections with Pn between 0.55 kW and 11.5 MW (Figure 

2.1), making it possible to study the dependence between the storage requirements and 

the size of the PV power plant. 

 

Figure 2.1: Field distribution of the Amareleja PV plant sections. 

2.3 RIBERA PV PLANTS  

The other experimental data used for this study was taken from six PV plants 

located in Spain, based on 1 s data recorded since 2009 up to now. The timing was 

controlled through a GPS, so that it is possible to accurately synchronise the recordings 

from all the sites. The plant power output ranges from 1 to 9.5 MWp, for a total of 

19 MWp. All the PV plants are equipped with vertical‐axis trackers (azimuth) paralleling 

the sun’s east–west motion, and each generator is tilted 45°. 1 s power output data are 

obtained at the point of common coupling by means of a power meter (Allen–Bradley, 

Power monitor, Milwaukee, WI, USA), and are recorded by a PLC (Allen‐Bradley, 

CompactLogix, Milwaukee, WI, USA). The plants are scattered over a ~1100 km2 area 

in the south of Navarra (Spain). Figure 2.2  details the location of the five sites 

considered. Distances between them range from 6 to 60 km. Table 2.1  details the power 

and surface area of the PV plants. 
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Figure 2.2: Geographic distribution of the PV plants under study. 

Table 2.1: Characteristics of the PV plants. 

 

  

PV plants 
Peak Power 

(kWp) 

Transformer Power 

Pn (kW) 

Size 

S (Ha) 

Location 

(Lat; Lon) 

Arguedas 958 775 4.1 
42°10'32" N 

1°35'28" W 

Sesma 990 800 4.2 
42°27'43" N 

2° 5'31" W 

Cintruénigo 1438 1155 6.4 
42° 3'35" N 

1°47'50" W 

Rada 1780 1400 8.7 
42°19'3.25" N 

1°34'10" W 

Castejón 2640 2000 11.8 
42° 9'7"N 

1°39'36" W 

Milagro 9500 7243 52 
42°15'28.24"N 

1°46'30" W 

Total 17306 13375 - - 



The PV observatory 

CHAPTER 2 

18 

 

  



 

19 

 

 

 

 

3                    

POWER FLUCTUATIONS SMOOTHING 

OF LARGE PV PLANTS WITH ENERGY 

STORAGE SYSTEMS 

“Gray skies are just clouds passing over.” 
Duke Ellington (1899-1974) 

3.1 INTRODUCTION 

Concerns about the potential of PV output fluctuations caused by transient clouds 

were expressed more than 25 years ago (Jewell and Ramakumar, 1987; Jewell and 

Unruh, 1990) and are now attracting widespread interest and attention, as a result of 

growing PV penetration rates. As the PV power share in the grid increases, such 

fluctuations may adversely affect power quality and reliability (Marcos et al., 2011b). In 

particular, power fluctuations of less than 10 minutes are typically absorbed by the grid 

as frequency fluctuations. This issue is of special importance in relatively small grids, 

such as islands, with high penetration rates, because the smoothing effect from the 

aggregation of geographically dispersed PV plants is intrinsically limited (Marcos et al., 

2012; Perpiñán et al., 2013). It was precisely an island grid operator, The Puerto Rico 

Electric Power Authority, that recently opened the door for PV power variability 

regulations, by imposing a 10% per minute rate (based on nameplate capacity) limitation 

on the PV plants being connected to its grid (PREPA, 2012). In addition, in other 

countries such as Mexico, the regulations target greater restrictions, of around 1 - 5% 

per minute (CRE, 2014). 
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Standard (without storage) PV plants exhibit power variations far beyond this 

limitation. For example, a PV output ramp-rate as high as 63% of the rated 

capacity/minute was revealed at the 1.2 MW La Ola island power plant (Jolmson et al., 

2012), whilst power variations of up to 90% to 70 % per minute were recorded, 

respectively, at 1 MW and 10 MW PV plants (Marcos et al., 2011a), and variations of 

70% per minute were found at a 5MW PV plant (van Haaren et al., 2014). Other multi-

megawatt PV plants showed ramp-rates per minute of up to 50% for a 4.6 MW (Hansen, 

2007) system and 45% for a 13.2 MW PV plant (Mills et al., 2011). Hence, compliance 

with such regulations requires combining the PV generator with some form of energy 

storage technology, to either add or subtract power to or from the PV output in order to 

smooth out the high frequency components of the PV power. Fuel cells (Rahman and 

Tam, 1988), electric-double layer capacitors (Kakimoto et al., 2009) and, mainly, 

batteries (Byrne et al., 2012; Ellis and Schoenwald, 2012; Hund et al., 2010; Leitermann, 

2012; Li et al., 2013) have been proposed. Smoothing algorithms can be found (Beltran 

et al., 2011; Hund et al., 2010; Kakimoto et al., 2009; Khanh et al., 2010; Li et al., 2013). 

However, storage requirements have been scarcely addressed. Power and energy 

storage capacity have only been derived from some rather simple and intuitive 

considerations regarding PV output profiles: sudden drops from full power to 0, which is 

obviously the maximum conceivable fluctuation, were assumed in Kakimoto et al., 2009 

in order to determine the size of the required ESS. Somewhat more realistically, a drop 

from full power to 10% in 2 seconds was assumed in Hund et al., 2010 to conclude that 

relatively small batteries suffice. Although detailed observations and studies on 

irradiance fluctuation are also available (Kuszamaul et al., 2010; Lave et al., 2012; Mills 

and Wiser, 2010; Mills et al., 2010; Perez et al., 2012), these have not yet led to specific 

engineering rules in order to determine the storage system size to PV output smoothing. 

Indeed, the installation of an ESS has a major impact on the energy/economic 

balance of the PV system, playing a key role in the viability of the future PV systems due 

to their high costs and reduced shelf life. As a result, parameters such as energy 

capacity, losses and the cycling degradation of the ESS, take on particular importance. 

Any reduction in both the ESS required capacity and charge/discharge cycles will have 

a positive impact on reducing the investment required to install and maintain the ESS. 

Consequently, the control strategy selected in order to smooth power fluctuations will be 
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a crucial decision. At present, given the maximum fluctuation limitation, there is a range 

of control strategies to reduce the fluctuations below this limit. Among them, the two most 

often proposed ones in the literature are ramp-rate control (Alam et al., 2014; Kakimoto 

et al., 2009; Khanh et al., 2010; Li et al., 2013; Ruifeng and Saha, 2010; Wang and 

Ying-Hao, 2001) and the moving-average (MA) (Chanhom et al., 2013; Datta et al., 

2010; Han et al., 2012; Seo et al., 2010). Considering the converter and ESS as ideal 

elements, the main advantage of MA is that, by definition of the mean value, the value 

of the energy in the ESS at the beginning and end of any given day is the same. In real 

practice, however, the battery is discharged at the end of the day to a value equal to the 

energy lost in the charging/discharging processes. On the other hand, the key point of 

the ramp-rate control is that only acts when the fluctuation exceeds the maximum 

allowable ramp-rate value (i.e., lower degradation). There are also other strategies 

available such as the constant production strategy (Beltran et al., 2013; Darras et al., 

2012). However, this technique goes beyond smoothing out the fluctuations in short 

periods of time and thus requires a much larger ESS. Even so, no individual analysis 

is made for each of these two strategies as to the impact of them on the actual ESS 

requirements: energy capacity, charge/discharge cycles, cycling degradation, losses in 

the power electronic converter (PEC), losses in the ESS, etc. Accordingly, few 

comparisons have been made between the performance of the strategies ramp-rate 

control and the moving average working in the same PV plant-ESS system. The studies 

conducted are primarily focused on programming, monitoring and implementing the 

strategy (Beltran et al., 2011; Cheng et al., 2012; Datta et al., 2010; Nuhic et al., 2013). 

In this chapter, the necessity of the installation of an ESS in order to comply with 

the ramp-rate limitations imposed by the new grid codes is firstly ratified. The model used 

to simulate a generic strategy to smooth out fluctuations is then shown. Next, both the 

well-known ramp-rate control and moving-average control are studied in terms of both 

capacity and power necessities. Thanks to this analysis, a new strategy is proposed, 

named the step-control strategy, which improves the results in relation to the previous 

ones. In addition, for the three strategies under study, it is proposed a method to 

calculate, for any PV plant size and maximum allowable ramp-rate, the maximum power 

and the minimum energy storage requirements alike. Finally, a comparison of the three 

strategies in order to fit the grid quality demands is also made. Each control method is 



Power fluctuations smoothing of large PV plants with energy storage systems 

CHAPTER 3 

 

22 

 

evaluated regarding the quality of the produced signal and the ESS demand. All the 

simulations were based on actual PV production data, taken every 5 s in the course of 

one year (2012) from different section of Moura PV plant (see section 2.2), with power 

outputs ranging from 550 kW to 40 MW. The experimental ESS comprised a lithium-ion 

battery connected at the AC side through a two-way DC/AC PEC. The presented results 

can be used as a guide to select the best control strategy, and the optimum design and 

selection of the ESS, making it possible to assess the impact of the ESS on the PV plant 

energy/economic balance. 

3.2 POWER FLUCTUATIONS WITHOUT STORAGE  

Given a power time series P(t), recorded with a certain sampling period, ∆t, power 

fluctuation at time t, ∆P∆t (t) is defined as the difference between two consecutive 

samples of power, normalized to the inverter power Pn. That is Eq.( 3.1 ):  

[ ]
100

)()(
)( ×∆−−=∆ ∆

n
t P

ttPtP
tP  [%] ( 3.1 ) 

It is then possible to compare the time series of ∆P∆t (t) with a given ramp value, r, 

and count the time the fluctuations exceed the ramp (abs [∆P∆t (t)] > r). Figure 3.1 shows 

the results for a full year (2012) and for the different Amareleja PV sections described in 

section 2.2. As expected, the occurrence of fluctuations decreases with r and with Pn. 

For r = 1%/min and Pn = 550 kW, power fluctuation exceed the ramp for 40% of the time. 

For the same ramp, increasing the PV size to Pn
 = 38.5 MW reduces the time the ramp 

is exceeded to 23%, whilst for a much less stringent ramp, r = 30%/min, these values 

drop to 3% and 0.1%, respectively. These examples show that imposing power ramp 

limits (typically around 10%/min) makes it necessary to resort to an ESS even when large 

PV plants are concerned.  
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Figure 3.1: Frequency over one year (2012) of PV power fluctuations calculated in 1-min time window, 
∆P1min(t), are superior to a given ramp r (%/min). The frequency value is given in relative terms to the 

total production time (4380 h). 

3.3 A GENERIC STRATEGY FOR SMOOTHING FLUCTUATIONS THROUGH ENERGY 

STORAGE 

For the simulations, a lithium ion battery-based storage system was selected. 

Logically, the methodology put forward is equally valid for any other type of storage system 

(such as supercapacitors, flow batteries, fly wheels, etc.). Figure 3.2  shows the model 

used to simulate a generic strategy to smooth out fluctuations. For each sampling period, 

the algorithm reduces the fluctuations of PPV(t) to the maximum permitted level rmax and 

the result is the power injected into the grid, PG(t). The difference between PG(t) and PPV(t) 

is the power setpoint to either be provided by (PESS > 0) or to be absorbed by the ESS 

(PESS < 0). The next step is to apply the PEC efficiency, ηPEC, and that of the lithium ion 

battery, ηBAT, in order to obtain the required battery power, PBAT. 

 

Figure 3.2: Generic model for the evaluation of the fluctuation smoothing strategies at a PV plant with 
energy storage. As can be seen, the performance of the energy storage system (ESS) has been divided 
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into two: on the one hand, the performance of the power converter (ηPEC) and, on the other hand, that of 
the lithium ion battery (ηBAT). 

To calculate the PEC losses, a real curve obtained from the Ingecon Sun 

Powermax® 1 MW (INGETEAM, 2014) commercial converter was used (Figure 3.3 ). 

This same converter is connected to a 1 MW transformer on the AC side, whose 

efficiency curve is also shown in Figure 3.3 , together with the total for the PEC (Ingecon 

Sun + Transformer). With regard to the lithium ion battery losses, data was used from 

the manufacturer’s catalogue, specifically the 1 MW/560 kW·h Intensium® Max battery 

made by SAFT (Bagnolet, France), whose round-trip efficiency can be considered 

constant and equal to 95% (SAFT SA, 2008). The integral of PBAT is the energy EBAT to 

be provided by the battery in order to smooth the fluctuations. It must be noted that this 

study does not seek to achieve an accurate modelling of the ESS efficiency, but rather 

to make a comparison of different strategies. 

 

Figure 3.3: Power electronic converter (PEC) efficiency curve (reversible DC/AC converter, 
corresponding to the commercial converter INGECON SUN POWERMAX® 1 MW plus 1 MW 

transformer). 
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3.4 RAMP-RATE CONTROL  

3.4.1 Control strategy 

Let us consider a maximum permissible ramp rate value of the power injected into 

the grid, rMAX [%/min]. Figure 3.4  shows a basic model of the corresponding ramp-rate 

control. PPV(t), PG(t) and PBAT(t) are, respectively, the power provided by the PV inverter, 

the power injected into the grid and the power provided by the battery. Obviously: 

)()()( tPtPtP PVGBAT −=  ( 3.2 ) 

Initially, the inverter tries to inject all its power into the grid, PG(t) = PPV(t). The 

control is activated when the maximum allowable ramp condition is broken. That is, if: 
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∆
100
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( 3.3 ) 

Then, the corresponding power excess or shortage is either taken from 

(PBAT (t) > 0) or stored into (PBAT(t) < 0) the battery. The energy stored at the battery, 

EBAT(t), is given by the integral of PBAT(t) over time. In this way, the behaviour of the whole 

system can be easily simulated for any time series of PPV(t). 

 

Figure 3.4: Ramp-rate control model modified with additional SOC control. Notice that the SOC control 
action is also smoothed by the ramp-limiter in order to guarantee that power fluctuations are always 

below rMAX. 

As a representative example, Figure 3.5  shows, for rMAX = 10%/min, the 1.1 MW 

Amareleja PV section on an extremely fluctuating day (31th October, 2012), the resulting 

evolution of PPV(t) and PG(t) (Figure 3.5 (a) ), PBAT(t) (Figure 3.5 (b) ) and EBAT(t) (Figure 

ESS
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3.5 (c)). Battery requirements for this day derive from the corresponding maximum power 

and energy values. In this example, the required battery power is PBAT,MAX = 873 kW (or 

PBAT,MAX = 0.79 Pn) and the required battery capacity is CBAT = EBAT,MAX - EBAT,MIN = 175 

kWh (or 10 min of capacity, equivalent to 0.16 hours of PV plant production at Pn). It is 

worth mentioning that the daily battery energy balance is negative (- 20 kWh). At first 

glance, this may appear counter-intuitive, because the PV power fluctuation distribution 

is essentially symmetrical (clouds reaching and leaving the PV field). However, this can 

be understood by carefully observing the battery charge and discharge dynamic. Note 

that the area of upper regions (charging) is larger than the area of lower ones 

(discharging). 

 

Figure 3.5: (a). Evolution of the generated power, PPV (t)  by Section B (1.1 MW) on 31th October 2012 
and the simulated power which would be injected to the grid PG (t)  in the case of disposing a battery 
which limits fluctuations to rMAX of 10%/min (0.833%/5s). (b) Battery power, PBAT. (c) Battery energy, 

EBAT. 
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Figure 3.6  shows the result of extending the simulation exercise to an entire year 

(2012), to all the Amareleja PV sections, and for rMAX = 10%/min. The State of Charge 

(SOC) of the battery at the end of a day has been concatenated with the SOC at the 

beginning of the next day. As the example shown in Figure 3.5 , the tendency of the 

battery to continuously discharge affects the entire one year period. An important initial 

conclusion can be drawn: instead of distributing the storage systems for single power 

plants or sections within a power plant, it seems wiser to add multiple sections or power 

plants to a single storage system. On the other hand, the battery discharging tendency 

leads to excessive battery capacity requirements, in the order of some hours. More 

practical alternatives are obtained when adding charge to the battery at different times 

throughout the year, as will be seen below. Nevertheless, an important conclusion can 

be reached from Figure 3.6 : the energy that must be managed through the storage 

systems is very low, only about 0.3% of the total energy production for limiting the power 

ramps of a 0.5 MW plant at a maximum of 10%/min (for this case, as Figure 3.1 showed, 

the battery time of use is equal to 8%). 

 

Figure 3.6: Evolution of storage time, EBAT/ Pn [h], in the battery during one year (2012), limiting the 
ramps to a maximum of 10%/min in different PV systems. 
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3.4.1.1 Overnight battery recharging 

Overnight battery recharging from the grid makes sense because electricity 

demand usually drops at night. Figure 3.7  presents the results of a simulation exercise 

similar to Figure 3.6 , except that this time, if required, energy at the battery is restored 

each night. That is: 

00 ,, 1
=⇒<

− ii daybeginningBATdayendBAT EE
 ( 3.4 ) 

In this way the tendency of the battery to discharge continuously does not affect 

the entire period of one year, but is limited to one day and therefore significantly reduces 

the required battery size, which is now in the order of some minutes. For example, battery 

requirements for rMAX = 10%/min in the 1.1 MW Amareleja PV section are now 

PBAT,MAX = 890 kW (or PBAT,MAX = 0.81·Pn) and EBAT,MAX = 451 kWh (or 25 min of capacity, 

equivalent to 0.41 h of PV plant production at Pn). The comparison of these figures with 

the above mentioned results for 31th October 2012, reveals that power battery 

requirements, which are obviously imposed by the worst individual fluctuation, tend to be 

constant throughout the analysis period. However, the same is not true for the battery 

energy requirements, which are imposed by the fluctuation distribution throughout the 

worst day. 

 

Figure 3.7: Evolution of storage time, EBAT/ Pn [h], in the battery during one year (2012), limiting the 
ramps to a maximum of 10%/min in different PV systems with overnight recharge. 
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3.4.1.2 Daytime battery recharging controlled by State of Charge  

Another interesting battery recharging possibility, not requiring energy to be 

supplied from the grid, consists in establishing a reference value for the energy stored in 

the battery, EBAT,REF and in implementing a control loop that continuously tries to return 

EBAT(t) to this reference, providing the ramp-rate limit is observed and energy is never 

taken from the grid (night-time charging forbidden). Figure 3.8  presents the 

corresponding model. The control will be faster or slower depending on the value of K. 

For example, a value of K = 1 means that if EBAT(t) - EBAT,REF = 1 kWh the control would 

request 1 kW from the battery. Obviously, once the battery capacity is defined, EBAT 

control is equivalent to SOC control.  

 

Figure 3.8: Ramp-rate control model modified with additional SOC control. Notice that the SOC control 
action is also smoothed by the ramp-limiter in order to guarantee that power fluctuations are always 

below rMAX. 

