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Abstract

This thesis deals with the discrimination between benign and malignant adnexal masses through
ultrasound images. This task represents one of the most challenging problems in gynecological
practice. Benign adnexal masses should be treated by minimally invasive surgery whereas patients
with questionable adnexal masses should be referred for primary surgery. An accurate diagnosis is
crucial in order to establish the optimal management for these patients. Therefore, it is essential
for the specialist to have as many tools as possible in order to distinguish between benign and
malignant adnexal masses. The diagnostic techniques that are being used involve 2D images and
3D ultrasound volumes. The basic outline of such system is the following. The first step consists of
pre-processing both the images and volumes. Then, a set of characteristics is extracted. Finally,
these characteristics will be used as an input to a classification system. The main goal of this
thesis is make this system to be part of the daily clinical practice in order to validate its viability
as an aid to diagnosis.
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Nomenclature

ANN Artificial Neural Networks
B-Mode Brightness-Mode
Cd Gray level Co-ocurrence Matrix
CV Cross Validation
CAD Computer Aided Diagnostic
CLT Central Limit Theorem
E Shannon Entropy
E3 Edge Texture Mask 3x3
EK Kapur’s Entropy
FD Fractal Dimension
FP False Positive
FN False Negative
FOV Field Of View
gc Center Pixel
gf Gabor filter
gI Gabor representation of an image
gk Maximum gray level
gl Minimum gray level
G Gray levels
GLCM Gray Level Co-occurrence Matrix
GW Gabor Wavelet
h Histogram
H Normalized Histogram
hu Hu Moment
I Image
IM Invariant Moments
k Gabor Orientations
K Cross Validation Divisions
l Gabor Scales
L3 Level Texture Mask 3x3
LBP Local Binary Pattern
LTE Laws Texture Energy
MSE Mean Squared Error
N Number of pieces
PCA Principal Component Analysis
P Pixel Neighbors
Pd Probability matrix: GLCM Normalized
r Structure size
R Radius
ROI Region Of Interest
s Scale factor
si Silhouette value
S3 Spot Texture Mask 3x3
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ST Student Test
TE Texture Energy Map
TI Texture Image
TP True Positive
TN True Negative
US Ultrasound
SA Semi Automated
µpq Central moment order (p+q)
ηpq Normalized central moment order (p+q)
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Chapter 1

Introduction

1.1 Adnexal Masses

An adnexal mass is a lump in tissue of the adnexa of uterus, usually in the ovary or fallopian
tube. Adnexal masses can be both benign or malignant. The adnexa of uterus or uterine append-
ages refers to those structures that are most closely related to the uterus both structurally and
functionally, as we can see in Figure 1.1.

Figure 1.1: Front and Lateral View of the Adnexa of Uterus

Adnexal masses are frequently found in both symptomatic and asymptomatic women. Since
ovaries produce physiologic cysts in menstruating women, the likelihood of a benign adnexal mass
is higher in women of reproductive age. Malignant neoplasms are uncommon in younger women
but become more frequent with increasing age and the incidence of malignancy rises. The overall
risk of a primary ovarian neoplasm being malignant increases from 13% in premenopausal women
to 45% following menopause [14]. In premenopausal women, physiologic follicular cysts and corpus
luteum cysts are the most common adnexal masses.

Moreover, ovarian cancer is the most frequent cause of gynecological death. Therefore, it
is essential for the specialist to have as many tools as possible in order to distinguish between
malignant and benign adnexal masses and nowadays, it represents one of the biggest challenges in

Ultrasound Image Discrimination Between Benign and Malignant Adnexal Masses 1



CHAPTER 1. INTRODUCTION

gynecological practice. 5−10% of US women with a suspected adnexal mass will undergo surgery,
but only 13 − 21% will have a mass that is proven to be malignant (NHI Consensus Conference
1995) .

1.2 3D Ultrasound Examination

Ultrasound allows analysis in vivo of all the characteristics evaluated by surgeons and anatomical
pathologists. The optimal ultrasound approach to characterize adnexal masses remains to be
established. A diagnosis can be suspected on the basis of the morphological characteristics, such
as its complexity, the presence of solid portions and irregularity. Many of this sonographic features
are associated with a higher probability of malignancy. Furthermore, through a 3D ecography, a
volume can be obtained and post-analyzed, which provides advantages, such as reconstructions or
volume calculations.

1.2.1 Ultrasound Scanning

Technological advances have made possible to use different ways of ultrasound examinations such
as transvaginal, transabdominal or transrectal scanning. In the following, transvaginal and trans-
abdominal scanning will be explained in detail. In Figure 1.2, both examinations can be seen.