In this way the battery tendency to continuously discharge has no effect on the 

entire one year period or on the entire one day period, but only on the short period the 

control requires to restore EBAT,REF. This therefore further reduces the required battery 

size. Figure 3.9  shows the results of a simulation exercise again for the 1.1 MW 

Amareleja PV section and for a one year period (2012). EBAT,REF and K have been set to 

175 kWh and 6, respectively, which allows for a good compromise between system 

stability and fast battery recharging. In this case, corresponding battery requirements are 

PBAT,MAX = 890 kW (or PBAT,MAX = 0.81· Pn) and CBAT = EBAT,MAX - EBAT,MIN = 124 kWh (or 

6.7 min of capacity, equivalent to 0.11 hours of PV plant production at Pn). Thus, the 

required battery capacity is significantly lower than that corresponding to night-time 

recharging. In fact, this K value is large enough to almost restore EBAT,REF just after each 

fluctuation. Thus the impacts of successive fluctuations become independent of each 
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other and battery requirements become essentially linked to the “worst fluctuation”, i.e. 

the individual fluctuation requiring the highest energy demand. 

 

Figure 3.9: Evolution along the year 2012 of EBAT (a) and PBAT (b) for section B (1.1 MW), a rMAX of 
10%/min and with SOC control. EBAT,REF and K have been arbitrarily set to 175 kWh and 6, respectively. 

3.4.2 Energy storage requirements: the worst fluctuation model 

Careful study of real worst fluctuations observed at Amareleja lead to postulate that 

the worst fluctuation is properly described (Figure 3.10 ) by a power exponential decay 

from Pn to 0.1 Pn (or an exponential rise from 0.1 Pn to Pn) with a time constant, τ [s], 

which is empirically correlated (Figure 3.11 ) with the shortest dimension of the perimeter 

of the PV plant, l [m], by an expression such as: 

b a·= +lτ  ( 3.5 ) 

where a = 0.042 [s/m] and b = -0.5 s. Table 3.1  presents the real τ values observed at 

the different PV Amareleja sections and Figure 3.11  shows that they are in good 

agreement with Eq.( 3.5 ). 
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Figure 3.10: Worst fluctuation model. The blue line represents the PPV (t) response to an irradiance 
fluctuation (yellow line) and the red one is the power injected to the grid PG with a ramp-rate control. The 
difference between PG and PPV  is PBAT, the maximum difference corresponds to PBAT,MAX and the defined 

integral of PBAT corresponds to EBAT,MAX. 

 

Figure 3.11: Adjustment of observed time constant values τ vs. shortest perimeter dimension l, Eq.( 3.5 
). The general expression of this equation is y = mx+n, where m gives the coherency to the units. In this 

case, m = 0.042 [s/m]. 

Table 3.1: Characteristic power Pn, shortest perimeter dimension l and time constant τ of all of the 
observed worst fluctuation at the different Amareleja PV sections. 

Power 

Pn
 (MW) 

Short dimension 

l (m) 

Tau 

τ (s) 

0.55 158 8 

1.1 158 9 

2.2 318 11 

6.6 626 25 

11.5 896 32 

38.5 1786 77 
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Battery requirements for ramp-rate limitation are easily derived from the model 

showed in Figure 3.10 . In this figure, the response of PPV(t) and PG(t) to a negative 

irradiance G(t) fluctuation can be seen. PPV(t) evolution corresponds to a first order 

system with a time constant τ, while PG decreases with a rhythm being set by rMAX. The 

power demanded to the battery PBAT(t) corresponds with the difference between PG(t) 

and PPV(t), Eq.( 3.2 ). Therefore, PBAT(t) along the worst fluctuation time is given by: 

[ ]max))/exp(1(90
100

)( rtt
P

tP n
BAT ⋅−−−= τ

 ( 3.6 ) 

where rMAX is expressed as % per time. This expression gets a maximum for  
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P r

t
MAXBAT ⋅

⋅=
τ

τ 90
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( 3.7 ) 

Thus, the required battery power is given by: 
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where Pn, PBAT,ramp is expressed in [kW], rMAX in [%/s] and τ in [s]. On the other hand, the 

battery discharging process lasts until the time the power ramp reaches 0.1 Pn. 

Corresponding time span, TR, is: 

MAX
R r

T
90=

 
( 3.9 ) 

Thus, the required battery energy is given by: 
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( 3.10 ) 

where Pn is expressed in [kW], rMAX in [%/s], τ in [s] and EBAT,MAX in [kWh]. As the sign of 

the first fluctuation is unknown, a double capacity battery is required to absorb both the 

upwards and downwards fluctuation: 
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( 3.11 ) 

For example, for Pn =1.1 MW and l = 158 m, Eq.( 3.5 ) leads to τ = 6.14 s, and 

battery requirements for limiting the ramp-rate to rMAX = 10%/min are, from Eq.( 3.8 ), 

PBAT,ramp = 0.84·Pn = 928 kW and, from Eq.( 3.11 ), CBAT = Pn·0.132h = 145 kWh. For 

Pn = 38.5 MW and l = 1786 m, corresponding results are τ = 74.51s, 

PBAT,ramp = 0.53·Pn = 20.4 MW and CBAT,ramp = Pn·0.098h = 3773 kWh. 

Figure 3.12  compares the battery requirements for the different PV Amareleja 

sections and for different ramp-rate limits, as deduced from simulation based on a year 

of observed 5 s data and as given by Eq.( 3.8 ) and ( 3.11 ). Good agreement is clearly 

observed. Furthermore, in order to check the general validity of the worst fluctuation 

model, it is performed a similar exercise for two different PV plants located at a distance 

of about 660 km from Amareleja, at Rada (Pn = 1.4 MW; l = 260 m; τ = 10 s) and Castejón 

(Pn = 2 MW; l = 310 m; τ = 12 s), both in the South of Navarra (Spain).  
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Figure 3.12: Storage requirements for ramp-rate control: (a) Battery power PBAT,MAX, normalized to 
inverter power Pn and (b) Storage time CBAT/ Pn, in hours. Results derived from the worst fluctuation 
model show good agreement with the ones derived from detailed simulation based on 5 s real data 

recorded at different Amareleja PV sections. 

Figure 3.13  presents the corresponding results which, again, show very good 

agreement between modelled and simulation-derived data.  

 

Figure 3.13: Worst fluctuation model validation compared to data from two other PV plants, at a distance 
of 660 km from Amareleja PV plant: (a) Battery power PBAT,MAX in MW and (b) Battery capacity CBAT, in 

MWh. 
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3.5 MOVING-AVERAGE STRATEGY  

Given a power time series PPV(t) as recorded in this study, the power smoothed to 

be injected into the grid PG(t) is calculated as the mean production value in a time 

window with a duration of T, in other words, ( 3.12): 

∫ −
=

t

Tt
ttP

T
tP d)(

1
)( PVG

 ( 3.12 ) 

The greater the time for window T, the greater the smoothing of the fluctuations at 

PG(t). The key advantage of this strategy is that, if the system is equipped with an ideal 

converter and battery (ηBAT = ηPEC = 1), by definition of the mean value, the value of 

EBAT at the beginning and end of any given day should be the same. Therefore, there is 

no need for any type of SOC control to prevent the continuous battery discharge. 

However, since ηBAT and ηPEC <1, this advantage disappears and, at the end of the day, 

the battery is discharged to a value equal to the energy lost in the charging/discharging 

processes in the ESS. This same phenomenon was already observed in Hund et al., 

2010. This paper proposes a simple solution to this problem, consisting in offsetting the 

mean value of the losses, also for a time window T (Figure 3.14 ). 

 

Figure 3.14: Model of the moving-average strategy, offsetting the ESS losses. 

In the same manner as was done in ramp-rate control strategy, it would be 

important to obtain a general expression to determine the storage capacity needed by 
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the MA strategy. Figure 3.10  yet again resolves this problem. The analytical expression 

of function PG,MA is equal to Eq.( 3.13 ): 
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Substituting T = 5400/r and resolving Eq.( 3.13 ), the general expression of PG,MA 

is obtained, Eq.( 3.14 ): 
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( 3.14 ) 

The final term of this expression is responsible for the phase lag existing between 

PG,MA and PG,ramp which can be seen in Figure 3.15 . The area between both curves 

AMA,ramp can approximately be calculated by Eq.( 3.15 ): 
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 ( 3.15 ) 

where Pn is expressed in (kW), rmax in (%/min), τ in (s), and AMA,ramp in (kW·h). Therefore, 

the MA strategy requires a battery equal to Eq.( 3.16 ): 

rampMA,rampBAT,MABAT, AEC +=
 ( 3.16 ) 
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Figure 3.15: Model to calculate the storage capacity needed CBAT,MA for the MA strategy. 

For example, for Pn = 1.1 MW (τ = 6.14 s) and rmax = 2%/min, Eq.( 3.10 ) provides  

EBAT,ramp = 370 kW·h and AMA,ramp = 1.8 kW·h, then CBAT,MA = 371 kW·h, equivalent to 

0.35 h of PV plant production at Pn. For the same ramp restriction and Pn = 38.5 MW (τ = 

75 s), Eq.( 3.10 ) gives EBAT,ramp = 12,995 kW·h and AMA,ramp = 715 kW·h , then CBAT,MA = 

13,710 kW·h, equivalent to 0.36 h of PV plant production at Pn. 

Figure 3.16  shows the example of applying this strategy once again for 15 

February 2012, and with T = 2700 s. For this time window T, the maximum daily 

fluctuation in 1 min is reduced to 1.95%/min. For this strategy, the required battery power 

is PBAT,MAX = 919 kW (or PBAT,MAX = 0.83· Pn) and the required effective battery capacity 

is CBAT = EBAT,MAX − EBAT,MIN = 378 kWh (or 20 min of capacity, equivalent to 0.34 h of PV 

plant production at Pn). It must be noted that the SOC control tends to return the battery 

power to its original state, thanks to the offsetting of losses. Likewise, although PG is 

slightly smoother than in the case of ramp-rate control, the ESS endures a few more 

cycles. 
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Figure 3.16: (a) Evolution of the generated power, PPV(t) on 15 February 2012 by Section B (1.1 MW) 
and the simulated power which would be injected to the grid PG(t) under the moving average strategy (T = 

2700 s); (b) battery power, PBAT; and (c) battery energy, EBAT. The simulation has been made based on 
the model shown in Figure 3.14. 

It is worth emphasize that this strategy must be operative even on clear days, 

because the reduction in fluctuations must be ensured in all cases. As will be shown 

later, this will cause an excessive cycling in the ESS. Figure 3.17  shows the example of 

applying this strategy during a clear day. In the absence of methods of predicting 

fluctuations, the MA must be applied since sunrise, preparing for a potential fluctuation 

that does not happen. As a result, the ESS suffered one charge-discharge cycle 

unnecessarily (Figure 3.17 (c) ). 

 

(a) 

 

(b) 

 

(c) 
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Figure 3.17: (a) Evolution of the generated power, PPV(t) during a clear sky day,  
10 August 2011 by Section B (1.1 MW) and the simulated power which would be injected to the grid PG(t) 

under the moving average strategy (T = 2700 s); (b) battery power, PBAT; and (c) battery energy, EBAT. 

� Selection of Time Window T for the Moving-Average Strategy 

Up to now, the T value required to limit the fluctuations to below the rmax limit is 

not known. This chapter provides an answer to this question. To do so, this strategy has 

been simulated for all the 5 s data over one year (2012) and for all the Moura PV plant 

sections (0.55–38.5 MW). For a given value of rmax successive iterations were made, 

increasing the duration of T (with a 60 s interval) until the condition |∆P∆t(t)| < rmax was 

met. Figure 3.18  shows the relationship between the resulting time window T and the 

maximum allowable ramp rmax, with the PV plant power output as a parameter. As can 

 

(a) 

 

(b) 

 

(c) 
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be seen, time window T is solely dependent on rmax, and not on the size of the PV plant, 

Pn which is the reason why in Figure 3.18 all the curves are superimposed. The evolution 

of these values, calls for making a fit based on function T = m·rmax−1, resulting in 

Eq.(3.17): 

)(
5400
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s
r

T =
 

( 3.17 ) 

where rmax is given in (%/min), and m = 5400 (s·%/min). The goodness of fit (R2 = 0.99) 

confirms the validity of the Eq.( 3.17 ). 

 

Figure 3.18: Relationship between the size of the power plant Pn, the maximum allowable ramp, rmax and 
window T, Eq.( 3.17 ) ). 

3.6 STEP-RATE CONTROL STRATEGY 

Logically, the specifications required for the ESS are the direct consequence of the 

standards and regulations to be applied. For example, the reference PREPA, 2012 

requires the smoothing of fluctuations of a very short duration, exceeding 10%/min. 

Translated to another time scale, variations of 100% in 10 min are permitted, being the 

typical fluctuations of a PV system with no energy storage provisions (for ranges of 1–40 

MW) as seen in section 3.2. For this reason, as has been shown in previous sections, 

very small storage times are required, of around 6 min. For other scenarios, such as 



Power fluctuations smoothing of large PV plants with energy storage systems 

CHAPTER 3 

 

41 

 

CRE, 2014, storage becomes more important: for a maximum ramp of 2%/min (in other 

words 20% in 10 min) the required storage time is increased by up to 45 min (section 

3.4.2). For these more severe constraints, it makes sense to seek strategies that optimize 

the ESS system. In this context, an innovative step-rate control strategy based on strict 

compliance with the maximum ramp constraint rmax for the defined time window (for 

example 10 min) is proposed here.The proposed strategy attenuates the fluctuations in 

that particular time window and higher. Below that magnitude (high frequencies) it can 

be taken advantage of the geographical dispersion of a group of PV plants which strongly 

smoothens the fastest fluctuations. Previous studies (Hoff and Perez, 2010; Lave et al., 

2012; Marcos et al., 2012) have well proved that N PV plants dispersed and separated 

at least by a few kilometres (6 km is enough) smoothens out the high frequencies (below 

10 min) proportionally with √N. N is understood to be sufficiently large to produce the 

necessary smoothing effect in order to mitigate the effect of these steps. Therefore, the 

step-control strategy is coherent in a scenario with a number N of dispersed multi-MW 

PV-ESS plants, in which the step-control is implemented in each one, in the knowledge 

the TSO will see a reduction in the step effect simply due to geographical dispersion. 

Therefore, step control makes sense provided that the TSO permits strict compliance 

with rmax in the given time window. A detailed example of how this strategy works is shown 

in Figure 3.19 , and it will be explained below. 

 

Figure 3.19: Evolution of the generated power, PPV(t) on 15 February 2012 by Section B (1.1 MW), the simulated power which 
would be injected to the grid PG(t) in the case of the availability of a battery which limits fluctuations to rmax of 20%/10min using the 

step-control strategy (n = 120, n·∆t = 600 s) and the ramp rate control. The reduction of the storage required 
compared to the ramp control is evident and corresponds to the area between PG,ramp and PG,step. 
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The algorithm of this strategy is as follows (Figure 3.20 ): the first step is to decide 

whether the present evolution of the PV generation is positive or negative. Then, a check 

is made to determine whether the ramp condition is met in a previous time window with 

a duration of n times the sampling time ∆t (5 s in this case). This entails strict compliance 

with the ramp condition for times that are equal to or higher than n·∆t, but not below this 

value. 

 

Figure 3.20: Flowchart of the step-rate control. 

For example, for grid regulations evaluating the fluctuations every 10 min, this 

would mean that the fluctuations would need to be below rmax = 20%/10 min. For this 

case, it would be necessary to choose n·∆t = 10 min (n = 120 as ∆t is equal to 5 s). 

Figure 3.19  shows the ramp control response PG,ramp and that of the step-rate PG,step for 

a negative fluctuation recorded on 15 February 2012 at 14:25:10 am. Before the 

significant negative fluctuation (during the first instant in Figure 3.19 ), short and small 

fluctuations (high-frequency) can be seen. These fluctuations are lower than rmax 

(2%/min) evaluated in 10 min (20%), so step-control does not act. However, when a 

negative fluctuation of around 90% takes place in PPV, step-control acts smoothing this 

fluctuation in PG up to a 20% value. From an energetic point of view, thanks to the ESS, 

the power injected by the PV plant PG,step evolved from 100% to 10% in 40 min, similarly 

to ramp-rate control, PG,ramp. The only difference between PG,ramp and PG,step are the 

steps, fast fluctuations below 10 min. This high frequency will be strongly smoothed by 

geographical dispersion as it has been well proved in Hoff and Perez, 2010; Lave et al., 

2012; Marcos et al., 2012, and then, going unnoticed for the TSO. 
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The area within PG,ramp and PG,step corresponds to the necessary battery reduction. 

Logically, the higher the n·∆t value, the less battery required. To prevent the constant 

battery discharge, this strategy also requires the same SOC control proposed for the 

ramp strategy (Figure 3.8 ). 

Once more, determining the capacity needed by this strategy can be easy solved 

thanks to the worst fluctuation model (Figure 3.21 ). The energy saving for a power plant 

Pn using the step-rate strategy instead of the ramp-rate, Estep-ramp, (kW·h) is the integral 

of the difference between PG,ramp(t) and PG,step(t), or, in other words, the total area of each 

of the triangles Ntri of Figure 3.21 , in other words, Eq.( 3.18 ): 
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where Pn is expressed in (kW), and n·∆t in (s). For example, for Pn = 1.1 MW (τ = 6.14 

s) and rmax = 20%/10 min, Eq. ( 3.10 ) gives EBAT,ramp = 373 kW·h. From Eq. ( 3.18 ), with 

n·∆t = 600 s the saving Estep-ramp is equal to 82.5 kW·h, that is 22%. As can be observed, 

this percentage is independent of rmax and the PV plant size (or, in other words, τ). 

 

Figure 3.21: Model to calculate the storage capacity required for the worst fluctuation and step-rate 
strategy via EBAT,ramp. 
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By way of example, Figure 3.22  again shows the results of simulating this strategy 

for 15 February and with rmax = 20%/10 min (2%/min). For this strategy and according to 

Eq. ( 3.18 ), CBAT needed to smooth the worst fluctuation is equal to 582 kW·h, so 

EBAT,ref = 291 kW·h. For that given day, the required battery power is PBAT,MAX = 879 kW 

(or PBAT,MAX = 0.79 Pn) and the required effective battery capacity is CBAT = EBAT,MAX − 

EBAT,MIN = 312 kWh (or 17 min of storage equivalent to 0.28 h). Obviously, PG is more 

fluctuating than in the case of step-rate control, but the stress in the ESS and capacity 

needed are lower. The steps produced in PG by this strategy can be better seen in 

Figure 3.19 , which is precisely an enlarged version of Figure 3.22 (a) . 