Figure 1.2: Transabdominal and Transvaginal Ultrasound [18]

Transvaginal scanning is an internal ultrasound which involves scanning with the ultrasound
probe lying in the vagina. The ultrasound probe lies closer to the female pelvic organs and it
operates at a higher frequency, so that more resolution can be achieved, specially in patients
who are obese or in the early stages of pregnancy. However, some conditions limit transvaginal
scanning: the integrity of the hymen, women’s refusal to undergo an invasive imaging technique or
the presence of cicatricial processes involving the vaginal walls that could make the transducer’s
movements painful or limit them.

Transabdominal ultrasound involves scanning through the lower abdomen. It usually provides
an overview of the area rather than detailed images. It should be considered for use with transva-
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CHAPTER 1. INTRODUCTION

ginal scanning in abdominopelvic neoformations that cannot be explored completely with trans-
vaginal ultrasound and when a woman’s condition does not allow endovaginal access.

From now on, we will focus on transvaginal examination. The database obtained will be based
on it.

1.2.2 Ultrasound Transducers

An ultrasound transducer is a device that converts electrical energy into ultrasound energy and
vice versa. It consists of one or more piezoelectric crystals or elements. The piezoelectric effect is
exhibited by certain crystals that, in response to applied pressure, develop a voltage across opposite
surfaces. This effect is used to produce an electrical signal in response to incident ultrasound waves.

An ultrasound transducer is designed to be maximally sensitive to ultrasound of a particular
frequency, denominated resonance frequency of the transducer, which is mainly determined by
the thickness of the piezoelectric crystal. Proper selection of the transducer frequency is an
important concept for providing optimal image resolution in diagnostic. In Figure 1.3, it can
be differentiated between lateral (C) and axial (B) resolution. Lateral resolution is the ability of
the ultrasound system to display two objects side-by-side as separate structures. It is best in the
focal zone, where the ultrasound beams are the narrowest and most concentrated. It depends on
the distance between the individual crystals rather than the distance between the objects being
viewed. Resolution diminishes in the far zone as the beam begins to diverge and is attenuated by
tissue. Axial resolution relates to the ultrasound system’s ability to differentiate objects in-line
with the axis of the sound wave. It is dependent on the length of the sound impulse and the
ultrasound frequency.

Figure 1.3: Transducer zones and resolutions

Therefore, high-frequency ultrasound waves generate images of high axial resolution, but are
more attenuated than lower frequency waves for a given distance; thus, they are suitable for ima-
ging mainly superficial structures. Conversely, low-frequency waves (long wavelength) offer images
of lower resolution but can penetrate to deeper structures due to a lower degree of attenuation.
This is the main limitation in ultrasound images. Lower frequencies are needed to study deep
structures, but image resolution is automatically reduced due to the tissue attenuation.

The choice of the transducer will determine the shape and field of view (FOV) of the ultrasound
image. It can be differentiated among:

• Sector or Phased array. They produce narrow images in the near-field but with a wide view
in the far-field. Therefore, they are optimal for examining larger organs, for example those
between the ribs.

Ultrasound Image Discrimination Between Benign and Malignant Adnexal Masses 3
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• Linear array. They produce rectangular images. The width of the image is determined by
the physical width of the transducer face. They often offer the best overall image quality
and are preferred for examining anatomy in the near-field.

• Curved or Convex array. They are a cross between linear and sector transducers providing
a broader view in the near-field while retaining a broad view in the far-field. The transducer
face is wide and gently curved.

In this project, a RIC5 − 9 transvaginal wide curved transducer is used. As it is an internal
ultrasound, it will operate at higher frequency and its bandwidth is between 4 and 9 Mhz. In this
way, images with more resolution can be provided because it can normally be placed adjacent or
very close to the uterus and ovaries structures.

This probe will be covered with a disposable protective sheath and a small amount of ultrasound
gel is placed on the end of this probe in order to reduce the attenuation due to the sharp change
among the structures, the air and the probe. This is important, because as we are dealing with
sound waves, its velocity changes drastically from air to water or bone, for example. In Figure 1.4,
the basic transducer formats can be seen. These are sector, linear and curved array respectively,
together with an image of the ultrasound gel on the sheath of the probe.

Figure 1.4: Transducer Beams: Sector, Linear and Curved respectively

As in Figure 1.5, in order to obtain the appropriate information from the ultrasound exam-
ination, the probe is pointed in the proper direction, pushed into the vaginal vault to the desired
depth for maximal visualization, and rotated to alter the plane of transection. After the region
of interest of the adnexa of uterus is found, a 3D ecography through the transvaginal scanning is
made. An automatic method is used, from where the transducer makes a sweep over this region,
creating the volume. The velocity and sweep angle is chosen by the expert. The lower speed and
angle chosen, the more resolution is obtained. In general, it can be said that the quality of an
automatic method is much better than the manual one.