 

(a) 

 

(b) 

 

(c) 

Figure 3.22: (a) Evolution of the generated power, PPV(t) on 15 February 2012 and the simulated power 
which would be injected to the grid PG(t) under the step-rate strategy (n = 120, n·∆t = 600 s), limiting 
fluctuations to rmax of 20%/10 min; (b) battery power, PBAT; and (c) battery energy, EBAT. The simulation 

has been made based on the model shown in Figure 3.8. 
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3.7 A COMPARISON OF THE SMOOTHING STRATEGIES  

These three strategies were simulated for 5 s data for one year (2012) and for all 

the Amareleja PV plant sections (from 0.55 MW to 38.5 MW), with a ramp restriction of 

rMAX = 2%/min (20%/10 min for the step-control), a similar restriction imposed by CRE, 

2014. For the average moving strategy, this restriction requires a minimum T of 2700 s, 

according to Eq. ( 3.17 ). For the step-rate control, n = 120 (120 × 5 s = 10 min). It 

should be pointed out that the SOC was calculated on the effective storage capacity 

CBAT, thereby allowing 100% variations in the SOC (effective SOC). As a result of this, in 

the case of the ramp control and the step rate control, the reference SOC is 50% whilst, for 

the moving average, the battery starts and ends each day fully discharged (SOC = 0%). 

The indices of merit selected to compare the strategies are the effective storage time tbat, 

the storage system losses, the degradation due to cycling and the quality of the wave 

injected into the grid. 

3.7.1 Effective Storage Time, tbat 

As shown above, the difference in the storage capacity required for the different 

strategies depends on the following factors: rated power output of the PV plant Pn and 

maximum allowable ramp rmax.. Figure 3.23  shows the storage time required, tBAT, for 

each strategy, based on the size of the PV plant. This parameter was calculated after 

annual simulation, as the difference between the maximum and minimum annual energy 

value in the battery, EBAT,MAX − EBAT,MIN divided between the rated power output Pn of the 

PV system.  
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Figure 3.23: Storage time required, tBAT, for each strategy, based on the size of the PV plant with a 
ramp restriction of rmax = 2%/min. 

The step-rate control requires an average 20% less storage than the ramp-rate 

control (the greater the value of parameter n·∆t, the less battery required). Clearly, the 

MA strategy requires the smallest battery capacity. However, this strategy does not 

benefit from the fluctuation smoothing due to the size of the PV plant, as shown in 

Eq.( 3.10 ), unlike the ramp-rate and step-rate control strategies (section 3.4). The best 

way to demonstrate this is Figure 3.24 . It shows the relationship CBAT,ramp/CBAT,MA, 

constructed from Eq.( 3.11 ) and ( 3.16 ) for different values of rmax and Pn. As rmax and 

Pn increases, CBAT,ramp/CBAT,MA decreases. In any case, for restrictions around 2%/min, 

approximately half an hour of storage is sufficient to smooth the fluctuations. 

 

Figure 3.24: Relation CBAT,ramp/CBAT,MA based on the PV plant size Pn and the maximum permitted ramp 
rmax. 
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3.7.2 Losses in the Storage System  

Figure 3.25  shows the total energy loss in the ESS (PEC and battery) for 

rmax = 2%/min, expressed as a fraction of the annual production, based on the PV plant 

size. As can be seen, the losses for the moving average strategy are considerably higher 

than those for the other two strategies (2–3 times more). The reason lies in the fact that 

this strategy must act every day, regardless of whether there are any fluctuations or not, 

whilst the rate control strategies only act in the event of fluctuations greater than rmax. 

Moving average losses are considerably higher than for ramp-rate control. Note that in 

this new perspective, step-control would not proceed, because it allows fluctuations 

of 100%/10 min. In any case, it should be highlighted that the losses are small for all 

strategies (<1.4% in the worst case). 

 

Figure 3.25: Losses at the PEC and battery, based on the size of the PV plant considered and the 
fluctuation smoothing strategy, with a ramp restriction of rmax = 2%/min. 

3.7.3 Stress in the Storage System 

Figure 3.26  shows the histogram for the annual effective SOC of the storage 

system for each of the strategies simulated in Section B (1.1 MW, Figure 2.1 ). As can 

be seen, the SOC distribution for the ramp-rate and step-rate strategies is very similar, 

being derived from the same algorithm: the control guarantees at all times that the 

effective SOC is maintained at around 50%, only moving away from this reference value 

when significant fluctuations occur (charges and discharges to 50%). These situations 

are extremely rare, consistent with the annual distribution of fluctuations already seen in 
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Marcos et al., 2011a. However, the SOC distribution for the MA is clearly bimodal, and 

is quite different from the rate-control strategies. Each day the battery undergoes a 

complete charge-discharge cycle (100% charge and discharge) with the maximum 

battery energy achieved at around midday, with full discharge at the end of the day, 

remaining in this state for the entire night. This explains the frequent SOC values close to 

0% and 100%. 

 

Figure 3.26: Histogram for the effective SOC in the storage system resulting from the simulation of the 
ramp-rate, MA and step-rate strategies for rmax = 2%/min. Note that the y-axis is logarithmically scaled. 

However, Figure 3.26  is insufficient to determine the extent of the storage system 

degradation due to cycling. This is largely dependent on the number of Ncicl cycles and 

the depth of discharge (DOD). However, considering an annual effective SOC profile, 

such as those obtained in these simulations, there are methods to determine both 

parameters. One of the most-used algorithms and which provides the best results is 

Rainflow-counting (Matsuishi, M. & Endo, 1968). Initially developed to calculate 

mechanical fatigue (Hund et al., 2010), this method has also proved to be equally valid 

for calculating the ESS ageing due to cycling (Datta et al., 2011; Dufo-López et al., 2014, 

2007; Gee et al., 2013; Schaltz et al., 2009). In this way, any complex charging and 

discharging series can be broken down into a series of simple sub-cycles with a given 

DOD. The methodology followed in this document is similar to that shown in Dufo-López et 

al., 2014. 
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Figure 3.27  shows the result of applying the Rainflow-counting algorithm to the 

annual effective SOC for the various strategies and Section B (1.1 MW, Figure 2.1 ), for 

rmax = 2%/min and 10%/min. The figure shows the number of cycles Ncicl occurring (y 

axis) and the DOD (x axis). For the moving average strategy the ESS performs more 

cycles and with depths of discharge which are practically double those of the other 

strategies.  

 

 

Figure 3.27: The number of observed cycles at a given depth of discharge (DOD) for the strategies 
presented in this study, for a maximum ramp limitation of rmax = 2%/min in Section B (1.1 MW). Note that 

the y axis is logarithmically scaled. 

Once these curves have been obtained, the calculation of the annual degradation 

due to cycling is immediate. Assuming again that the ESS under study is a lithium ion 

battery, with a life cycle curve similar to that shown in Figure 3.28  (SAFT SA, 2008). This 

shows the number of maximum cycles Nmax for a given DOD. It is possible to calculate 

the annual degradation due to cycling CBAT,loss as the sum of each individual degradation 

to a given DOD, in other words the relationship between the number of annual cycles 

observed Ncycl, and the number of maximum possible cycles Ncycl,max, is given in 

Eq.( 3.19 ): 
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Figure 3.28: Life cycle curve at 25 °C, Nmax vs. DOD, for a lithium ion battery made by SAFT. 
Reproduced with permission from [34]. Copyright © SAFT 2014. 

The results obtained by Eq.( 3.19 ) show the degradation solely due to the effect of 

the ESS cycling. However, additional effects exist which are not going to be taken into 

account and which affect service life, such as operating temperature. The method applied 

here for lithium batteries is also valid for any other storage technology, simply by knowing 

the ESS life cycle curve (Figure 3.29 ). The results of applying Eq.( 3.19 ) to the values 

of applying Eq.( 3.19 ) to the values of Figure 3.27  are equal to 1%, 11.09% and 0.6% 

for ramp-rate, MA and step-rate respectively. Given the fact that the manufacturer does 

not permit DOD values greater than 80%, the data in Figure 3.27 (a)  have been re-scaled 

to correspond to a DOD of between 0% and 80%. 

 

Figure 3.29: Annual degradation of the ESS due to cycling for rmax = 2%/min for all strategies and 
based on the PV plant size. 
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This calculation methodology can be repeated for all the sections of the Amareleja 

plant observing the cycling degradation based on Pn and the strategy considered 

(Figure 3.29 ). The ramp-rate and step-rate control strategies show a very low cycling 

degradation (0.5%–2%) which hardly affects the useful life of the battery, unlike the moving 

average strategy with a degradation of around 10 times greater. As can be seen, the step-

control cycling degradation is in any case lower than that of the ramp-rate.  

Recently, in order to avoid the daily MA cycling Perez and Hoff, 2013 proposed to 

base the MA on the daily clear sky output ratio. Even so, it needs to resolve practical 

points such as control of the SOC (for example, how a midday negative fluctuation would 

be covered if the battery is discharged) or how to avoid constant discharge due to losses 

in the conversion elements. Likewise, it points out how forecasts can, to a large extent, 

help anticipate fluctuations and optimize the storage required and, in fact, the 

reference Perez and Hoff, 2013 discussed the improvement obtained with a perfect 

forecast, although how to face a situation in which the forecast fails has not been properly 

resolved. 

3.7.4 Quality of the Signal Injected into the Grid 

Figure 3.30  shows PG frequency spectrum for all the data for one year for 

Section B (1.1 MW) (Figure 2.1 ) and for each of the strategies proposed in this chapter. 

The methodology followed is identical to that presented in Apt, 2007; Marcos et al., 

2011b. Basically, the method consists in applying the discrete Fourier transform (DFT) 

to variable PG over an entire year, previously normalized (using Pn), computed by a fast 

Fourier transform (FFT) algorithm. As can be observed, the three strategies analysed 

offer a similar cut-off filtering frequency of around 0.2 mHz (1.4 h), smoothing higher 

dynamics, particularly the MA strategy. However, it can be observed how the effect of the 

step-rate control filtering is reduced after frequencies close to 10 min (1.2 mHz), allowing 

faster dynamics to pass through and, therefore, injecting poorer quality power into the 

grid. However, this faster dynamics are easily reduced when taking into account the 

production of a PV fleet geographically dispersed, as it was demonstrated in Hoff and 

Perez, 2010; Marcos et al., 2012; Otani et al., 1997. 
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Figure 3.30: Spectrum for annual PG resulting from the simulation of the three control strategies for the 
data for PPV of Section B (Pn = 1.1 MW). 

3.8 CONCLUSIONS 

In this chapter, the storage requirements needed to smooth short-term PV power 

fluctuations based on different control strategies and for a wide range of PV system 

power outputs has been quantified. The one-year simulation of the strategies has 

demonstrated that the MA strategy requires the least storage capacity. However, it is 

necessary to analyse for each particular case whether, firstly, this saving in size offsets 

the considerable increase in losses (2–3 times more) and, secondly, whether the storage 

technology is compatible with greater cycling (about 10 times more) and with SOC values 

close to zero for long periods of time. For example, for the case of lithium ion batteries, 

this strategy would have an extremely negative impact on the battery useful life, although 

this impact may be lower for ultra-capacitors or flow batteries (Luo et al., 2014). The new 

proposed strategy, namely the step-rate control, provides the most efficient use and with 

less ESS cycling in situations with several PV plants geographically dispersed and 

exigent ramp restrictions. Under less restrictive conditions, the ramp-rate control would 

be preferable against MA. Likewise, for a given grid restriction, an empirical expression 

is put forward to make it possible to determine the energy capacity required for each 

strategy. 

It would be highlighted the lower losses achieved for the proposed system, particularly 

for the rate-control strategies (ageing due to cycling of around 1%/year–2%/year). This 
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result draws attention to the potential use of the ESS for ancillary services (frequency 

regulation or time shifting), in an endeavour to maximize the value of its installation. To 

do so, a fluctuation prediction tool would be necessary, and this would need to be 

accurate enough to determine the critical times, in order to ensure the smart 

management of the energy stored. 

  



Power fluctuations smoothing of large PV plants with energy storage systems 

CHAPTER 3 

 

54 

 

  



 

55 

 

 

 

 

4                    

ADVANCED CONTROL STRATEGIES TO 

USE THE MINIMUM ENERGY STORAGE 

REQUIREMENT FOR PV POWER RAMP-
RATE CONTROL  

“Look deep into nature, and then you will understand everything better.” 
Albert Einstein (1879-1955) 

4.1 INTRODUCTION 

As it has been commented in the previous chapter, one of the advantages of the 

moving-average control is the use of less ESS capacity at the expense of an energy 

increase through the ESS which implies higher losses and cycling degradation. On the 

other hand, the great advantage of the ramp-rate control is that only acts when the 

fluctuation exceeds the maximum allowable ramp-rate value, which implies lower cycling 

degradation. However, the main disadvantage of the latter control is that, as the sign of 

the first fluctuation is unknown, a double capacity battery was required to absorb both 

the upwards and downwards fluctuation setting the SOC reference at 50% (section 

3.4.2). Considering the fact that this increased capacity involves high PV plant 

overheads, it therefore follows that a second control, making it possible not to double the 

storage system capacity, would be extremely useful. In this way, this new control would 

take advantage of both the less use of ESS capacity and the lower cycling degradation. 
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In this chapter, two new strategies are proposed to make it possible to resolve this 

issue by improving the state of the art and halving the ESS requirements for the ramp-

rate control strategy. For the first strategy, all the inverters are involved in the PV plant 

control, limiting their output in order to comply with a certain variation per minute during 

upward fluctuations. For the second strategy, the control is based on the two PV plant 

production limits: the maximum PV plant power which occurs under clear sky conditions 

(PPV,Max(t)) and the minimum PV plant power which occurs with complete cloud cover 

(PPV,Min(t)). Therefore, as a function of the instantaneous PV power, it is then possible to 

obtain the SOC needed to smooth out any potential fluctuations. These strategies have 

been successfully validated through real operational one year, 5 second PV power data 

at the 38.5 MW PV power plant at Moura (Portugal) (section 2.2). Finally, a comparison 

of all the strategies proposed in both this chapter and the previous one is made in terms 

of the performance and cyclability of the ESS. 

4.2 RAMP-RATE CONTROL USING THE PV INVERTERS: RRINVERTER 

Let me refer to the ramp-rate control strategy already presented in section 3.4 as 

the classical ramp-rate control, RRclassical. One option to avoid doubling the battery 

required in RRclassical is to limit the ramping-up events with the inverters. Although nothing 

can be done with the inverters during downward fluctuations, it is possible to limit the 

inverter operation at a point other than the maximum power point (MPP) making it 

possible to comply with a certain variation per minute during upward fluctuations. An 

implementation example can be found in Ruifeng and Saha, 2010. It is worth mentioning 

that despite the fact that the limitation is for the entire PV power of the plant under 

consideration, the upward ramp variation is going to be limited locally in each inverter 

because this is required by the PV plant architecture. In this way, the total PV power 

increase will be either less than or equal (in the worst case scenario), to the maximum 

variation per minute permitted in each inverter. In this case, the ESS is only needed 

during ramping down events and, consequently, the capacity needed will be half that 

required in Eq.( 3.11 ). That is Eq.( 4.1 ). 
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����,��	
,����
��� = 0.9�
3600 � 902 ∙ ���� − �� ( 4.1 ) 

Figure 4.1  shows the control scheme implemented for this technique. Although it 

is similar to the generic model used in the Figure 3.8 , it does have some modifications. 

Firstly, the upward ramp variation of each inverter is limited to the desired value, rMAX. In 

this way, the sum of the output power of all the inverters (PPV,lim inverter(t)) is certain to 

ensure that the total power always complies with the desired maximum power variation 

during upward fluctuations. This means that it is only necessary to use a downhill limiter 

that is enabled in case of, Eq.( 4.2 ). 

 �!"#$ − ∆$&�' − ∆$ ∙ ����( > �!"#$& ( 4.2 ) 

where rMAX is expressed in [%/min]. Again, the control scheme also includes a SOC 

control but in this case EBAT,ref will be the value corresponding to SOC =100%. Again, the 

control action is applied prior to the ramp-rate limiter to ensure that condition rMAX is met 

at all times. To sum up, the upward fluctuations are limited at the inverters level whilst 

the downward fluctuations are limited by the ESS at the entire PV plant level. To evaluate 

this strategy, it will be taken K=1 which is the best relationship between speed and 

system stability for this case. 

 

Figure 4.1: Ramp-rate control model modified with inverter SOC control. 
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Figure 4.2  shows the response of the PV plant against an upward and downward 

fluctuation for rMAX=2%/min. It should be noted that the SOC is calculated on the basis of 

Eq.( 4.1 ) in this case. The blue line represents the total PV power available at MPP 

(PPV,MPP(t)) whilst the green line represents the sum of the PV output power of the 

inverters, PPV,lim inverter(t), whose ramping-up variations have been limited. As can be seen, 

PPV,lim inverter(t) directly complies with the permitted variation (rMAX=2%/min in this case) 

during the upward fluctuation. The black line is the power injected into the grid (PG(t)) 

and the red line is the SOC of the ESS. Again, during the downward fluctuation, PG(t) 

complies with the limited value but with the back-up of the ESS. In this way, the ESS 

provides the energy necessary and its SOC decreases from 100% to almost 40%. It is 

worth noting that the differences between the blue line, PPV,MPP(t), and the green line, 

PPV,lim inverter(t), correspond to the energy losses due to the inverters limitations. 

  

Figure 4.2: Response against an upward and downward fluctuation at the end of the day, 29th January 
2012. 

Figure 4.3  shows the evolution of this new control during a day with extreme 

fluctuations (21st November 2012) with a maximum allowable ramp-rate value of 2%/min. 

In this figure, it can be seen that despite the strong fluctuations in PPV(t), the control 

response adequately complies with the ramp-rate value. According to Eq.( 4.1 ), the 

minimum theoretical effective battery required is CBAT=12279 kWh. For this particular 

day, SOCMAX = 100% and SOCMIN=39.30%. Thus, CBAT,used = EBAT,MAX-EBAT,MIN = 

7453 kWh. 
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Figure 4.3: SOC control during 21st November 2012 

Note that this strategy halves the CBAT required in RRclassical. On the other hand, the 

energy losses due to inverter limitation reach 36% of the total production of this day, quite 

a high value. Obviously, any other day with fewer fluctuations in the available power 

would have fewer losses caused by inverters limitations. The total losses for an entire 

operating year will be discussed later on. 

4.3 RAMP-RATE CONTROL BASED ON THE PV POWER PLANT MODEL : 
RRCLEAR- SKY 

The second method proposed is to implement a SOC control based on the actual 

power given by the PV plant and its production limits. Despite the variable nature of solar 

radiation, it can be taken advantage of the fact that its limits are well known.  