1.2.3 Ultrasound Presentation Modes

This thesis will be focus on the B-Mode or Brightness-Mode representation. The basic principles
of B-mode imaging involve transmitting small pulses of ultrasound echo from a transducer into
the body.

4 Ultrasound Image Discrimination Between Benign and Malignant Adnexal Masses



CHAPTER 1. INTRODUCTION

Figure 1.5: Desired direction

As ultrasound waves penetrate the body tissues of different acoustic impedance along the path
of transmission, some are reflected back to the transducer (echo signals) and some continue to
penetrate deeper. The echo signals returned from many sequential coplanar pulses are processed
and combined to generate an image. Thus, an ultrasound transducer works both as a sound wave
generator and as a sound wave receptor. The ultrasound pulse is short, but since it traverses
in a straight path, it is often referred to as an ultrasound beam. The direction of ultrasound
propagation along the beam line is called the axial direction, and the direction in the image
plane perpendicular to axial is called the lateral direction. High -amplitude echoes will have high
brightness presentation. In Figure 1.6, a B-Mode image ultrasound display can be seen and how
a group of this images creates the 3D representation. The length of the scan lines determines the
field of view (FOV). The distances will be in between 2 and 12 cm and so our images.

Figure 1.6: B Mode

1.3 Objective of the Thesis

The motivation of this research work begin through the university contact with a gynecologist
doctor, who transmit us the real need of discriminating between benign and malignant adnexal
masses in ultrasound images and his interest in image research. After finding information in several
articles about the work that has been already done in this wide area, the opportunity of involving
us with new ideas in this topic appeared.

Therefore, this project aims to develop a Computer Aided Diagnostic (CAD) technique of
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ultrasound images to discriminate between malignant and benign groups in order to be able to
help as a practical tool during the diagnostic decision, with the future goal of assisting doctors in
the interpretation of suspicious ultrasound images.

1.4 Structure of the Thesis

Chapter 2: introduces the image data sets and volumes.
Chapter 3: forms the first part of the thesis. The preprocessing algorithms for our set of images
is described.
Chapter 4: presents the second part of the thesis. The extracted features calculated for each of
the images are presented.
Chapter 5: indicates the dimensionality reduction process.
Chapter 6: forms the fourth part of the thesis. The classifier implementation is described and
the final results are presented.
Chapter 7: forms the conclusion of the report and provides a short outlook.

This project has been performed in cooperation with the Clinical University of Navarre. The
method has been modeled within MATLAB.
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Chapter 2

Database

The image database has been taken from the gynecological department of the Clinical University
of Navarre. 145 different volumes are used, each one obtained from a different patient. In Figure
2.1, we can see a helpful orientation of the corresponding volumes in order to differentiate between
Front/Axial, Lateral and Top view. These orientations correspond to the three sections from the
volume represented in Figure 2.2.

Figure 2.1: Front(A), Lateral(B) and Top view(C) from an Ultrasound Volume

Figure 2.2: Ultrasound Volume

Apart from the patient and doctor identification, and the patient disease, there is also inform-
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ation about the sweep frequency of the ultrasonic system. As we have said before, the FOV is in
the range between 2 and 12 cm.

The volumes have been taken from a Voluson ultrasound system (.V00 format). Therefore,
the program that is going to be used to premanipulate this volumes will be 4DV iew, a software
used to optimize, manipulate and analyze volume ultrasound data offline [1]. With this program,
some measures will be taken in order to be able of reading the volumes properly. The following
and main investigation will be continued through MATLAB.

Together with the volumes, a “gold standard” value of every volume is given. It represents the
diagnostic truth of each original image. In this way, from the 145 volumes, we can differentiate
between 106 benign volumes and 39 malignant ones. The specific number of benign and malig-
nant volumes has been chosen according to its probability of appearance in general population.
Approximately, 75 to 85 % are benign adnexal masses. Therefore, this proportion will be used
throughout this thesis.

The age of the women is also given by the gynecologist. The clinic experience reveals that
women between 35 and 65 years old have more incidence of having an ovarian tumor and so are
the ages taken into account for this project. Patients mean age is 43 years old.

2.1 Classification Types

Differentiation of adnexal masses into benign and malignant is based on many morphological
parameters. Transvaginal ultrasound investigation of any adnexal mass provides information on
its location in the pelvis, its laterality and its relation with the adjacent organs.

Among our database, we can differentiate the following classification:

Number Malignant Names
23 Ovarian Tumor
4 Pelvic Tumor
1 Anexial Tumor
1 Ovarian Tumorization
1 Pelvic Tumorization
2 Ovarian Cysts
1 Ovarian Mass
1 Anexial Mass
1 Cervix neo
1 Ovarian Carcinoma
3 Without classification

Table 2.1: 39 Malignant Classification

Number Benign Names
26 Ovarian Tumor
1 Pelvic Tumor
2 Anexial Tumor
1 Solid Tumor
14 Endometrioma
39 Ovarian Cysts
1 Hemorrhagic Cyst
1 Bilateral Ovarian Cysts
1 Anexial Cyst
3 Teratoma
1 Ovarian Tumor
1 Ovarian Lesion
1 Anexial Mass
14 Without classification

Table 2.2: 106 Benign Classification

As we can see, the more common are both Ovarian Tumor and Ovarian Cysts. Besides, they
can be both benign or malignant. Pelvic Tumor is also frequent in both classifications. Transva-
ginal ultrasound investigation provides information on the morphology of the mass, classified into
unilocular, multilocular, unilocular solid, multilocular solid, solid or unclassifiable. Information
can also be obtained if a septum or multiple septa are present.
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Chapter 3

Proposed System

From each of the 145 volumes, just one 2D image will be obtained in order to avoid redundancy.
The goal is to simplify the problem by working with 2D images instead of with volumes. The
volumes have been taken from a Voluson ultrasound system and they will be processed through
MATLAB.

3.1 Preprocessing Method

First of all, the images that belong to each of the volumes will be read from Matlab. A set of
cropped images will be obtained from the volume file and its correspondent volume mask. The
images will be proportional to the original size. In Figure 3.1, it can seen how from the original
volume, the cropped image and its mask are calculated.

Figure 3.1: Image plane from the volume

The volumes have different sizes, depending on the adnexal mass. In general, it can be said
that each volume has between 130 and 220 images. As we have said, one optimal image from
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each volume will be chosen, where the adnexal mass could perfectly be seen. A graphic example
is presented in Figure 3.2.

Figure 3.2: 3D to 2D Volumes

From now on, we will work with this optimal image from the whole volume. As detailed below,
two different methods will be used, taking into account the whole image or just a defined region
of interest (ROI). At the end, both results will be compared.

3.1.1 Semi-Automated Image Method

It is called semi-automated because the optimal image from the volume has been manually chosen.
The image will be, first of all, multiplied by the mask in order to assure that no background
information is used and later constrained to this area. The features from the following chapters
will be applied to this region.

3.1.2 Non-Automated Method or ROI Method

As in Figure 3.3, the ROI of the optimal image of each volume is selected. This segmentation
is supervised by the gynecologist expert in order to increase the reliability of the selection. The
features from the following chapters will be also constrained to this area. Moreover, the image
will be cropped by calculating the bounding box of the ROI mask. In this way, smaller images
will be used in order to avoid computation time.

Figure 3.3: ROI Image plane from the volume
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3.2 Diagram

The proposed system is indicated in Figure 3.4. Four main parts can be differentiated. In the first
one, image extraction and preprocessing is made. Two groups are obtained: the Semi-automated,
which is directly obtained, and the ROI ones, by selecting the specific region and verifying it with
an expert.

The second part consists in a feature extraction process, where we obtain different texture
features based on the bibliography, which will lead us to a posterior discrimination. The third part
proposes a dimensionality reduction system, from where the significant features or a combination
of them will be taken.

Finally, the neural network design is presented. As it will be later explained, the data is
divided following the cross-validation method, in order to make a proper training and a posterior
discrimination.

Figure 3.4: Block Diagram System

In Figure 3.5, it can also be seen how we are working with images of different size, which
should be later taken into account. They have been rescaled to provide the same height and
maintain their original proportions.

Figure 3.5: Equal image height
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Extracted Features

This chapter focus on the different operators that have been used in order to significantly char-
acterize the image. This will give us important information of the image and it will lead us to
a posterior classification. As we have said in the previous chapter, image files have been taken
from a Voluson device software, which comes from the General Electric (GE) company. There-
fore, although image proportions keep constant, original distances (mm/cm) are lost when reading
the files in MATLAB. In other words, areas or perimeters from the different images cannot be
compared so only texture operators will be calculated.

4.1 Local Binary Pattern (LBP)

The Local Binary Pattern is an efficient texture operator specially used to emphasize small scale
image texture and highlight similarities between images. Theoretically, considering the gray level
of an arbitrary pixel gc of an image, the local binary pattern replaces each value of gc with an
8-bit binary code. The input variables are the center pixel gray level gc, the chosen radius R and
the number of neighboring pixels P . Generally, a window of radius 1(R = 1 = 3x3) centered in gc
is chosen together with its P = 8 neighboring pixels in order to model small-scale image texture.