The instantaneous PV plant power generated, PPV(t), for specific values of 

irradiance, G(t), and cell temperature, Tc(t), can be easily estimated with a parametric 

model of the PV plant under consideration. It is possible to estimate at each moment, the 

PV plant production limits: the PV plant power under clear sky conditions, PPV,Max(t), and 

the PV plant power under totally cloudy sky conditions in which only the diffuse light 

reaches the PV arrays, PPV,Min(t). These powers represent both the maximum and 

minimum power that can occur at the PV plant at that moment in time. In this way, it is 
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the actual PV power, it is then possible to obtain the state of charge needed in order to 

either absorb or provide the necessary energy depending on the nature of the fluctuation, 

either upward or downward respectively. Figure 4.4  shows the control diagram which is 

very similar to the one already used in section 3.4 and shown in Figure 3.8  and Figure 

4.1. The only difference is that, in this case, there is a new block that is able to calculate, 

through the measured cell temperature (Tc), the SOC value (EBAT,ref) to allow the battery 

to provide sufficient power to cover a decrease in radiation or otherwise to absorb excess 

power. 

 

Figure 4.4: Ramp-rate control model for RRclear-sky 

4.3.1 PV plant power production limits 

The calculation of PPV,Max(t) corresponds to the calculation of the PV power under 

clear sky conditions. This power can be obtained through the following steps: 
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empirical and physical models can be found in the literature (Bird and Hulstrom, 1980; 

Geiger et al., 2002; Gueymard, 1989; Kasten, 1980; Molineaux et al., 1998; Rigollier et 

al., 2000). Although, as will be seen later on, high accuracy is not required for the 

modelling of clear sky days for the goodness of the control, these models have been well 

validated and their performance on very clear condition measurements are within 4% in 

terms of standard deviation (Ineichen, 2006). For the purpose of this study, the model 

selection criteria must be based on both implementation simplicity and input parameter 

availability (Linke turbidity or aerosol optical depth). In this way, the clear sky model of 

the European Solar Radiation Atlas (ESRA) which only needs the Linke turbidity as an 

input parameter has been implemented (Rigollier et al., 2000). Monthly values of the 

Linke turbidity factor are sufficient for the purpose of this study and can be obtained from 

(SODA, n.d.) 

In this model, the global horizontal irradiance for clear sky, Gc(0), is split into the 

direct component, Bc(0) and given by Eq.( 4.3 ): 

*�#0& = *+,+ sin 01exp	#−0.8662789:;& ( 4.3 ) 

where B0 is the solar constant (1367 W·m-2), ,+ is the eccentricity correction; 01 is the 

solar altitude angle (0° at sunrise and sunset); TL is the Linke turbidity factor for an air 

mass equal to 2; m is the relative optical air mass; :; is the integral Rayleigh optical 

thickness that depends on the precise optical path and hence on relative optical air mass, 

m, and its parameterization can be obtained in Kasten, 1996.  

And the diffuse component, Dc(0), given by Eq.( 4.4 ): 

<�#0& = *+,+7��#78&=�#01, 78& ( 4.4 ) 

In this equation, the diffuse radiation is expressed as the product of the diffuse 

transmission function at zenith (i.e. sun elevation 90°),7��, and diffuse angular function, 

=� . Further information about the calculation of these parameters can be found in 

Rigollier et al., 2000. 
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4.3.1.2 PV plant model 

First of all, cell temperature, Tc, is required to calculate the PV module overheating 

losses. In this study, several temperature sensors have been recording data every 5 s. 

In case cell temperature sensors are not available, Tc can be calculated on the basis of 

ambient temperature (Ta), using the well-known Eq.( 4.5 ): 

7> = 7� + @A�7 − 20800 ∙ B	 ( 4.5 ) 

where NOCT  is the nominal operation cell temperature obtained from the manufacturer 

datasheet, in °C, and Gm is the irradiance measured in the plane of the array, in W·m-2. 

Notice that in this case both an irradiance sensor and ambient temperature sensor are 

required. 

Once both components of the global horizontal irradiance have been obtained, the 

radiation that reaches the PV generators must be calculated. To do so, the angle of 

incidence, C , and the PV generator orientation, 	D , at every instant in time must be 

calculated. All the expressions which allow these parameters for the main kinds of 

tracking systems can be found in Narvarte and Lorenzo, 2008. 

Subsequently, based on the position of the PV generator, the radiation can be 

calculated in the plane of the generator, B�#C, D&. In order to obtain the value of the 

irradiance over an inclined plane, several models have been proposed (Hay and Mckay, 

1985; Hay, J. E., Davis, 1980; Klucher, 1979; Lorenzo, 2011; Muneer, 1990; Perez et al., 

1987; Reindl et al., 1990) which typically split the solar radiation in beam 

radiation,	*�#C, D&; diffuse radiation,	<�#C, D&; and reflected radiation,	E�#C, D&. As was 

mentioned above, for the purpose of this application, as a great deal of precision is not 

required, any of the models proposed in the literature will be valid. In this case, the Hay-

Davies model (Hay, J. E., Davis, 1980) was chosen. Further information about the 

parameters and equations implemented can be found in Hay, J. E., Davis, 1980; Lorenzo, 

2011. 



Advanced control strategies to use the minimum energy storage requirement for PV power ramp-rate control  

CHAPTER 4 

 

63 

 

Although the method is sufficiently accurate for the purpose of this study, it is worth 

noting that in order to improve the accuracy of the calculation, it is possible to take into 

account the deduction of power losses caused by shading (Martínez-Moreno et al., 

2010), dirt and incidence (Martin and Ruiz, 2001)  and spectrum (Ruiz, 1999).   

The next step is to obtain the maximum output power (PDC(t)) which is calculated 

using Eq.( 4.6 ): 

�F>#$& = �∗ B�#$&B∗
H#$&H∗  ( 4.6 ) 

where P* is the maximum power under standard test conditions (STC, defined by a 

normal irradiance of G*=1000W.m-2, a cell temperature of TC*=25 °C, and AM1.5 

spectrum), H#$& is the efficiency as a function of the irradiance and cell temperature, Tc, 

and H∗ is the efficiency under STC, H∗ = �∗ I · B∗K  where A  is the active area of the PV 

generator. 

The simple implemented model, but with sufficient accuracy for the purpose of the 

study, only takes into account the dependence of efficiency with temperature (Eq.( 4.7 )): 

H#$&H∗ = 1 + 0#7>#$& − 7�∗& ( 4.7 ) 

Finally, the inverter is characterized by its nominal output power (PI) and three 

experimental parameters, (k0, k1 and k2) used to calculate its power efficiency (HM#$&) as 

it is shown in Jantsch et al., 1992 through Eq.( 4.8 ): 

HM#$& = ��>#$&�F>#$& = N��#$&N��#$& + #O+ + OPN��#$& + OQN��Q #$&& ( 4.8 ) 

where pac(t)=PAC(t)/PI being PAC the output AC power of the inverter and the mentioned 

parameters k0, k1 and k2, which must be fitted either from the power efficiency curve 
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provided by the inverter manufacturer or from experimental measurements (Muñoz et al., 

2011). 

4.3.1.3 PPV,Max(t) and P PV,Min(t) calculation 

Once these parameters are known PPV,Max(t) is given by Eq.( 4.9 ). 

�!",��R#$& = ��>#$& = �∗ B�#$&B∗ S1 + 0#7>#$& − 7>∗&T ∙ HM#$& ( 4.9 ) 

And PPV,Min(t) corresponds to the power under maximum cloudiness conditions. A 

rough approach to define the cloudy day but good enough for the purpose of the control 

is to consider it as 10% of a clear day, which corresponds with the minimum diffuse 

radiation observed. In this way PPV,Min(t) is given by Eq.( 4.10 ). 

�!",�U
#$& = 0.1 ∙ �!",��R#$& ( 4.10 ) 

Note that any other losses, such as transformer and wiring losses, can be 

implemented to improve the accuracy of the calculation of PPV,Max(t) and PPV,Min(t). By 

way of example, Figure 4.5  shows these limits and the real PV power, PPV(t), for the 21st 

November 2012. 

 

Figure 4.5: P Max and P Min limits for the 21st November 2012 
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Note that there are some points in which PPV(t) exceeds the PPV,Max(t) limit 

modelled. This is because, on a day with scattered clouds, there may be some reflections 

between the radiation that reaches the ground and the clouds that cause these values to 

be slightly above normal. In any case, these are individual cases that do not affect the 

proper functioning of the application. On the other hand, it can be seen that PPV,Max(t) at 

the beginning and end of the day does not behave as a perfect bell curve as was to be 

expected. This is because the model is taking into account the shade losses of the PV 

plant in order to get a more precise result, although this is not necessary. 

4.3.2 SOC reference calculation 

Considering the fact that both the maximum and minimum power limits are well-

known, it makes sense to implement a SOC control which takes into account these two 

limits. It is possible to control the SOC reference of the ESS depending on the nature of 

the day under consideration. In other words, it is possible to control the SOC of the 

battery close to 100% on a clear day and with the PV plant in full operation, given the 

fact that the only event that could possibly occur is a downward fluctuation, which will be 

mitigated by providing energy from the ESS. Whilst, on a cloudy day with the PV plant 

operating under diffuse irradiance with low power the ESS will be at a low state of charge 

in order to absorb the only possible upward fluctuation that could occur. Any other 

intermediate state of production will imply a SOC reference that will be variable as a 

function of the actual weather conditions. To evaluate this strategy, it will be taken K=6. 

Figure 4.6  shows the capacity required at a time close to midday on the 21st 

November 2012 in order to correctly absorb both any potential upward and downward 

fluctuations. Note that, on one hand, the available capacity required for discharging in 

the event of the maximum possible downward fluctuation (CBAT,d) is the energy storage 

that needs to be injected into the grid in order to mitigate this fluctuation. On the other 

hand, the capacity required to charge in the event of the maximum upward fluctuation 

(CBAT,c) is the difference required in the ESS to absorb this fluctuation. CBAT,d and CBAT,c 

requirements are determined according to Eq.( 4.1 ) and are expressed by Eq.( 4.11 ) 

and Eq.( 4.12 ). 



Advanced control strategies to use the minimum energy storage requirement for PV power ramp-rate control  

CHAPTER 4 

 

66 

 

����,�#$& = 0.9 ∙ S�!"#$& − ��U
#$&T3600 � 902 ∙ ���� − �� ( 4.11 ) 

����,�#$& = 0.9 ∙ S���R#$& − �!"#$&T3600 � 902 ∙ ���� − �� ( 4.12 ) 

 

Figure 4.6: SOC control during an instant on 21st November 2012 

It is worth noting that when the PV plant is operating at any point close to midday, 

when PPV,Max(t)= PN, the sum CBAT,d + CBAT,c = CBAT,ramp. This means there is only one 

SOC point which complies with the ramp limitation imposed. However, at any other time 

of day, the sum CBAT,d + CBAT,c < CBAT,ramp, which means that not only is there a single 

point that meets the ramp limitation but an entire zone. If the SOC is within this zone, no 

modification will be required, a fact that makes it possible to reduce the ESS cycling 

degradation should this be necessary. This translates into the following control logic (Eq.( 

4.13 )):  
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As an example, Figure 4.7  shows the evolution of the SOC control proposed during 

the fluctuations on the 21st November 2012. Despite the fluctuations recorded during the 

day, the strategy worked successfully. The SOC of the ESS was continuously adjusted 

to comply with both the ramp rate limitation implemented and any possible fluctuations 

that could take place. Furthermore, as mentioned above, at the beginning and end of the 

day when EBAT(t) values comply with the ramp rate limitation, so the SOC remains 

constant according to Eq.( 4.13 ). As happened in RRinverter, according to Eq.( 4.1 ), the 

minimum theoretical effective battery required is CBAT=12279 kWh. In this particular day, 

SOCMAX = 88.84% and SOCMIN = 21.43%. Thus, the effective capacity used in this day is 

CBAT,used = EBAT,MAX-EBAT,MIN = 8276 kWh. Again, this strategy allows to halve the CBAT 

required in RRclassical. 

 

Figure 4.7: SOC control on the 21st November 2012 
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Furthermore, Figure 4.8  shows the evolution of the SOC during a clear day (26th 

August 2012) and a cloudy day (23rd November 2012). As was to be expected, during 

the clear day when PPV(t) is close to the PPV,Max(t) limit, once the SOC level of the ESS 

can provide enough energy to mitigate the only possible downward fluctuation, it remains 

constant. On the other hand, on a cloudy day, when the SOC level of the ESS is low 

enough to absorb the energy required to mitigate the only possible upward fluctuation, it 

also remains constant. Obviously, the lower the use of the ESS the lower the losses and 

the lower the ESS cycling degradation. 

 

Figure 4.8: SOC control during (a) a clear day (26th August 2012) and (b) a cloudy day (23rd November 
2012) 

4.4 EVALUATION OF RAMP -RATE CONTROLS OVER A ONE -YEAR SIMULATION 

PERIOD 

The first ramp-rate control already proposed in section 3.4 and called RRclassical, 

and the two new strategies proposed in this chapter have been simulated for 5 s power 

outputs over the course of one year (2012) at the 38.5 MW Moura PV plant for a 

maximum allowable ramp-rate limitation of rMAX=2%/min which is a similar restriction to 

that imposed by CRE, 2014. It is worth noticing that the SOC of the ESS has been 

calculated based on the theoretical effective capacity CBAT,ramp, thereby allowing 100% 

variation in the SOC (effective SOC). Table 4.1  shows the indexes of merit selected to 

compare the strategies after the simulation. 
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Table 4.1: Results after 1 year simulation of real power output data at 38.5 MW Moura PV plant. 

Results RRclassical RRinverter RRclear-sky 

Theoretical Capacity 

CBAT,ramp (kWh) 

24558 

[Eq.( 3.11 )] 

12279 

[Eq.( 4.1 )] 

12279 

[Eq.( 4.1 )] 

Effective Capacity Used 

CBAT,ramp,used (kWh) 
23678 8711 11703 

Energy through the ESS 

(% Total Production) 
6.39 2.26 6.15 

Inverter Limitation Losses 

(% Total Production) 
- 9.09 - 

Theoretical effective capacity, CBAT,ramp, has been calculated on the basis of Eq.( 

3.11 ) for RRclassical and on the basis of Eq.( 4.1 ) for RRinverter and RRclear-sky alike. On the 

one hand, taking Table 4.1  into account, CBAT,ramp for the two new proposed strategies 

(RRinverter and RRclear-sky) is half the capacity required in RRclassical. On the other hand, the 

effective capacity used, CBAT,ramp,used, which is just CBAT,ramp,used = EBAT,MAX-EBAT,MIN 

throughout the whole year, in RRclassical and RRclear-sky alike, is close to the theoretical 

value(<5%). However, CBAT,ramp,used in RRinverter is 30% lower than the theoretical value. 

This is because in this strategy PPV,lim inverter(t) is always equal or lower than PPV(t)  due to 

the inverter limitation. In this way, the inverter limitation mainly acts during days with 

fluctuations and, as a result, PPV,lim inverter(t) never reaches PPV(t) as can be seen in Figure 

4.9. Consequently, the effective capacity used, CBAT,ramp,used, is lower than the theoretical. 

However, it could occur that being in a clear day close to the midday, a front of clouds 

appear and convert the clear day in a complete cloudy day instantaneously. In this case, 

the whole theoretical effective capacity will be needed. 
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Figure 4.9: PPV(t)  and PPV,lim inverter(t)  limited for a very fluctuations day (31st October 2012). PV power at 
the output of the inverters, PPV,lim inverter(t), never reaches the original PV power, PPV(t). 

Figure 4.10  shows the effective SOC evolution for the whole year and for the three 

strategies analysed. In Figure 4.10 (a)  it can be seen how for the RRclassical, the ESS is 

regulated by the SOC=50% with rises and falls throughout the year. The ESS is only 

used for a few days and the SOC is close to the limits 0% and 100%. In Figure 4.10 (b)  

the required theoretical effective capacity for RRinverter is half the required in RRclassical  

and the SOC is regulated to the 100% of the charge because the ramping up events are 

limited by the inverters. There are few days in which the battery is discharged and 

SOCMIN never get off below 30% because the inverter limitation makes that PPV,lim inverter(t) 

never reaches PPV(t) and the ramping down events that have to be smoothed are smaller 

than in the other strategies. In Figure 4.10 (c) , the required theoretical effective capacity 

for RRclear-sky is half the required in RRclassical again. In addition, the SOC evolution shows 

that the ESS is much more used because it is continuously adjusting throughout the year 

depending on the climate conditions. There is not a constant SOC reference value. 
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Figure 4.10: Annual effective 5-second SOC profile for the three strategies simulated: (a) RRclassical, (b) 
RRinverter and (c) RRclear-sky. Note that the capacity required in RRclassical is double the capacity required in 

RRinverter and RRclear-sky. 

With regard to the energy supplied by the ESS, Table 4.1  shows that, on the one 

hand, RRclassical and RRclear-sky both make a similar use of the storage system at around 

6%, whilst, on the other hand, the energy through the ESS in RRinverter is only 2.26%. In 

principle, this energy should be half the energy for RRclassical and RRclear-sky because the 

ESS is only used for the ramping down events. However, as the inverter limitation makes 

that PPV,lim inverter(t) never reaches PPV(t), the ESS during the ramping down events is less 

used than in the other strategies and, consequently, the energy through the ESS is lower. 

In any case, it must be highlighted that this amount of energy for RRclassical and RRclear-sky 

is relatively small in all cases (≈6%). 

In spite of the fact that all the strategies work correctly based on the theoretical 

effective capacity, one of the main differences between them is that RRinverter entails 
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losses due to the inverter limitation. Taking Table 4.1  into account, these losses reach 

9% of the total production which is, a priori, an extremely high value in comparison with 

the other strategies which have no inverter losses. However, it is worth noting that the 

capacity required is half that needed in RRclassical. 

4.5 CONCLUSIONS 

The strategies presented in this chapter go far beyond the state of the art of the 

classical ramp-rate control and both the moving average and step control presented in 

chapter 3. By way of a summary, Table 4.2  shows the main merit indexes seen 

throughout chapters 3 and 4 for all the strategies simulated for 5 s data over one year 

(2012) and for the 38.5 MW Amareleja PV plant section, with a ramp restriction of 

rMAX = 2%/min (20%/10 min for the step-control), a similar restriction imposed by CRE, 

2014. It is worth mentioning that for the two strategies proposed in this chapter, RRinverter 

and  RRclear-sky , in the same way as it was done in section 3.3, PEC losses are calculated 

through a real curve obtained from the Ingecon Sun Powermax® 1 MW (INGETEAM, 

2014) connected to a 1MW transformer whose curve is shown in Figure 3.3 ; the ESS is 

supposed to be a lithium ion battery whose round-trip efficiency can be considered 

constant and equal to 95% (SAFT SA, 2008); and cycling degradation for this technology 

is calculated through a life cycle curve similar to that shown in Figure 3.28  (SAFT SA, 

2008). 