The method consists in calculating the difference between the center pixel gc and its P neigh-
boring pixels (gp, p = 0, .., P − 1). A clockwise direction is followed, starting up with the pixel
on the right side of gc. Then a thresholding function s(x) is applied. If the difference value is
lower than 0, 0 is assigned. Otherwise, 1. Finally, the corresponding LBP image is obtained by
translating the binary code into its decimal value. In Figure 4.1, we can see a practical example.
This feature can be expressed mathematically by:

LBPP,R =

P−1∑
p=0

s(gp − gc)2
p s(x) =

{
1 si x >= 0
0 otherwise

(4.1)

4.1.1 Histogram calculation

The first option will be to calculate the normalized histogram of the LBP image. Considering a gray
level histogram hi, i = 0, 1, ..., L− 1, where L is the number of distinct gray levels, the normalized
histogram will be Hi, i = 0, 1, ..., L− 1, where Hi = hi/MN and MN are the dimensions of the
image. Two different scales will be used: (P=8, R=1) and (P=8, R=2). Their design is shown
in Figure 4.2. The histogram bins can be directly used as a significant feature, as applied in the
paper of Khazendar, et al [4]. The histogram difference between a real image and a LBP image
can be seen in Figure 4.4. Indeed, small scale information is accented. Besides, the skewness and
the variance parameters of the LBP histogram image will also be calculated as features.
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Figure 4.1: LBP Example

On one hand, the skewness parameter is a measure of the asymmetry of the data around the
sample mean. If skewness is negative, the data are spread out more to the left of the mean than
to the right. If skewness is positive, the data are spread out more to the right. The skewness of
the normal distribution (or any perfectly symmetric distribution) is zero. On the other hand, the
variance measures how far a set of numbers is spread out. A variance of zero indicates that all
the values are identical. Variance is always non-negative: a small variance indicates that the data
points tend to be very close to the mean (expected value) and hence to each other, while a high
variance indicates that the data points are very spread out around the mean and from each other.

Figure 4.2: LBP Scales: 81, 82

In Figure 4.4, the zero mean histograms (LBP 81) from a benign and malignant ROI image
are represented. It can clearly be seen how the malignant images (in red) seem to be more
compact than the benign ones (in blue). Therefore, the variance parameter could probably lead
to significant results. However, its significance will be measured in the following chapter.

4.1.2 Average Power and Entropy calculation

Multi-scale analysis of the image using LBP can also be done. The LBP images will be calculated
using three different scales: P = 8, R = 1(3x3);P = 16, R = 2(5x5);P = 32, R = 3(7x7), as
applied in [10]. The scales design can be seen in Figure 4.5. Average power and entropy of the
resulting LBP image will be used as features.

The average power, is related to the mean square value of the image normalized by the number
of samples in the image. In other words, it can be said that it is related with its intensity. The
more intensity in the pixels of the image, the more average power the image will have, which can
clearly be seen in the example of Figure 4.6. Entropy will be in the following sections explained,
as an independent parameter.
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Figure 4.3: LBP Histogram 81 Example
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Figure 4.5: LBP Scales: 81, 162, 323

Figure 4.6: LBP Average Power Example
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4.2 Fractal Dimension (FD)

The fractal dimension (FD) is a real number used to characterize the geometric complexity of a
fractal. The simplest example of a fractal structure will be a human body. A human body consists
of organs; an organ consists of large leaves; a large leaf consists of small leaves; a small leave consists
of cell units and so on. All these structures are different sized units with self-resemblance, and that
is what defines a fractal structure. Therefore, a fractal structure can be classified into different
levels by using its sized units. In Figure 4.7, we can see a fractal surface divided into its different
levels from the lowest to the highest one, where r is the size of the structure and N(r) is the total
number of units needed to cover a certain structure.

Defining a fractal as a bounded set A for which the fractal dimension (morphologic complexity)
is strictly larger than the topological dimension (D), a scale factor s (s = 1/r), and a number of
pieces N , the following expression can be obtained. A would be self-similar if it is the union of
N(r) non-overlapping copies of itself scaled up or down by a factor of r.

FD =
log(N(r))

log( 1r )
(4.2)

As in [8], this feature is used to express self-similarity and give information about the irregu-
larity of the pixels of an image. One way to quantify FD is the Box-counting method. It consists
in covering the image with a non-overlapping grid made of boxes and then counting how many
boxes of the grid are covering our image. After that, this method is repeated by iterating the
process using a finer grid. At the end, the pattern of how N(r) changes with r will be obtained,
as represented in the following graph. Using a logarithmic scale, a lineal regression model will
be used to fit the line. The FD value is given by the slope of this line. The input can be a 1D
segment, a 2D image or a 3D volume. Certainly, smaller squares will pick up more detail, and
will give a better approximation of the shape (N(r) squares of side length r).

Figure 4.7: FD Example (Scale factor (1/r) and Number of boxes (N(r)))

In this sense, the more irregular the surface is, the higher the value will be. In Figure 4.8, an
example can be seen. Small squares are used on the left image, while bigger ones are used on the
right. This example show how the box grid is applied to the non-zero elements of the image and
how smaller boxes provide more detail than the bigger ones. However, in our case, covering the
image surface so as to count the number of boxes gives no extra information about the irregularity
of the pixels of the adnexal mass itself.

Therefore, as in [5], the Modified differential box counting method will be used in order
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Figure 4.8: Box Counting Method Example

to get information about the pixel intensities itself. First of all, for efficient computation, zero
padding will be applied to our image in order to work with a power of 2 grid size. Then, considering
an image I(i, j) of size MxM (i = 1, ..M ; j = 1, ..M), it will be scaled down to a certain number
of rxr grids, whose side length r is in between 2 and M/2. As in Figure 4.9, each grid can be
viewed as a column of boxes of size rxrxr′ placed one above the other, indicating different gray
levels values.

Considering G as the total number of gray levels (256 in this case), the maximum (gk) and
minimum (gl) gray levels will be taken for each (i,j)th grid. This values will be saved in the kth
and lth boxes respectively and nr will in this case not be the number of non-overlapping copies
but the count of the number of boxes on the top of the (i, j)th block, nr(i, j) = gk−gl+1. In this
way, the image is seen as a 3-D landscape and the total contribution of the volume is equivalent
to Nr boxes, where:

Nr =
∑
i,j

nr(i, j) (4.3)

Figure 4.9: Differential Box Counting Method Example, [13]

From Equation 4.2, using the least square error linear fit for logNr against log(1/r) ,the fractal
dimension can be obtained as the slope of the fitted line. In Figure 4.10, three iterations can
be seen, which have 22, 23 and 24 boxes respectively. Above all these boxes, we will also have a
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(i, j)th grid, from where the intensities difference of each box will be taken.

Figure 4.10: Box Counting Method ROI Example

A scale-independent verification of this feature can be made. Taking into account the image of
the example above and its half sized version, the FD value maintains invariant (2,500 and 2,499).
Therefore, it can be explained that the texture keeps equal in both images, despite its image size.

In Figure 4.11, two different ROI segmentations with a red line can be seen. One of them,
tends to have a smoothies gray level surface, while the other has a more irregular one. Therefore,
the FD values are different: the value of the image on the right is higher than the one of the image
on the left. Both are normalized.

Figure 4.11: FD Example

4.3 Entropy (E)

Entropy is a statistical measure of randomness that can be used to characterize the texture of
an input image, [7]. The image histogram carries important information about the content of
an image and can be used for discriminating both groups. Considering the gray level histogram
hi, i = 0, 1, ..., L− 1, L is the number of distinct gray levels. If MN are the dimensions of the
image, the normalized histogram is Hi, i = 0, 1, ..., L− 1, where Hi = hi/MN . Theoretically,
Shannon Entropy can be defined as:

E = −
L−1∑
i=0

(Hi log2(Hi)) (4.4)

whereHi contains the probabilities from each level of the histogram calculation. In most feature
descriptors, Shannon’s measure is used to measure entropy. However, in this project non-Shannon
measures are also used because they have a higher dynamic range over scattering conditions.
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Therefore, they are useful in estimating scatter density and regularity. Kapur’s measure can be
defined as:

EK =
1

β − α
log2(

∑L−1
i=0 Hα

i∑L−1
i=0 Hβ

i

) (4.5)

In this project, as mentioned in [7], we consider α = 0.5 and β = 0.7.

Therefore, flat images or those with a uniform distribution of gray levels have a low entropy.
However, images with random noise have more entropy due to the fact that they are not highly
spatially correlated or, in other words, complex to compress. In Figure 4.12, an example between
the original image (left) and the same image with Speckle noise can be seen. Speckle is a granular
noise that inherently exists and degrades the quality of medical ultrasound images. As we expected,
the entropy values differ and the image with noise presents a higher entropy value.

Figure 4.12: E Example

4.4 Hu’s Invariant Moments (IM)

An image moment is a certain particular weighted average of the image pixels intensities, or a
function of such moments, usually chosen to achieve a good interpretation or property. Therefore,
image moments are very useful to describe objects after segmentation, [7]. It is possible to
obtain properties such as area or intensity, centroid and orientation information. The Hu’s Seven
Invariant Moments are invariant under translation, scaling, and also rotation. Therefore, they
describe the image despite of its location, size, and orientation.