Table 4.2:  Summary results of all the strategies presented after 1 year simulation of real power output 
data at 38.5 MW Moura PV plant. 

Results MA RRclassical Step RRinverter RRclear-sky 

Capacity Required 

CBAT (h) 

0.36 

[Eq.( 3.16 )] 

0.64 

[Eq.( 3.11 )] 

0.56 

[Eq.( 3.11 ),( 3.18 )] 

0.32 

[Eq.( 4.1 )] 

0.32 

[Eq.( 4.1 )] 

ESS Losses 

(% Total Production) 
1.16 0.42 0.23 0.17 0.47 

Inverter Limitation Losses 

(% Total Production) 
- - - 9.09 - 

Cycling Degradation (%) 9.94 0.78 0.44 1.36 2.56 

The great advantage of RRclassical already presented in the state of the art was that 

only acted when the fluctuation exceeded the maximum allowable ramp-rate value, a fact 

that implied low ESS losses (<0.5%) and cycling degradation (<1%). However, the main 

disadvantage was that, as the sign of the first fluctuation was unknown, a double capacity 
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battery was required to absorb both the upwards and downwards fluctuation setting the 

SOC reference at 50%. The second strategy also analyzed in the state of the art is the 

moving average control, a strategy which is able to correctly operate with almost half the 

capacity (56%) required in RRclassical but at the expense of an energy increase through 

the ESS which implied higher ESS losses (>1%) and cycling degradation (≈ 10%). Trying 

to reduce the capacity of the RRclassical while maintaining the low ESS losses and cycling 

degradation rate, it was proposed the step control strategy (chapter 3) which was able to 

reduce the capacity based on the strictly compliance with the maximum ramp constraint 

rmax for the defined time window. The saving in the required capacity is 11.76% but with 

the sticking point of worsening the quality of the power injected into the grid. 

 Moreover, in order to reduce the capacity required, it was proposed the RRinverter. 

Herein, the ramping-up events are limited with the inverters by making them to operate 

at a point other than the MPP making it possible to comply with a certain variation per 

minute during upward fluctuations. In this case, the ESS is only needed during ramping 

down events and, consequently, the capacity needed is half that required in RRclassical 

whilst maintaining similar orders of magnitude regarding with ESS losses (<0.2%) and 

cycling degradation (<1.4%). The small increase in cycling degradation with respect to 

RRclassical is due to the fact that the depth of discharges produced can reach the 100% 

while in RRclassical the discharges only reach the 50%. The main disadvantage of this 

control is that it involves inverter limitation losses that reach to the 9.09% of the total 

production. Finally, the last strategy proposed was the RRclear- sky which as with RRinverter 

makes it possible to work with half the capacity required in RRclassical but without any 

losses due to inverter limitation. It also has low ESS losses (<0.5%) but, as the ESS is 

used for both the upward and downward fluctuations, the ESS is more used, a fact that 

implies the inconvenience of doubling the cycling degradation (2.56%) of RRinverter but 

still remaining far from the moving average control value. In short, it is clear that both 

RRinverter and RRclear- sky  are the best options when implementing a control strategy to 

comply with a maximum allowable ramp-rate limitation. However, the decision of 

choosing one strategy or another will be made depending on the ESS technology used. 

In this study, the ESS is supposed to be a lithium-ion battery which involves cycling 

degradation rates that make it necessary to do a cost analysis in order to choose the 

most cost-effective strategy. In case of installing a vanadium redox battery, which have 
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an extremely large cycle life (Leadbetter and Swan, 2012), or ultra-capacitors (Luo et al., 

2014), clearly the best strategy to implement would be RRclear- sky. 

Finally, it is worth mentioning that the step-control strategy has been only studied 

implementing it in the same way as the RRclassical. However, in a grid code framework 

which lets not to comply with the maximum ramp constraint rmax below the defined time 

window, this strategy could be implemented in a similar way as both the RRinverter and 

RRclear- sky  using even less battery at the expense of worsening the quality of the power 

injected into the grid. 
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5                        

GRID INTEGRATION OF A PV FLEET 

“Coming together is a beginning; keeping together is progress; working together is success.” 
Henry Ford (1863-1947) 

5.1 INTRODUCTION 

Previous chapters 3 and 4 dealt with the problem of smoothing out PV power 

fluctuations at a PV plant level. It was shown that the higher the surface area considered, 

the smaller the fluctuations taking place and the lower the ESS capacity required. 

However, not only does the size of the PV plant serve as a natural means of smoothing 

fluctuations but different studies have also revealed that the geographical dispersion of 

PV plants produces a much smoother effect on the output power (Curtright and Apt, 

2008; Hossain and Ali, 2014; Lave et al., 2012, 2011; Marcos et al., 2012; Murata and 

Otani, 1997; Otani et al., 1997; Perez et al., 2012; Sengupta and Keller, 2011; Wiemken 

et al., 2001). Taking advantage of this phenomenon, this chapter provides two tools in 

order to facilitate the grid integration of an aggregation of PV plants. 

On the one hand, it is developed a first tool that enables transmission and 

distribution system operators to simulate the fluctuations of distributed PV power in 

electricity networks based on irradiance measurements. These simulated PV production 

profiles could prove extremely useful for the TSO and DSO, and even more so today 

when PV technology is gaining strength in distributed generation. Specifically, it would 

make it possible to determine the reserves required to offset fluctuations and the 

robustness of the grid against maximum fluctuations. 
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On the other hand, the second tool is focused on the smoothing of PV power 

fluctuations at a PV fleet. Due to geographic smoothing it would also make sense to 

allocate an ESS in a network node in which a number of PV plants converge, expecting 

some savings in terms of the ESS capacity required to limit the total ramp-rate 

fluctuations. On the base of the worst fluctuation model for a PV plant, already explained 

in section 3.4.2, it is investigated the possible maximum fluctuation that could take place 

at a PV fleet i.e. the worst case fluctuation for a PV fleet in order to present a novel 

method which makes it possible, just by knowing the geometric shape of the surface 

occupied by any regularly distributed PV plant fleet combination and maximum allowable 

ramp-rate, to determine the maximum power and minimum energy storage requirements 

alike. 

5.2 SIMULATING THE VARIABILITY OF DISPERSED LARGE PV PLANTS  

5.2.1 Introduction 

There are two natural factors known to smooth short-term irradiance fluctuations in 

relation to PV power fluctuations. The first is smoothing due to size: the fluctuations  from 

incident irradiance on a PV plant are smoothed in proportion to √S, where S is the plant 

size (Marcos et al., 2011a). Therefore, the greater the plant size, the lower the 

fluctuations for the same time window. The second is geographical dispersion: for the 

same power output of inverter Pn to be installed, the fluctuations are lower if this power 

is divided between N PV plants that are at a sufficient distance apart to ensure that the 

short-term fluctuations are independent of each other. Therefore, for windows of just a 

few minutes, the additional smoothing effect achieved is proportional to √N as 

demonstrated theoretically (Marcos et al., 2012; Mills et al., 2010) and experimentally 

(Marcos et al., 2012; Mills et al., 2010) in a number of studies. A more thorough and 

extensive study of both phenomena can be found in Hoff and Perez, 2010. 

Although the mechanisms are well-known, at present there are few practical tools 

that enable TSO and DSO to simulate the fluctuations of distributed PV power in 

electricity networks based on irradiance measurements. As a preliminary approach, 

Kuszamaul et al., 2010 proposes creating networks of multiple synchronised sensors and 

averaging their readings. However, this is an expensive system that is difficult and 
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impractical to implement in the field (all the more so if there are a number of dispersed 

PV plants). For a single plant, the proposal is to simulate the smoothing effect of the plant 

size by filtering the irradiance measurements: either by a window filter (Longhetto et al., 

1989), or a low pass filter (Marcos et al., 2011b), where the cut-off frequency of both is 

adjusted according to the PV plant size. Although both methods are valid, they are only 

applicable to a single PV plant. As a more advanced method, (Lave et al., 2013) proposes 

the Wavelet Variability Model in order to simulate the reduction in fluctuations of a plant 

or a fleet of dispersed plants. It should firstly be pointed out that the model not only 

requires irradiance data measured at a single point, but also daily parameters such as 

the correlation scaling coefficient, whose value cannot be calculated immediately due to 

the fact that it depends on geographical and meteorological parameters such as cloud 

speed. 

Making use of the size and dispersion smoothing factors, this section proposes a 

simple model to simulate the power that would be generated by a fleet of geographically 

dispersed plants based on incident irradiance measurements taken at a single location. 

Specifically, the model comprises two transfer functions: firstly a low pass filter already 

proposed in Marcos et al., 2011b to convert the irradiance time series into power 

generated by a PV plant. This model solely requires the mean size of the fleet of plants 

considered. Secondly, and as the main contribution of this section, a transfer function 

applies the reduction in variability due to dispersion, simply by providing the number of 

plants N. This model makes it possible to simulate the power fluctuations in any power 

grid with a distributed PV fleet, based solely on single point incident irradiance 

measurements. This work is based on experimental 1-s data collected in the course of 

2013 from the six Ribera PV plants (section 2.3), with a total of 18 MWp, separated by a 

distance ranging from 6 to 60 km and dispersed over 1100 km2. 

5.2.2 PV plant model: smoothing effect of the size 

The analysis conducted on the Fourier irradiance and power spectra at the power 

plants indicated in Table 2.1  and conducted in Marcos et al., 2011b makes it possible to 

consider a PV plant as a low pass filter for irradiance (Figure 5.1 ). The cut-off frequency 

for this filter directly depends on the square root of the plant size: the larger the plant 

size, the fewer the power fluctuations for the same time window. As an example, Figure 
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5.2 shows the results from 11:05 to 15:00 on 1 April 2013 at the Milagro (52 Ha) site. The 

left plot shows the irradiance measured during that period. The right plot compares the 

simulated and the real power data. The similarity is clearly observed.  

 

Figure 5.1. The PV plant power output is described as the signal output of a low pass filter where the 
input signal is the incident irradiance. Note that its pole value is a function of the PV plant area. 

Parameter K corresponds to ratio Pn /G* [m2] for the PV plant. 

 

(a) 

 

(b) 

Figure 5.2: (a) Irradiance G(45º,α) recorded from 12:30 h to 15:00 h on 25th October at the Milagro site, 
(b) real PV power output, preal, (blue line) recorded during the same period at Milagro and the simulated 

power output psim, (red line) by the transfer function shown in Figure 5.1. 

5.2.3 Fleet model: smoothing due to dispersion 

5.2.3.1 Definitions 

In accordance with Marcos et al., 2012, the entire study was conducted with 

normalized PV plant output in order to avoid inaccurate results. When a single plant is 

significantly larger than the others, as it is in the case of the Milagro PV plant, then the 

smoothing effect of the geographic dispersion is masked by the predominance of the 

largest PV plant. This is a drawback when the goal is precisely to analyse geographical 

smoothing. Hence, the normalized power output at instant t of an aggregation of N PV 

plants, pN(t), is given by Eq.( 5.1 ). 
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where Pi(t) is the power output at instant t and Pni is the transformer power at the common 

coupling point of the i-th PV plant. It can be argued that because the power fluctuation is 

also smoothed by the PV plant size, Eq.( 5.1 ) presents some drawbacks. Mainly, all the 

PV plants are assumed to have the same peak power, because they receive the same 

weight in Eq.( 5.1 ); however their intrinsic fluctuation behaviour is considered to be 

different due to the fact that the rate is not affected by power normalization. However, as 

has been shown in Hoff and Perez, 2010; Marcos et al., 2012, smoothing by geographical 

dispersion is significantly more important than smoothing by size and, therefore, this 

drawback is in fact irrelevant. Likewise, this definition can also be applied to irradiance 

measurements Eq.( 5.2 ):  

∑
=

=
N

i

i

N G

tG

N
tg

1
*

)(1
)(  ( 5.2 ) 

where G*= 1000 W/m2. It is now possible to define the magnitude of a power fluctuation, 

∆P∆t,N (t) for a given number, N, of PV plants grouped at an instant t, and for a given 

sampling period ∆t, as the difference between two normalized  power outputs, Eq.( 5.3 ). 

That is: 

100)]()([)(, ×−∆+=∆ ∆ tpttptP NNNt  ( 5.3 ) 

As an example, Figure 5.3 (a)  shows the normalized output power p1(t), recorded 

at the Cintruénigo PV plant and the fleet of six PV plants located in Navarra, p6(t), on 

March 5th 2013. Figure 5.3 (b)  shows the corresponding power fluctuation for ∆t = 60 

seconds. It can be observed that the fluctuations of the fleet are considerably lower than 

those of a single system. 
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(a) 

 

(b) 

Figure 5.3. (a) Normalized power output p1(t) (blue line) recorded on 5th March 2013 at Milagro and at 
the fleet of six plants located in Navarra, p6(t) (red line). (b) Power fluctuation trends at the Milagro PV 

plant ∆P∆t,1 (blue line) and at the fleet of six PV plants ∆P∆t,6 (red line) on 5th March 2013. 

5.2.3.2 Irradiance spectrum: influence of N 

 Figure 5.4 (a)  presents the Discrete Fourier Transform (DFT) of the normalized 

irradiance signals, gN, recorded in the course of a full year (2013) at the Milagro site, g1, 

at the combination of Milagro and Castejón, g2, and at the combination of Arguedas, 

Castejón, Milagro, Cintruénigo and Rada, g5. DFT is computed through a Fast Fourier 

Transform (FFT) algorithm. In general terms, for a time series of a measured variable, 

x=x1…xT, the value at each point xt in the frequency domain, Xk, is obtained by Eq.( 5.4 ) 

( )1...1
1

)1)(1( −==∑
=

−− TkxX
T

t

kt
Ttk ω             ( 5.4 ) 

where T is the signal length and ωT is calculated according to Eq.( 5.5 ) 

Ti
T e /)2( πω −=  ( 5.5 ) 

 Following the suggestions made in Woyte et al., 2007 and in order to reduce the 

variance in coefficients Xk, the original signal is divided into a number of segments, 32 in 

this case. Coefficients Xk, are calculated for each segment and then averaged at each 

frequency. Despite the fact that the Nyquist theorem states that DFT can be calculated 
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up to a maximum frequency that is double the sampling period, 0.5 Hz in this case, the 

analysis have been limited to 0.1 Hz, which is large enough for the present objectives. 

Figure 5.4 (a)  shows how the annual spectral irradiance values g1, g2 and g5 are 

similar for very low frequencies, coinciding with the cyclic daily availability of the solar 

resource, as can be seen by a peak at 24h (1.15·10-5 Hz). However, at slightly larger 

frequencies of around 4·10-4 Hz, a greater smoothing effect of the signals is evident, as 

more sites are taken into account. Specifically, the linear region of each spectrum fits 

function a·f -0.7, where parameter a establishes the smoothing magnitude and f the 

frequency. Trend f -0.7 coincides with observations made by other authors (A. Curtright 

and Apt, 2008; Marcos et al., 2011b). This exercise was extended to the remaining site 

combinations in La Ribera in southern Navarra, N=1..6. Figure 5.4 (b)  shows the value 

of parameter a based on N. The curve is well fitted (R2=0.99) by a function of the form, 

Eq.( 5.6 ): 

a = m·N b ( 5.6 ) 

where m = 1.003x10-5 and b = - 0.46. In other words, yet again it can be seen that the 

smoothing effect is practically given by a 1/√N law, which is in line with findings by other 

authors (Hoff and Perez, 2010; Kuszamaul et al., 2010; Marcos et al., 2012). As can be 

seen, a good dispersion smoothing effect can be achieved by aggregating just a few 

sites. 

 
(a) 

 
(b) 

Figure 5.4. (a) Spectrum of the normalized irradiance signals, gN, recorded in the course of a full year 
(2013) for N=1, 2 and 5 (g1, g2 and g5 respectvely). The linear region for the larger frequencies of the 
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power spectra can be well fitted by a function of the form a·f -0.7. (b) Parameter a as a function of N. The 
trend can be correctly fitted (R2=0.99) by function a = m·N b, where m = 1.0E-5 and b = - 0.46. 

5.2.3.3 Power spectrum: influence of N 

The same frequency domain analysis is also applied to power signals pN recorded 

in the course of 2013. Figure 5.5 (a)  shows the power spectra calculated for the same 

combinations indicated above: Milagro site p1, Milagro and Castejón p2, and Arguedas, 

Castejón, Milagro, Cintruénigo and Rada, p6. The normalized power output at instant t of 

an aggregation of N was calculated based on Eq.( 5.1 ). As was to be expected, it can 

yet again be seen that the smoothing of the various spectra is proportional to 1/√N 

(m = 1.007·10-5 and b = - 0.41, R2=0.97). The reason for a poorer fit is due to the fact 

that the power plant sizes are different and therefore the higher frequencies are 

smoothed differently. 

 

(a) 
 

(b) 

Figure 5.5. (a) Spectrum of the normalized power signals, pN, recorded in the course of a full year (2013) 
for N=1, 2 and 5 (p1, p2 and p5 respectvely). (b) Parameter a as a function of N. The trend can be 

properly fitted (R2=0.97) by function a = m·N b, where m = 1.0E-5 and b = - 0.41. 

5.2.3.4 Obtaining the fleet model 

Given the power signal for a single plant, p1, the aim is to obtain the power signal 

that would correspond to the aggregation of N similar plants, pN. Therefore, the transfer 

function TFPV,fleet to be obtained is Eq.( 5.7 ): 
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1
, p

p
TF N

fleetPV =  ( 5.7 ) 

For example, for the case of N=2 and N=5, the experimental TFPV,fleet  is obtained 

from ratios p2/p1 and p5/p1 respectively, as shown in Figure 5.6 . As can be seen, these 

transfer functions can be approximated by a pole at a frequency close to 4 x 10-4 Hz 

(2400 seconds) and a zero the frequency of which depends on the number of plants 

considered. Taking into account the fact that the smoothing obtained at high frequencies 

is proportional to √N, the transfer function in the Lapace domain must be Eq.( 5.8 ). The 

Bode diagram for the proposed model is also shown in Figure 5.6  (solid black line), easily 

demonstrating its consistency with real spectra. 
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fleetPV  ( 5.8 ) 

 
 

Figure 5.6. Spectra resulting from ratio p2/p1 (red line) and p5/p1 (blue line). The superimposed black line 
corresponds to the Bode diagram of the model proposed in Eq.( 5.8 ). It can be seen how the high 

frequencies tend to smooth out due to √N. 
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5.2.4 Simulation of the fluctuations for an N fleet of PV plants 

For the measurements of a given irradiance time series, the power output of a PV 

fleet could now be obtained by simulation, using the combination of one PV plant model 

and the PV fleet model, that is, Figure 5.7 . In this study, the model was simulated with 

MATLAB® Simulink. The simplicity of the model should be highlighted, which only 

requires the number of plants in the fleet N and the size S as input parameters. The 

selection of the S value for a PV fleet with plants of differing sizes, is debatable. However, 

as has been demonstrated in other works (Hoff and Perez, 2010; Marcos et al., 2012) 

the smoothing effect of size has scarcely any influence in relation to the smoothing effect 

of dispersion. For this reason, more than satisfactory results can be obtained by 

estimating S as the mean value of the size of all the plants, W̅ (15.0 Ha in this case). 