Theoretically, for a 2D digital image f(x, y) the central moment order (p+ q) is defined as:

µpq =
∑
x

∑
y

(x− x̂)p(y − ŷ)qf(x, y) (4.6)

where x̂ = m10

m00
and ŷ = m01

m00
are the centroid of the image. Therefore, central moments are

independent from their position. In the same way, the normalized central moment of order (p+ q)
is defined as: ηpq =

µpq

µγ
00

where γ = p+q
2 . From this normalized central moment, Hu defined seven

values up to three (p, q : 0, 1, 2, 3) that are invariant. They are calculated as in the following
equations.

hu1 = (η2,0 + η0,2)
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hu2 = (η2,0 − η0,2)
2 + 4η21,1

hu3 = (η3,0 − 3η1,2)
2 + (3η2,1 − η0,3)

2

hu4 = (η3,0 + η1,2)
2 + (η0,3 + η2,1)

2

hu5 = (η3,0 + 3η1,2)(η3,0 + η1,2)[(η3,0 + η1,2)
2 − 3(η0,3 + η2,1)

2]+

(3η2,1 + 3η0,3)(η0,3 + η2,1)[3(η3,0 + η1,2)
2 − (η0,3 + η2,1)]

hu6 = (η2,0 − η0,2)[(η3,0 + η1,2)
2 − (η0,3 + η2,1)

2]+

4η1,1(η3,0 + η1,2)(η0,3 + η2,1)

hu7 = (3η2,1 − η0,3)(η3,0 + η1,2)[(η3,0 + η1,2)
2 − 3(η0,3 + η2,1)

2)]−
(η3,0 − 3η1,2)(η0,3 + η2,1)[(3η3,0 + η1,2)

2 − (η0,3 + η2,1)
2]

(4.7)

In Figure 4.13, an example can be seen. The original image, its 45 grades rotated image version
and its half sized image version, together with the seven Hu moments. The sign(hu) · log10(hu)
of the absolute result has been taken in order to reduce the dynamic range. As it can be seen, the
values keep invariant.

Figure 4.13: IM Example

4.5 Gray Level Co-ocurrence Matrix (GLCM)

Another texture measure, that will give us information about the spatial arrangement of the
intensities of our image, is the Gray Level Co-ocurrence Matrix.

The elements of GLCM, Cd(i, j), are made up of the relative number of times the gray level
pair (i, j) occurs when pixels are separated by the distance (1, 0), which corresponds to the vertical
direction as we can see in Figure 4.14 together with an example. The index i will go over the
rows of the image, and j will go over the columns of the image. This probability is measured by
the following equation, which corresponds to the normalization of the GLCM, making the total
sum equal to one.

Pd(i, j) =
Cd(i, j)∑

i

∑
j Cd(i, j)

(4.8)
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Figure 4.14: 3 GLCM examples for a gray-tone image

In Figure 4.15, the calculation process can be seen. First of all, the original image will be
scaled to 8 gray levels. The scaled image is represented in pseudocolor by mapping each intensity
value to a certain color map, in order to better see the scaled version of the gray scale image.
After that, the GLCM will be calculated. The matrix dimensions are 8x8.

Figure 4.15: GLCM calculation process: Original, Pseudocolor and GLCM

However, although the co-occurrence matrix captures properties of a texture, it is not directly
useful for further analysis, such as comparing two textures. Therefore, numeric features such as
correlation [8], entropy and Moment 4 [9] are computed instead. From the normalized GLCM or
also called probability matrix (Pi,j), the following equations are obtained.

GLCM Correlation =
∑

Pi,j
(i− µi)(j − µj)√

(σ2
i )(σ

2
j )

(4.9)

GLCM Entropy = −
∑
i

∑
j

Pi,j log(Pi,j) (4.10)

GLCM M4 =
∑
i

∑
j

(i− j)4Pi,j (4.11)

where µi and µj are the mean and σi and σj the variance of the gray level appearance i and
j, respectively.
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In Figure 4.16, we can see an example where the entire process is presented. We have the
original images (a uniform and a original one), the scaled images with the pseudocolor mapping
and its GLCM, from where we will calculate the explained features.

Figure 4.16: GLCM Correlation Example

In the correlation measure, it can be seen that 0 is uncorrelated and 1 is perfectly correlated.
When an image area is completely uniform, the GLCM variance is 0, just as the first-order image
variance. As a result, the denominator of the correlation equation becomes 0, and correlation
becomes undefined (NaN: Not a Number). The entropy measure is also related to the grade of
variability in the image. The uniform image has only one non-zero pixel in the GLCM. Therefore
the entropy and M4 are zero. The Moment 4 presents also a zero value in the uniform image.