Figure 5.8 (b)  shows the evolution of the real power generated on the 26th March 2013 

by the fleet of six PV plants p6,real(t) compared to that obtained by simulation p6,sim(t), 

applying the model proposed in Eq.( 5.8 ) to the irradiance measured in Milagro, Figure 

5.8 (a), with W̅=15 Ha and N=6. For this specific day, profiles p6,real(t) and p6,sim(t) are very 

similar except at the beginning and end of the day. In principle, this good correlation may 

appear surprising, considering that it is being simulated the performance of six PV plants 

dispersed over an area of 1100 km2 yet with the irradiance measured at one single point. 

Logically, there are moments in which the irradiance conditions at the point measured 

are not exactly the same as those at the other plants. By way of example, Figure 5.8 (c)  

and (d) shows one of the days (7th May 2013) recording the greatest deviation, between  

p6,real(t) and p6,sim(t). It can be seen how the fluctuations at the place of measurement 

(Milagro) were less frequent than at other PV plants. In order to quantify the accuracy 

and, therefore, the validity of the proposed model, an analysis was made of the results 

obtained following the annual simulation with 1s data for g(t), calculating three indices of 

merit: DFT error, maximum daily fluctuation and daily aggregate ramp rate. 

 

Figure 5.7: Proposed transfer function for a PV fleet, consisting of N PV plants with a mean size equal to W̅. 
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(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 5.8. (a) Normalized irradiance g(t) recorded on 26th March 2013 at the Milagro site, (b) real 
output power, p6,real, (blue line) recorded during the same day at the fleet of six PV plants located in 

Navarra, and output power simulated, p6,sim, (red line) by the transfer function showed in Figure 5.7, with 
N = 6 and  W̅ = 15 Ha. Figures (c) and (d) show the same variables for the 7th May 2013. Both are shown, 

respectively, as an example of days with a larger or smaller deviation between p6,real and p6,sim. 

5.2.4.1 DFT error 

As an initial step, the validity of this simulation exercise was also checked in the 

frequency domain. Figure 5.9 (a)  shows the annual power spectrum for p6,real (redline) 

and p6,sim (blue line) while Figure 5.9 (b)  shows that the DFT error is under 1.5% for all 

frequencies. This same analysis was performed for different combination of N = 2…6 PV 

plants, obtaining similar results. 
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(a) (b) 

Figure 5.9. (a) Annual power spectrum for p6,real (redline) and p6,sim (blue line) (b) DFT error between 
p6,real and p6,sim output power one year data (2013). 

5.2.4.2 Maximum daily power fluctuation in one minute 

The maximum power fluctuation in the course of a day Max(∆P∆t,N) is of particular 

interest from the grid operator's point of view. Specifically, the new grid codes specify the 

limitations in time windows ∆t equal to 1 minute. For example, according to PREPA, 2012 

the maximum permitted ramp for a PV plant is 10% per minute, whilst in Mexico it is 

1 - 5% per minute (CRE, 2014). Therefore, Figure 5.10  shows the real 365 daily 

maximum power fluctuations Max(∆P1min,6,real) compared to the simulated values, 

Max(∆P1min,6,sim) where fluctuations have been calculated by Eq.( 5.3 ). Highlighting the 

goodness-of-fit (RMSE < 4.7%), whilst taking into consideration the fact that the 

maximum fluctuation of the 1s data responds to very particular situations (see Figure 

5.3 (b)) and the simplicity of the model (just two well-known parameters, W̅ = 15.0 Ha and 

N=6).  
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Figure 5.10: Daily maximum simulated power fluctuations Max(∆P1min,6,sim) versus the real values, 
Max(∆P1min,6,real) for one year data (365 values).  

5.2.4.3 Daily aggregate ramp rate 

Likewise, it is of interest to quantify the variability of a daily production profile, as it 

is directly related to the spinning reserve levels required to offset fluctuations. To do so, 

in this work it has been used the Daily aggregate ramp rate (DARR) parameter proposed 

by (van Haaren et al., 2014) and which makes it possible to categorise the days 

according to the fluctuation level, based on the observed minute-averaged variability. In 

other words, Eq.( 5.9 ): 

∑
=

−−
=

1440

1 *

1)()(

t X

txtx
DARR  ( 5.9 ) 

where x(t) is a time series of minute-averaged records and X* the nominal value of x. For 

the specific case of this study, it is considered DARRN,sim if x(t) to be equal to pN,sim(t) and 

DARRN,real in the case of if x(t) is equal to pN,real(t). And as both are normalised power 

outputs, X*=1. Figure 5.11  shows the 365 real values for DARR6,real compared to the 

simulated values, DARR6,sim. The regression coefficients yet again confirm the goodness 

of fit of the model (RMSE < 2%). By way of example, the figure shows one of the days 

with the worst results (7th May 2013), previously presented in Figure 5.8 (c)  and (d). 
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Figure 5.11. Daily aggregate ramp rate simulated values for the fleet of six plants DARR6,sim compared to 
the real values, DARR6,real for one year data (365 values). One of the days with the worst results (7th May 

2013), has been circled, previously presented in Figure 5.8 (c) and (d). 

 

As indicated in van Haaren et al., 2014, one of the advantages of the DARR is that 

is makes it possible to classify the days based on the risk of fluctuations and, therefore, 

it makes it easier for the TSO to plan future projects. Days can be classified into five 

categories, ranging from very stable days (Category 1) to highly variable days (Category 

5), based on arbitrary suggestions: 

• Category 1: DARR  < 3 

• Category 2: 3 ≤  DARR  < 13 

• Category 3: 13 ≤  DARR  < 23 

• Category 4: 23 ≤  DARR  < 33 

• Category 5: 33 ≤  DARR 

Therefore, Figure 5.12  shows the classification of all the simulated and real values 

for DARR6 as already shown in Figure 5.11 , revealing how the real and simulated data 

show very similar daily distributions. 
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Figure 5.12. Histograms of DARR6,real observed over a year and the simulated ones, DARR6,sim 

This regression exercise made for Max(∆P1min,N) and DARR,N  was completed for 

the remaining cases, N=2..5, (Table 5.1 ). The slight improvement in the regression 

residuals (particularly for Max(∆P1min,N)) suggests that the model accuracy is 

strengthened as the number of PV plants increases, at least for PV plants located in the 

same climatic region, as in this experiment. More PV systems would be needed to 

confirm this trend. 

Table 5.1: RMSE error evolution as a function of N. 

N RMSE Max(ΔP1min,N) RMSE DARRN 

2 7.1 2.75 

3 7.0 2.36 

4 5.9 2.35 

5 5.2 2.15 

6 4.6 1.99 

 

5.2.5 Conclusions  

In this section it has been presented a model to simulate the fluctuations generated 

by a fleet of dispersed PV plants, solely based on irradiance data measured at one single 

location. The model was obtained from 1-year data with a 1 s resolution from six PV 

plants (up to 18MWp) dispersed over an area of 1100 km2, within the same climatic 

region. This simple model has been satisfactorily used to quantify the power variability of 

the PV fleet, just by defining two parameters: mean plant size W̅ and the number of plants 
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in the PV fleet. Specifically, the model reliably reproduces the critical parameters for the 

grid operator, such as maximum fluctuation or the reserves required to offset these 

fluctuations. Therefore, the model proposed could prove to be an extremely useful tool 

for studying the grid integration of distributed PV generation, by providing a series of 

simulated power outputs that may be used in the grid operator simulation programs. 

5.3 STORAGE REQUIREMENTS FOR PV POWER RAMP-RATE CONTROL IN A PV 

FLEET 

5.3.1 Introduction 

As it has been previously commented, taking advantage of the smoothing effect of 

geographical dispersion, it makes sense to allocate an ESS in a network node in which 

a number of PV plants converge, expecting some savings in terms of the ESS capacity 

required to limit the total ramp-rate fluctuations due to geographic smoothing. This is of 

particular interest in islands with stand-alone power grids. A previous study Perez and 

Hoff, 2013 analysed the economic cost of the installation of an ESS to smooth out short-

term PV output variability as a function of the maximum allowable ramp-rate, the 

intermittency time scale and the geographic dispersion of the PV resource. It is shown 

that the use of geographic dispersion as a means of smoothing out PV fluctuations 

enables considerable savings in the ESS. However, nowadays no methodology is 

available to size the ESS required to smooth out short-term PV output variability to rMAX 

in the case of an aggregation of PV plants or a PV fleet. 

This section firstly examines and models the maximum fluctuation observed at 

several aggregation cases of 5 PV plants in the course of a year. Once the main features 

of the fluctuations are modelled and well known, it is then investigated the possible 

maximum fluctuation that could take place at a PV fleet i.e. the worst case fluctuation. It 

is presented a novel method which makes it possible, simply by knowing the geometric 

shape of the surface occupied by any regularly distributed PV plant fleet combination and 

maximum allowable ramp-rate, to determine the maximum power and minimum energy 

storage requirements alike. The general validity of the method has been successfully 

validated through real operational PV power data taken every 1 s in the course of one 

year from five PV plants already presented in Section 2.3 (Arguedas, Castejón, 
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Cintruénigo, Milagro and Rada) with powers ranging from 1 to 9.5 MWp located in 

Navarre (Spain). It is worth noticing that in this study the Sesma PV plant is not used 

because a regularly distributed PV fleet was necessary. Figure 5.13  shows the 

geographic distribution of the PV plants for this study. Finally, a comparison is made of 

the energy storage requirement savings for smoothing short-term PV power fluctuations 

in a regularly distributed PV fleet using a centralized instead of a distributed ESS. 

 

Figure 5.13: Geographic distribution of the PV plants under study. 

Again, the entire study was conducted with normalized PV plant output in order to 

avoid inaccurate results. 

5.3.2 Extrapolation of the worst fluctuation model from a PV plant to a 
PV fleet 

5.3.2.1 The worst fluctuation model for a single PV plant 

Section 3.4.2 described an effective method to calculate, for any PV plant size and 

maximum allowable ramp-rate (rMAX), the maximum power and the minimum energy 

storage requirements alike. This method, called the worst fluctuation model, is based on 

the worst fluctuation that can take place at a PV plant and is a function of the shortest 

measurement for the PV plant perimeter. This is duly described in Figure 3.10 . 
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A careful study of the worst case fluctuations observed at the 38.5 MW of 

Amareleja (Portugal) made it possible to assert that the worst fluctuation that can appear 

at a PV plant is described in Eq.( 3.6 ) as a power exponential decay from Pn to 0.1 Pn 

(or an exponential rise from 0.1 Pn to Pn). In this case, as the study is made with the 

normalized power, the decay will be from 1 (normalized nameplate power, pn) to 0.1pn 

(or an exponential increase from 0.1pn to pn) which means that the beam irradiance 

disappears and only the diffuse light remains. That is Eq.( 5.10 ): 

[ ]10))/(exp(.90)( +−= τttpPV  ( 5.10 ) 

In this equation, τ [s] is a time constant which is empirically correlated with the 

shortest measurement of the PV plant perimeter, l [m], by the Eq.( 5.11 ) (section 4.4.2): 

b a·= +lτ  ( 5.11 ) 

where a = 0.042 [s/m] and b = -0.5 s. 

Battery requirements for ramp-rate limitations in the case of a worst fluctuation 

event are easily derived from Figure 3.10 . The normalized power demanded to the 

battery pBAT(t) corresponds to the difference between the PV power injected into the grid, 

pG(t), and the generated PV power, pPV(t). Therefore, the normalized battery power, 

pBAT(t), for the worst fluctuation time is given by Eq.( 5.12 ): 

[ ]max))/exp(1(90
100

1
)( rtttp BAT ⋅−−−= τ  ( 5.12 ) 

where rMAX is expressed as [%/min]. Specifically, the minimum theoretical effective 

normalized battery required (CBAT) is obtained by simply integrating Eq.( 5.12 ) and is 

given in Eq.( 5.13 ) (with the control proposed in sections 4.2 and 4.3): 
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
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⋅
= τ

MAX
BAT r

C
2

90

3600

9.0  ( 5.13 ) 

where CBAT is expressed in [h] based on the nameplate power of the PV plant. An ESS 

that is able to smooth out the worst case fluctuation, means that it will operate correctly 

under any other circumstances simply by implementing the right control. 

Another important issue is the maximum power that must be absorbed or provided 

by the ESS and the associated power electronic converter. This is calculated as the 

maximum of the expression given in Eq.( 5.12 ). Hence, the required normalized battery 

power is given by Eq.( 5.14 ): 










⋅
+⋅−= )

90
ln1(90

100

1
,

MAX
MAXMAXBAT r

rp
τ

τ  ( 5.14 ) 

5.3.2.2 Maximum fluctuations observed in a PV fleet 

A full study was conducted of the maximum fluctuations observed for different 

combinations of the PV plants under consideration. By way of example, Figure 5.14 (a)  

and (b) shows the normalized PV power evolution during a day with one of the most 

extreme fluctuations (16th April 2013) for the combination of Arguedas, Castejón, Milagro 

and Rada (N = 4), pPV,4(t). It can be seen that this is a day with many breaks in the cloud 

cover, with a huge front of clouds in the afternoon that almost caused all the PV plants 

to stop generating. The plants gradually dropped, one after the other: Castejón was the 

first, followed by, Arguedas and Milagro at almost at the same time and, finally, Rada. 
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Figure 5.14: Evolution of the power of one case of N=4 combination on 16th April 2013. (a) Power 
evolution of the N = 4 combination, pPV,4 (t). (b) Zoom of the power evolution of the combination, pPV,4 (t), 

and each PV plant individually. 

Figure 5.15  shows the evolution of the front of clouds through satellite images 

during the day studied, as the front advances in a north-easterly direction. As was to be 

expected, these images confirm how the clouds cover the PV plants. At 12 hours, the PV 

fleet is uncovered, whilst the first PV plant is covered at 13 hours approximately. At 14 

hours, the PV fleet is completely covered commensurate with Figure 5.14 . Finally, at 16 

hours, the front has passed over and the PV fleet is uncovered again. From these images 

and the fact that the Arguedas and Milagro PV plants drop at the same time, it is to be 

assumed that the front is in a perpendicular direction to the imaginary line joining these 

two PV plants. 

 

Figure 5.15: Evolution of the front of clouds crossing the PV plants under study on the 16th April 2013. 
Source: EUMETSAT. 

The previously presented Eq.( 5.10 ) models the drop in the PV power at a PV plant 

due to cloud passage as an exponential function that only depends on time constant τ. 
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This τ is given by Eq.( 5.11 ) and it is correlated with the inverse value of the cloud speed 

and the distance that the cloud needs to travel in order to completely cover the PV plant. 

Now, it would make sense to fit Eq.( 5.11 ) to model the fall in the total power generated 

by a PV fleet which is being covered by a front of clouds travelling at a specific speed. 

On the one hand, the observed distance, lobs, to be travelled by the front of clouds in 

order to cover all the PV plants under consideration in this case is 20 km (Figure 5.16 ). 

On the other hand, parameter a would be the inverse of the speed of the cloud front. 

According to Figure 5.14 (b) , Castejón drops at 13 hours and Rada, which is the last one 

to drop, 950 seconds later, which is almost 16 minutes. In this way, the cloud front travels 

20 km in 16 minutes. Hence, the front speed is 75 km/h, which is 20.83 m/s and, 

consequently, the observed parameter a, aobs = 0.048 s/m. Therefore, it is now possible 

to model the normalized power of the fluctuation observed in the PV fleet by Eq.( 5.15 ): 

�!",Y,Z[1#$& = \90 · ]^_N ` −$�Z[1ab + 10c ( 5.15 ) 

where the observed, τobs, is given by Eq.( 5.16 ): 

�Z[1 = dZ[1 · eZ[1 = 0.048 · 20000 = 960	g ( 5.16 ) 

Note that in this case parameter b shown in Eq.( 5.11 ) has now been omitted 

because it was used in order to fit the correlation for the smallest values of l, a fact that 

is not necessary for PV fleets due to the fact that distances, lobs,  are far greater than for 

a single PV plant.  
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Figure 5.16: Calculation of τobs for the for the PV fleet formed by Arguedas, Castejón Milagro and Rada 
(N = 4) during the fluctuation on 16th April 2013. 

Figure 5.17  shows both the real normalized PV power, pPV,4(t), and the modelled, 

pPV,f,obs(t). The model has been rescaled to fit with the start of the downward fluctuation 

occurring that day. In other words, as the downward fluctuation starts at p = 0.87, 

pPV,f,obs(t) is multiplied by this factor. The model and the real normalized PV power of the 

PV fleet under consideration can be seen to be in a very good agreement. 

 

Figure 5.17: PV power modelled through the observed τobs (pPV,f,obs), and real normalized PV power, 
pPV,4, of the PV fleet formed by Arguedas, Castejón Milagro and Rada (N = 4) during the fluctuation on 

16th April 2013. 

Another example with very high fluctuations but for the five PV plants combination 

took place on the 1st August 2013. This is a mostly clear day in which a huge downward 
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fluctuation occurred near midday. Figure 5.18 (a)  shows the coupled normalized power 

for the five PV plants, pPV,5(t), and (b) individually and again the normalized sum of all 

the plants. An analysis clearly shows that Cintruénigo is the first PV plant to drop, closely 

followed by Milagro, then Castejón, Arguedas and, finally, Rada. In this case, the front is 

heading in an easterly direction with a slight northern component. The front takes 950 

seconds to cover all the PV plants, approximately 15.84 minutes. Figure 5.18 (c)  shows 

the direction of the advancing cloud front, deduced from the way in which the PV plants 

drop in Figure 5.18 (b) , and the calculation of the lobs = 21 km. Then, the front speed is 

79.55 km/h or 22.10 m/s and aobs = 0.045. Figure 5.18 (d)  shows the actual normalized 

PV power of the PV fleet, pPV,5(t), and the modelled PV power drop, pPV,f,obs(t). Again, 

there is a good agreement between both power outputs. 

Figure 5.18: Results of the model for the five PV plant fleet (N = 5) during a fluctuation on 1st August 
2013. (a) Normalized PV power of the PV fleet, pPV,5. (b) Normalized PV power of the individual PV 

plants and the PV fleet. (c) Calculation of lobs. (d) PV power modelled through the observed, τobs (pPV,f,obs) 

and real normalized PV power, pPV,5, of the PV fleet. 
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Once both cases have been correctly modelled, it is possible to calculate the 

minimum ESS capacity required for these two extreme fluctuations observed in the PV 

fleet, CBAT,f,obs, by Eq.( 5.17 ): 









−

⋅
= obs

MAX
obsfBAT r

C τ
2

90
3600

9.0
,,  ( 5.17 ) 

where rMAX is expressed in [%/s] and τobs in [s]. 

And, the required maximum normalized battery power for the fluctuation observed 

is given by Eq.( 5.18 ): 










⋅
+⋅−= )

90
ln1(90

100

1
,,

MAXobs
MAXobsobsfBAT r

rp
τ

τ  ( 5.18 ) 

The corresponding battery requirements for the observed fluctuations 

CBAT,f,obs = 0.101 h and pBAT,f,obs = 0.254 for N = 4 combination and CBAT,f,obs = 0.097 h 

and pBAT,f,obs = 0.249 for N = 5 combination. The next step is to design the control strategy 

of the system. From now on, the strategy used will be the RRclear-sky: ramp-rate control 

based on the PV power plant model proposed in section 4.3. According to this strategy, 

it is possible to estimate at each moment the PV plant production limits. These are the 

PV plant under clear sky conditions, pPV,Max(t), and the PV power under totally cloudy sky 

conditions in which only the diffuse light reaches the PV arrays, pPV,Min(t). In this way, just 

calculating these powers at each PV plant and adding them, it is possible to calculate the 

maximum power variation that can take place from the instant power generated by the 

PV fleet, pPV,N(t). So, as a function of the actual PV power, it is then possible to obtain 

the SOC needed (SOCref) to absorb or provide the necessary energy depending on the 

nature of the fluctuation. Figure 5.19  shows the control diagram for this strategy. The 

sum of the PV plants power, pPV,TOTAL(t), enters into a ramp-rate limiter that is enabled if 

the pPV,TOTAL(t) dynamics exceed the ramp-rate limitation, that is Eq.( 5.19 ): 
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100

)(min1,,  ( 5.19 ) 

where rMAX is expressed in [%/min]. The ramp-rate limiter output is the power that must 

be injected into the grid for the centralized solution, pG,C(t). This pG,C(t) will be similar to 

pPV,TOTAL(t) but with the ramps limited. The difference between pG,C(t) and pPV,TOTAL(t) will 

be the power through the battery, pBAT(t). Simply by integrating pBAT(t), the SOC of the 

ESS is obtained and it is compared to the corresponding SOCref and the error is multiplied 

by constant k to obtain the necessary power for the SOC control. This power is subtracted 

from pPV,TOTAL(t). Note that the control action is applied prior to the ramp-rate limiter to 

ensure that condition rMAX is met at all times. 

 

Figure 5.19: Ramp-rate control strategy algorithm.  

It should be noted that the PV power from each PV plant cannot be read at the 

ESS level, given the fact that a communication system between the PV plants and the 

ESS system is needed. In the same way as section 4.3, to evaluate this strategy, it will 

be taken k = 6, a value which allows a good trade-off between speed and system stability. 

Further information about the implementation of the strategy can be found in section 4.3. 
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Figure 5.20 (a)  and (b) shows the PV power, pPV,N(t), the limited power injected 

into the grid, pPV,N,limited(t), and the evolution of the SOC as a [%] according to the values 

calculated for CBAT,f,obs  after applying the control strategy for the two cases analysed. In 

addition, Figure 5.20 (c)  and (d) show the ESS normalized power, pBAT(t), for both cases 

analysed. As expected, in all the cases the actual values are almost equal to or less than 

the theoretical limits calculated by Eq.( 5.17 ) and Eq.( 5.18 ). The same exercise was 

made for different combinations with similar results, confirming the validity of the 

extrapolation of the model from a single PV plant to a PV fleet. 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 5.20: PV power, pPV,N, limited power injected into the grid, pPV,N,limited, and the evolution of the 
SOC as a [%] according to the values calculated for CBAT,f,obs for (a) N=4 combination on the 16th April 

2013 and (b) the 1st August 2013 for the N=5 combination. Normalized ESS power evolution for (c) N=4 
on 16th April 2013 and (b) N=5 on 1st August 2013. 

5.3.2.3 The worst fluctuation model for a PV fleet 
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Given the fact that the purpose of this study is to calculate the capacity required to 

smooth out any potential fluctuations, then the capacity required for the worst case 

fluctuation for a PV fleet needs to be calculated. This would occur when the PV fleet is 

being covered by a front of clouds travelling at maximum speed, which depends on the 

location, and the direction in which all the PV plants can be covered in a minimum space 

of time. On the one hand, the maximum clouds speed recorded during the highest 

fluctuations days analysed was 79.55 km/h. However, for the worst case fluctuation, it 

will be taken 85 km/h, a value which is in line with values proposed in other studies such 

as Lave and Kleissl, 2013 and section 3.4.2. Thus, the parameter a given in Eq.( 5.11 ) 

particularized for the worst fluctuation case, aw, will be aw = 0.042 s/m. On the other hand, 

the shortest distance, lw, would take place when the cloud front covers the PV fleet in the 

direction of the smallest height of the polygon formed by the external PV plants that 

contain all the PV plants within the least number of sides. Hence, the time constant of 

the PV fleet for the worst fluctuation case, τw, is given by Eq.( 5.20 ): 

ww·a= lwτ  ( 5.20 ) 

where lw is expressed in (m). Therefore, the normalized PV power for a PV fleet during 

the worst fluctuation case is given by Eq.( 5.21 ): 

[ ]10))/(exp(90)(,, +−= fwfPV ttp τ  ( 5.21 ) 

By way of example, Figure 5.21  shows graphically how to calculate lf for the two 

combinations analysed above. For the analysed cases, lw = 14.8 km for the N = 4 

combination and lw = 16 km for the N = 5 combination. 
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(a) 

 

(b) 

Figure 5.21: Calculation of lw  for (a) the N = 4 combination and (b) the N = 5 combination. 

It is worth explaining the calculation of lw when N = 2, which may not be so clear. 

In this case, lw would be the largest dimension of the two PV plants under consideration 

measured in a straight line at right angles to the imaginary line that connects the two PV 

plants. Figure 5.22  graphically shows an example of how to calculate lw for Arguedas 

and Castejón, which gives a value of lw = 490 m.  

 

Figure 5.22: Calculation of the shortest measurement for a PV fleet comprising two PV plants. 

Taking all this into account, the minimum ESS capacity required for a PV fleet, 

CBAT,f, can be calculated by Eq.( 5.22 ): 
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where rMAX is expressed in [%/s] and τW in [s]. 

And, according to the worst fluctuation model, the required maximum normalized 

battery power for a PV fleet that is covered by a front of clouds travelling at maximum 

speed and in the direction of the minimum distance, lw, is given by Eq.( 5.23 ): 
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Applying these two equations, the corresponding battery requirements for the 

cases under study are CBAT,f = 0.17 h and pBAT,f,W = 0.36 for the N = 5 combination and 

CBAT,f  = 0.18 h and pBAT,f,W = 0.39 for the N = 4 combination.  

Figure 5.23 (a)  and (b) shows the evolution of the SOC as a [%] according to the 

calculated values of CBAT,f  in each case during the days of  extreme fluctuations analysed 

in the previous subsection, 16th April 2013 for the N = 4 combination and 1st August 2013 

for the N = 5 combination. As expected, in both cases the decline in SOC during these 

downward fluctuations does not use the whole theoretical capacity, CBAT,f, of the ESS as 

there was no cloud front travelling in the lw direction at the maximum speed considered. 

The corresponding effective battery used, CBAT,used, for the N = 4 and N = 5 combinations 

for these days was, respectively, 67% and 63% of the theoretical capacity. With regard 

to the battery power, Figure 5.23 (c)  and (d) shows the ESS normalized power for both 

cases analysed. It can be observed that the power used is also lower than the theoretical, 

pBAT,f,W, for the same reasons discussed above. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.23: SOC evolution according to the calculated values of CBAT,f  on (a) 16th April 2013 for the N=4 
combination and (b) 1st August 2013 for the N=5 combination. Normalized ESS power evolution for (c) 

N=4 on 16th April 2013 and (d) N=5 on 1st August 2013. 

The same analysis was conducted for the whole year under study for all the 

possible combinations: 5 PV plants individually, 10 combinations of N = 2, 10 

combinations of N = 3, 5 combinations of N = 4 and 1 combination of N = 5. As can be 

seen in Figure 5.24 , the effective capacity used to mitigate the worst case fluctuation to 

take place that year, CBAT,used, for all the possible combinations simulated is less than the 

CBAT,f calculated on the basis on the worst fluctuation model for a PV fleet due to the 

mentioned reasons. 
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Figure 5.24; CBAT,f and CBAT,used for all possible combinations for N = 1…5 PV plants. 

Finally, Figure 5.25 (a)  and (b) shows the SOC evolution for the whole year 

analysed for both combinations, N = 4 and N = 5 respectively. As can be observed, the 

implemented strategy works successfully with CBAT,f. Note that in Figure 5.25 (a)  and (b) 

all the theoretical CBAT,f is used due to the way the control strategy implemented operates 

and not because this was necessary. In other words, the strategy would have worked 

successfully with a smaller ESS calculated by Eq.( 5.22 ) but using the minimum distance 

and maximum speed observed during the year under study. Moreover, Figure 5.25 (c)  

and (d) shows the normalized ESS power for the whole year for the cases analysed, 

showing that there are some days, in both cases, in which the normalized ESS power 

exceeds the theoretical limits.  
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Figure 5.25: ESS SOC evolution during the whole year studied for (a) the N=4 combination and (b) the 
N=5 combination. ESS power evolution during the whole year studied for (c) N=4 and (d) N=5. 

Figure 5.26 (a)  and (b) show the PV power of both the PV fleet and the individual 

PV plants for one of these days (23rd December 2013) for the N = 5 combination. In this 

figure, it can be observed that the maximum battery power takes place with continuously 

moving cumulus clouds which affect all the PV plants. Figure 5.26 (c)  shows that these 

kind of days give rise to high battery power values but small SOC variations. This is due 

to the fact that there are very fast irradiance changes that strongly affect the power but 

not very much the SOC, which is linked with the integral of the battery power.  
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(a) 

 

(b) 

 

(c) 

Figure 5.26: Specific analysis of the 23rd December 2013. (a) Normalized PV power of the PV fleet. (b) 
Normalized PV power of the individual PV plants and the PV fleet. (c) ESS SOC and power evolution.  

Logically, when this last power fluctuation takes place, the battery will either have 

to absorb or provide this power, something that also needs to be taken into account in 

the ESS power sizing. In this way, the battery will be able to operate with the maximum 

power fluctuation that can take place in the PV fleet. This value has been subject to study 

by other authors (Hoff and Perez, 2010; Marcos et al., 2012) showing that the maximum 

fluctuations that can take place in an aggregation of regularly distributed PV plants 

spaced sufficiently far apart, is equal to the inverse of the square root of the number of 

PV plants. Therefore, in order to size the battery power for a PV fleet, two criteria must 

be taken into account. On the one hand, the battery power based on the worst fluctuation 

model, pBAT,f,W, Eq.( 5.23 ) and, on the other hand, the maximum potential power 

fluctuations in a PV plant aggregation. Hence, the maximum required normalized battery 

power for a PV fleet is given by Eq.( 5.24 ): 
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Figure 5.27  shows both the maximum battery power used, pBAT,used, and the 

maximum required normalized battery power, pBAT,f, for the whole year under study and 

for all the combinations analysed. It can be observed that in all cases pBAT,used is below 

or equal the limits established by pBAT,f. Note that, for single PV plants, the battery power 

required is around 0.8, while for the N = 5 combination the battery power required drops 

to 0.465 resulting in a battery power saving of around 50%. 

 

Figure 5.27: (a) Theoretical limit for the battery power, pBAT,f, and maximum battery power used, pBAT,used, 
for all possible combinations for N = 1…5 PV plants. 

As was mentioned earlier, the study was conducted with normalized PV powers. In 
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5.3.3 A comparison of storage requirements: distributed versus 
centralized solutions 

Now that a model has been developed to size the ESS for both a single PV plant 

and a PV fleet as a function of the allowable rMAX, this section carries out a study of the 

storage requirements savings when advantage is taken of the smoothing effect on PV 

power by geographical dispersion by allocating a centralized instead of a distributed 

ESS. Figure 5.28  shows the comparison of the results for rMAX = 2%/min and for the two 

solutions for the 1st August 2013 for the N = 5 combination. Both solutions comply with 

the rMAX imposed but it can be seen how the power injected into the grid in the distributed 

solution (pG,D(t)) has a smoother power output than the centralized solution, pG,C(t). This 

is due to the fact that pG,C(t) has been exactly limited to rMAX while pG,D(t) has been limited 

to rMAX at each PV plant individually, considered to be an over-limiting of the PV power 

output. This is good in principle but what happens is that the differences between the 

total PV power generated, pPV,5(t), and pG,D(t) and the differences between pPV,5(t) and 

pG,(t) must be either absorbed or provided by the ESS in each option. It is clear that at 

any given time pG,C(t) is closer to pPV,5(t), a fact that makes it possible to save on the ESS 

capacity requirement. ESS capacity requirements for the N = 5 combination analysed 

are CBAT,f = 0.17 h (Eq.( 5.22 )) for the centralized solution and ∑
=

=

=
5

1
, 34.0

N

i
iBATC h (with 

lArguedas = 200m, lCastejón = 265m, lCintruénigo = 245m, lMilagro = 700m and lRada = 230m) for the 

distributed solution. In this way, the centralized solution saves half the required capacity 

needed in the distributed solution. It is worth noting that the PV plants analysed occupy 

315 km2, an area which is similar to that of a small island with a stand-alone electricity 

network. This is where it is worthwhile taking advantage of the smoothing effect of 

geographical dispersion. 
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Figure 5.28: Comparison of the results for the two configurations analysed, centralized and distributed 
ESS, on the 1st August 2013 for the N=5 combination. 

Figure 5.29 (a)  and (b) shows both the capacity and power savings as a function 

of the shortest dimension of the PV fleet under consideration for rMAX = 2%/min. From a 

minimum lf = 15000 m and N = 5, it is possible to appreciate considerably savings in the 

required capacity and power for the ESS of up to 45%. Moreover, from lf = 25000 m it is 

possible to save up to 80% of the ESS capacity requirement. It must be remembered, 

that two criteria need to be taken into account when sizing the battery power: the worst 

fluctuation model for the PV fleet and the maximum fluctuations. For the N = 5 

combination, regardless of the minimum lf, the power savings cannot be greater than 50 

%. In any case, these savings are considered to be a considerable cost saving, not only 

due to the lower capacity required but also due to the savings in the ESS converters. 

 

(a) 

 

(b) 

Figure 5.29: (a) CBAT,f and (b) pBAT,f saving as a function of the shortest dimension of the PV fleet. 
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Up to this point, the entire study has been focussed on rMAX = 2%/min. However, 

Eq.( 5.22 ) and Eq.( 5.24 ) make it possible to calculate the ESS storage requirements,  

CBAT,f and PBAT,f for any lf and rMAX. Figure 5.30 (a)  and (b) shows the results for both 

CBAT,f and PBAT,f for a regularly distributed PV fleet. In the case of PBAT,f, the limit due to 

the maximum fluctuation that can occur in the PV fleet is not included. In this way, Figure 

5.30 (b) is only valid for a large number of aggregated PV plants, when this last limit is 

almost negligible. Analysing both graphs, it can be observed how geographical 

dispersion is an important natural smoothing factor to mitigate short-term PV output 

variability even for rMAX = 1%/min, where, for lf >33 km, and for at least 5 aggregated, 

regularly distributed PV plants , the centralized solution enables further savings of up to 

50% in capacity and power. 

 

(a) 

 

(b) 

Figure 5.30: ESS capacity requirements, CBAT,f, and power requirements according to the worst 
fluctuation model for a PV fleet, PBAT,f,W, for different lf and rMAX. 

5.3.4 Conclusions 

The aim of this section was to analyse the savings in the energy storage 

requirements for smoothing short-term PV power fluctuations in a regularly distributed 

PV fleet using a centralized ESS instead of a distributed one. An analysis was made of 

the PV power fluctuations of a PV fleet when a front of clouds covers all the PV plants 

and the worst case fluctuation was calculated. An analytical theoretical model for this 

fluctuation has been proposed, providing information on the minimum energy storage 

requirements needed to comply with a maximum allowable ramp-rate value. In the case 

of the power required for the ESS, two criteria must be taken into account for this 
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calculation: the worst case fluctuation for a PV fleet and the maximum potential 

fluctuations in an aggregation of regularly distributed PV plants spaced sufficiently far 

apart. The general validity of the model has been shown to work successfully with 1 s 

real data taken from five PV plants located in Navarre (Spain). It has been simulated all 

possible combinations in the course of a full year, for N = 1…5 plants. Regardless of the 

PV plant combination chosen, all the PV plants are able to operate correctly with the 

minimum theoretical effective requirements based on the proposed PV fleet model that 

complies with a maximum allowable ramp-rate given by a grid code regulation. The 

centralized solution for the five PV plants under study and for rMAX = 2%/min, is able to 

correctly operate with half the storage requirements needed in the distributed solution, 

resulting in considerably cost savings. 
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6                    

CONCLUSIONS, CONTRIBUTIONS AND 

FUTURE LINES 

“Learn from yesterday, live for today, hope for tomorrow. The important thing is not to stop questioning.” 
Albert Einstein (1879-1955) 

6.1 FINAL CONCLUSIONS  

The huge growing of large-scale PV plants worldwide is leading to changes in the 

TSO’s requirements in order to deliver PV power without creating reliability, stability and 

power quality problems in the main electrical grid. In that way, new restrictions in recent 

grid codes have appeared including new criteria to make it easier for the TSO to react 

appropriately against harmful irradiance fluctuations - i.e., PV power fluctuations - with a 

time scale of less than 10 minutes. This ensures that the power variation of PV generators 

does not exceed the dynamics with which conventional plants in the system may increase 

or reduce power, so that the production and consumption balance is not altered at any time. 

The compliance with these new requirements demands the incorporation of some kind 

of ESS. The installation of an ESS has a major impact on the energy/economic 

balance of the PV system, playing a key role in the viability of the future PV systems due 

to their high costs and reduced shelf life. 

Among the first part of this thesis dissertation, particularly in chapter 3, it has been 

quantified the storage requirements needed to smooth short-term PV power fluctuations 

based on different control strategies for any PV plant size and ramp-rate limitation. 

Basically, battery requirements are essentially imposed by the worst fluctuation. An 
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analytical-theoretical model for this fluctuation case has been proposed and validated, 

by comparing the corresponding battery requirements obtained through the model with 

the ones derived from detailed simulations based on real power data. Then, an equation 

based on the worst fluctuation model is given and it is applicable to any of the strategies 

analysed. The control strategy selected for the ESS is a crucial decision and storage 

requirements will depend on the strategy chosen. The first strategy that was studied is 

the classical ramp-rate control, RRclassical, whose great advantage is that only acts when 

the fluctuation exceeds the maximum allowable ramp-rate value, a fact that implies low 

ESS losses and cycling degradation. However, the main disadvantage was that as the 

sign of the first fluctuation was unknown, a double capacity battery was required to 

absorb both the upwards and downwards fluctuation setting the SOC reference at 50%. 

The second strategy studied is the moving average control, MA, which is able to correctly 

operate with almost half the capacity (56%) required in the classical ramp-rate control. 

At first instance, its great advantage is the use of less ESS capacity at the expense of an 

energy increase through the ESS which implied higher ESS losses (>1%) and cycling 

degradation when considering a lithium-ion system as the ESS (≈ 10%). Finally, trying 

to reduce the capacity of the classical ramp-rate control strategy while maintaining the 

low ESS losses and cycling degradation rate, the step control strategy was proposed. It 

was able to reduce the capacity based on the strictly compliance with the maximum ramp 

constraint for the defined time window and higher but not below. The saving in the required 

capacity reach 11.76%.  

Moreover, in an attempt of reducing the capacity required and go beyond the state 

of the art, two novel strategies are proposed in chapter 4, the ramp-rate control strategy 

using the PV inverters, RRinverter, and the ramp-rate control strategy based on the PV 

plant model, RRclear- sky. In the first strategy, the ramping-up events are limited with the 

inverters by making them to operate at a point other than the MPP which makes possible 

to comply with a certain variation per minute during upward fluctuations. In this case, the 

ESS is only needed during ramping down events and, consequently, the capacity needed 

is half that required in RRclassical and both ESS losses (<0.2%) and cycling degradation 

(<1.4%) are very low. The main disadvantage of this control is that it involves inverter 

limitation losses that reach 9.09% of the total production. The second strategy proposed 

was the RRclear- sky which let to work with half the capacity required in RRclassical but without 
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any loss due to inverter limitation at the expense of doubling the cycling degradation 

(2.56%) of RRinverter. In short, it is clear that both RRinverter and RRclear- sky are the best 

options when implementing a control strategy to comply with a maximum allowable ramp-

rate limitation. However, depending on the ESS technology, the decision of choosing one 

strategy or another will be made. In this study, the ESS is supposed to be a lithium-ion 

battery which involves cycling degradation rates that make it necessary to do a detailed 

economic analysis of implementing one or another of these strategies.  

With the aim of minimize even more the ESS requirements, chapter 5 try to take 

advantage of the well-known smoothing effect due to geographical dispersion by 

proposing a sizing method for an ESS allocated in a network node in which a number of 

PV plants converge. 

To do so, the worst fluctuation model has been extrapolated from a PV plant to a 

PV fleet. Simply by knowing the geometric shape of the surface occupied by any regularly 

distributed PV plant fleet combination and maximum allowable ramp-rate, it is determined 

the maximum power and minimum energy storage requirements alike. Moreover, it has 

also been analysed the savings in the energy storage requirements for smoothing short-

term PV power fluctuations in a regularly distributed PV fleet using a centralized ESS 

instead of a distributed one. The centralized solution for the five PV plants under study 

and for rMAX=2%/min was able to correctly operate with half the energy and power storage 

requirements needed in the distributed solution resulting in considerably cost savings. 

Finally, also regarding with the aggregation of PV plants, another issue motivated 

from the point of view of both TSO and DSO has come into light. A practical tool that 

enables to simulate the fluctuations generated in electricity networks by a fleet of 

dispersed PV plants, solely based on irradiance data measured at one single location is 

proposed. This is of particular interest for both TSO and DSO as they can simulate PV 

production profiles being proved to be extremely useful and even more nowadays when 

PV technology is gaining strength in distributed generation. This simple model has been 

satisfactorily used to quantify the power variability of the PV fleet, simply by defining two 

parameters: mean plant size and the number of plants in the PV fleet. Specifically, the 

model reliably reproduces the critical parameters for the grid operator, such as maximum 

fluctuation or the reserves required to offset these fluctuations. It is also helpful for the 
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design of new PV projects studying its impact in the main electrical grid and even it could 

be integrated in the grid operator simulation tools. 

6.2 CONTRIBUTIONS 

The main results from this thesis dissertation are presented in this section: 

Contribution to international journals 

• De la Parra, I., Marcos, J., García, M., Marroyo, L., 2015. “Energy Storage 

Requirement for PV power ramp-rate control in a PV fleet,” submitted. 

• Marcos, J., de la Parra, I., García, M., Marroyo, L., 2015. “Simulating the variability 

of large PV plants,” submitted. 

• De la Parra, I., Marcos, J., García, M., Marroyo, L., 2015. “Control strategies to 

use the minimum energy storage requirement for PV power ramp-rate control,” 

Sol. Energy 111, 332–343. doi:10.1016/j.solener.2014.10.038 

• Marcos, J., de la Parra, I., García, M., Marroyo, L., 2014. “Control Strategies to 

Smooth Short-Term Power Fluctuations in Large Photovoltaic Plants Using 

Battery Storage Systems,” Energies 7, 6593–6619. doi:10.3390/en7106593 

• Contribution to international conferences 

• De la Parra, I., Marcos, J., García, M., Marroyo, L., 2014. “Minimizing Energy 

Storage Requirement for PV Power Ramp-Rate Limitation Controlling the 

Inverters MPPT,” in: 29th European Photovoltaic Solar Energy Conference and 

Exhibition. Amsterdam, pp. 2376–2379. 

• Participation in public R&D projects 

• Seventh Framework Programme of the European Commission with the project 

PVCROPS (Photovoltaic Cost R€duction, Reliability, Operational Performance, 

Prediction and Simulation), Grant Agreement no: 308468, November 2012-

October 2015. 



Conclusions, contributions and future lines 

 

117 

 

• R&D national plan Project, “Technologies for the grid integration of renewable 

energies: power electronics, storage, energy management and interaction,” 

DPI2013-42853-R., Spanish Ministry of Economy and Competitiveness, Public 

University of Navarre (UPNA), 2014-2016. 

• Participation in private R&D projects 

• Collaborative project between Acciona Energía and the Public University of 

Navarre in the framework of the ILIS Project. “Innovative Lithium-Ion System 

management design for MW solar plants.” March 2011 - December 2012. (OTRI 

number 2010-024-093). 

• International presentations 

During the process of this investigation, different presentations were made in order 

to disseminate the important results. 

• “Management of PV power generation: less variability and more predictability.” in 

29th European Photovoltaic Solar Energy Conference and Exhibition PVCROPS 

Parallel Event, “Grid-connected PV systems: Field testing, performance 

monitoring and energy storage.” Amsterdam, 24th September 2014. 

•  “PV energy management and storage integration.” Intersolar Europe 2014, 

PVCROPS Side Event, Industry showcase. Munich, 4th June 2014. 

• International seminar 

Furthermore, a seminar was also carried out to disseminate the more important 

results of this work. 

• “Security in PV generation. Making PV fluctuation more predictable.” PVCROPS 

seminar at ELIA (Belgium’s electricity transmission system operator) offices. 

Brussels, 2nd April 2014. 

• Final master degree projects 

In addition, two final master degree projects arose from this thesis, in which the 

author performed tutoring tasks: 
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• Atarratze Rota Villanueva. “PV systems technology evolution for the compliance 

with new standards and grid codes.” Final project of the Master in renewable 

energies: electrical generation. June 2014. 

• Josu Zamarbide Ducun. “Short and medium-term forecasting of solar radiation.” 

Final project of the Master in renewable energies: electrical generation. June 

2014. 

6.3 FUTURE WORK 

The dramatically reduction in the costs of the PV technology (costs of 0.50$/Wp in 

the 2013) has led solar PV energy to be below retail electricity prices in several countries 

and particularly in a number of islands. This situation has supposed the appearance of 

new grid codes that impose a maximum allowable ramp-rate restriction with the main 

objective of the effective control of the PV power fluctuations. Although the first steps 

dealing with these new grid codes have been carried out in this thesis dissertation, the 

following lines of research are suggested below: 

• The ramp-rate control strategy using the PV inverters proposed in chapter 4, 

supposes that there is no communication system between the inverters of the PV 

plant. In this way, all the inverters limit the ramping up events to the maximum 

allowable ramp rate restriction. The existence of communication between the 

inverters would let to fix the limit of the sum of the total PV power instead of the 

power at each inverter. On the other hand, if the ESS is not fully charged, it can 

take part together with the inverters in the limitation of the PV power ramping up 

events. The ESS can store part of the energy that was previously depreciated. In 

this way, a study of the reducing the inverter limitation losses should be carried 

out. 

• The methodology proposed to calculate ESS requirements lets exhaustive cost-

effective analysis about which ESS technology is better to smooth short term PV 

output variability. 
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• Large PV fluctuations are unusual during the year and, consequently, ESS is 

scarcely used. This fact come into light the potential use of the ESS for ancillary 

services (frequency regulation or time shifting), in an endeavour to take full 

economical advantage of its installation. To do so, a fluctuation prediction tool 

would be necessary to determine the critical times in order to ensure the smart 

management of the energy stored. 

• The calculation of the ESS energy storage requirements is based on the worst 

fluctuation model. This model has shown to correctly work within the PV 

technology. However, not only is this model valid for the solar energy but also for 

any other kind of renewable generation whose limits are well-known. In this way, 

it would be of particular interest to extrapolate this model to other kind of 

renewable energies, for instance, to wind energy. 
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NOMENCLATURE  

 

Symbol Description 
Units 

A  Active area of the PV generator m2 

rampMAA ,  
Area between ramp-rate curve and moving-
average curve 

m2 

triA  
Area of each triangle between the area of ramp-
rate control strategy and step-rate control strategy 

m2 

a 
Slope of the adjusting line of τ (0.042 s/m) 
(chapter 4) 

s/m 

a Adjusting coefficient (chapter 5) - 

aobs Observed slope of the adjusting line of obsτ  s/m 

aw Slope of the adjusting line of wτ  s/m 

b  Adjusting coefficient of τ (-0.5 s) (chapter 4) s 

b  Adjusting coefficient (chapter 5) - 

0B  Solar constant (1367 W/m2) W/m2 

( )0cB  Direct horizontal irradiance W/m2 

),( αβcB  Beam irradiance in the plane of the generator W/m2 

BATC  ESS capacity Wh 

( )tC cBAT ,  
ESS capacity required to charge in the event of 
the maximum upward fluctuation at instant t 

Wh 

( )tC dBAT ,  
ESS capacity required to discharge in the event of 
the maximum downward fluctuation at instant t 

Wh 

fBATC ,  ESS capacity for the PV fleet h 
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obsfBATC ,,  Observed ESS capacity for the PV fleet h 

lossBATC ,  ESS Annual degradation due to cycling Wh 

MABATC ,  
ESS capacity for the moving-average control 
strategy 

Wh 

rampBATC ,  ESS capacity for the ramp-rate control strategy Wh 

advancedrampBATC ,,  
ESS capacity for the advanced ramp-rate control 
strategies 

Wh 

usedBATC ,  Effective ESS capacity used Wh 

( )0cD  Diffuse horizontal irradiance W/m2 

),( αβcD  Diffuse irradiance in the plane of the generator W/m2 

DARR  
Daily aggregate ramp rate for a generic power 
series data 

- 

realNDARR ,  
Daily aggregate ramp rate for the power series 
generated by N PV plants 

- 

simNDARR ,  
Daily aggregate ramp rate for the power series 
simulated by N PV plants 

- 

( )tEBAT  ESS energy at instant t Wh 

1, −idayendBATE  ESS energy at the end of the previous day Wh 

idaybeginningBATE ,  ESS energy at the beginning of the day Wh 

MAXBATE ,  ESS Maximum energy Wh 

MINBATE ,  ESS Minimum energy Wh 

RAMPBATE ,  ESS energy for the ramp-rate control strategy Wh 

REFBATE ,  ESS energy reference Wh 

( )tE REFBAT ,  ESS energy reference at instant t Wh 

rampstepE −  
Energy saving for a PV power plant using the step-
rate control strategy instead of the ramp-rate 
control strategy 

Wh 

dF  Diffuse angular function - 

*G  
Irradiance under standard test conditions 
(1000W/m2) 

W/m2 
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)(tG  Irradiance at an instant t W/m2 

)(tG i
 Irradiance of PV plant i at an instant t W/m2 

),( βαcG  Irradiance in the plane of the generator W/m2 

)(tGc  Irradiance in the plane of the generator at instant t W/m2 

effG  Effective irradiance W/m2 

gN(t) 
Normalized irradiance measured at instant t in the 
aggregation of N locations 

p.u, 

210 ,, kkk  
Experimental parameters to calculate inverters 
efficiency 

- 

K  Controller gain constant h-1 

l  Shortest dimension of the perimeter of the PV plant m 

obsl  Distance travelled by a front of clouds m 

wl  
Shortest distance that a front of clouds has to travel 
to cover all the PV fleet 

m 

)( ,NtPMax ∆∆  
Maximum power fluctuation for a time interval, ∆t, 
for a given number N of PV plants grouped 

% 

)( ,, realNtPMax ∆∆  
Maximum power fluctuation measured for a time 
interval, ∆t, for a given number N of PV plants 
grouped 

% 

)( ,, simNtPMax ∆∆  
Maximum power fluctuation simulated for a time 
interval, ∆t, for a given number N of PV plants 
grouped 

% 

m Adjusting coefficient (chapter 3) S·%/min 

m Relative optical air mass (chapter 4) - 

m Adjusting coefficient (chapter 5) - 

n  
Number of times the duration of the sampling time 
∆t 

- 

N  Number of PV plants grouped - 

cyclN  Number of cycles - 

max,cyclN  Number of maximum possible cycles - 

maxN  Number of maximum cycles - 
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triN  
Number of triangles between the area of ramp-rate 
control strategy and step-rate control strategy 

- 

*P  Maximum power under standard test conditions. W 

)(tP  Power generated at instant t W 

ACP  AC power W 

BATP  ESS power W 

BATp  Normalized ESS power p.u. 

( )tPBAT  ESS power at instant t W 

MAXBATP ,  ESS maximum power W 

fBATp ,  Maximum normalized ESS power in a PV fleet p.u. 

obsfBATp ,,  
Maximum normalized ESS power for the 
fluctuation observed in the PV fleet 

p.u. 

WfBATp ,,  
Maximum normalized ESS power in a PV fleet for 
the worst fluctuation case 

p.u. 

MAXBATp ,  Normalized ESS maximum power p.u. 

( )tP rampBAT ,  
ESS power for the ramp-rate control strategy at 
instant t 

W 

DCP  DC power W 

( )tPESS  ESS power at instant t W 

( )tPG  Grid power at instant t W 

( )tP MAG ,  
Grid power at instant t for the moving-average 
control strategy 

W 

( )tP rampG ,  
Grid power at instant t for the ramp-rate control 
strategy 

W 

( )tP STEPG ,  Grid power at instant t for the step control strategy W 

( )tP rampG ,  
Grid power at instant t for the moving-average 
control strategy 

W 

IP  Inverter nominal power output W 

LP  Power losses W 

( )tP inverterPV lim,,  
Sum of the PV power output with the ramping-up 
variations limited by the inverters at instant t 

W 
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nP  Nameplate power W 

NP  Power of N PV plants W 

( )tPi
 Power output of PV plant i at instant t W 

i
nP  

Transformer power at the common coupling point 
of the i-th PV plant 

W 

( )tpN  
Normalized PV power output at instant t of an 
aggregation of N PV plants 

p.u. 

( )tp realN ,  
Measured normalized PV power output at instant t 
of an aggregation of N PV plants 

p.u. 

( )tp simN ,  
Simulated normalized PV power output at instant t 
of an aggregation of N PV plants 

p.u. 

( )tPPV  PV power at instant t W 

( )tpPV  Normalized PV power at instant t p.u. 

( )tp obsfPV ,,  
Normalized PV power of the fluctuation observed 
in the PV fleet at instant t 

p.u. 

( )tp WfPV ,,  
Normalized PV power of the worst fluctuation case 
in a PV fleet at instant t 

p.u. 

( )tP MPPPV ,  
PV power available with inverters working at MPP 
at instant t 

W 

( )tp TOTALPV ,  
Normalized sum of the PV power of all the PV 
plants at instant t 

p.u. 

( )tpreal  Real normalized PV power at instant t p.u. 

( )tpsim  Simulated normalized PV power at instant t p.u. 

)(tP t∆∆  Power fluctuation for a time interval, ∆t, at instant t % 

)(min1, tPPV∆  Power fluctuation for 1 minute interval at instant t % 

)(min1,, tp TOTALPV∆  
Normalized power fluctuation for 1 minute interval 
at instant t for all the PV plants 

% 

)(, tP Nt∆∆  
Power fluctuation for a time interval, ∆t, at instant t 
for a given number N of PV plants grouped 

% 

r Ramp-rate value %/min 

rmax Maximum allowable ramp-rate limitation %/min 

),( αβcR  Reflected irradiance in the plane of the generator W/m2 
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s Laplace operator rad·s-1 

S  PV plant Surface m2 

S  Mean surface of N PV plants m2 

SOC  ESS state of charge % 

( )tSOC  State of charge at instant t % 

MAXSOC  ESS maximum state of charge % 

MINSOC  ESS minimum state of charge % 

t  Time s 

batt  Effective storage time s 

MAXBATPt
,

 Time when PBAT gets a maximum s 

T  Time window (chapter 3) s 

T  Signal length (chapter 5) - 

*
CT  

Cell temperature under standard test conditions 
(25°C) 

°C 

( )tTC  Cell temperature at instant t °C 

LT  Linke turbidity - 

RT  Time span s 

rdT  Diffuse transmission function at zenith - 

kX  Generic variable in the frequency domain - 

tx  Generic variable in the time domain - 

α  Angle of incidence deg 

β  PV generator orientation deg 

t∆  Time interval between two measurements. s 

0ε  Eccentricity correction - 

Rδ  Integral Rayleigh optical thickness m 

*η  Efficiency under standard test conditions. % 

( )tη  PV module efficiency as a function of the irradiance 
and cell temperature 

% 
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Iη  Inverter efficiency % 

PECη  Power electronic converter performance % 

BATη  Battery performance % 

γ  Power temperature coefficient %·ºC-1 

sγ  Solar elevation angle deg 

τ  Time constant s 

obsτ  Observed time constant s 

wτ  
Time constant for the worst fluctuation case in a PV 
fleet 

s 

tω  Angular frequency rad·s-1 
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