4.6 Laws Texture Energy (LTE)

Laws Texture Energy is another approach to generating texture features. In this case, local masks
will be used to detect various types of texture and then estimating its energy. As in paper [10],
a set of three 1D vector convolution masks is used to compute it. Their names, (L3, E3, S3), will
describe its function, the level, edge and spot feature respectively.

L3(Level) = [1, 2, 1] E3(Edge) = [−1, 0, 1] S3(Spot) = [−1, 2,−1] (4.12)

As we can see in Figure 4.17, by the convolution of these 1D horizontal vectors with vertical
ones, nine 2D masks (3x3) will be obtained. All the possible combinations are: L3L3 (mask1),
S3S3 (mask2), E3E3 (mask3), S3L3 (mask4), L3S3 (mask5), L3E3 (mask6), E3L3 (mask7), E3S3
(mask8) and S3E3 (mask9). Due to the fact, that all these masks have a zero mean, except from
L3L3, only eight masks will be used and the mask 1 (L3L3) will normalized the contrast of all
other texture images. There are certain symmetric masks, for example, masks 4 and 5, masks 6
and 7, masks 8 and 9. Each of them measure horizontal and vertical content respectively. Anyway,
we will work with them separately.
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Figure 4.17: LTE Masks

Texture is a set of primitive texels (texture pixel, fundamental unit of texture space) in some
regular or repeated relationship. To obtain the texture image (TI), we will convolve the original
image with all those 2D local masks in order to detect the different types of texture. Therefore,
the result is a full image, representing the application of the kth mask to the input one. For
example, the texture image and its normalization for mask 3 (E3E3) will be:

TIE3E3 = I ∗ E3E3 (4.13)

TIE3E3 Normalized =
TIE3E3

TIL3L3
(4.14)

where * denotes the convolution operator. The resultant normalized TI images are passed
through an average filter of absolute values. The texture energy (TE) map is obtained:

TE(i, j) =
3∑
−3

3∑
−3

|TIi+u,j+v| (4.15)

where u,v are the image dimensions. In Figure 4.18 and 4.19, the results from the eight
texture image masks in a pseudo-color image and in gray scale can be seen. As feature, the
average power will be calculated from them.

Figure 4.18: LTE Example

Ultrasound Image Discrimination Between Benign and Malignant Adnexal Masses 23



CHAPTER 4. EXTRACTED FEATURES

Figure 4.19: LTE Example

4.7 Gabor Wavelet Transform (GW)

Gabor filters through the Gabor Wavelet Transform, provide both frequency (stationary and
periodic structure) and spatial locality. This is achieved by the convolution of our image with
Gabor filters of different scales and orientations. Therefore, they allow the analysis of spatial
variation in a similar way to the human visual system. For all these reasons, it has been proposed
as a texture discrimination model.

In the spatial domain, a 2D Gabor filter is a Gaussian kernel or envelope modulated by a
sinusoidal wave along the x-axis. This filter has both a real and an imaginary component. We
can work with the complex number or use the real or imaginary part individually. As in [11], the
Gabor filter gf can be defined by:

gf(l,k)(m,n) =
f2

πγη
exp(−x′2 f

2

γ2
+ y′2

f2

η2
) exp(j2πfx′) (4.16)

where f is the frequency of the sinusoidal factor, x′ = m cos(θ)+n sin(θ) and y′ = −m sin(θ)+
n cos(θ). And where θ represents the orientation of the normal to the parallel stripes of a Gabor
function, γ is the sharpness along the major axis X and η is the sharpness along the minor axis
Y. l and k are the integers that identify the scale and orientation factor respectively and (m,n)
are the image dimensions. The aspect ratio of the Gaussian is λ = η/γ.

Typically, a bank of Gabor filters is used. They are Gaussians of different sizes modulated by
sinusoidal plane waves of different orientations. The kernel size is proportional to the width of
the Gaussian. At least, it should be six times the standard deviation and the closest odd number
should be taken. The Gabor wavelet representation xl,k of an image is the convolution of the image
with a family of Gabor wavelets. In our work, we will use a set of 24 complex Gabor wavelets: 4
Scales (l = 1 : 4) and 6 Orientations (k = 1 : 6), in particular: 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦ .
The Gabor results can be defined as:

gIl,k = I ∗ gf(l,k) (4.17)

where * denotes the convolution operator. In this case, the biggest scale is 4 so the kernel size will
be, at least 25. The feature vector is then constructed using the mean and standard deviation of
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the absolute value of the Gabor result as feature components. Therefore, the feature vector will
have a length of 48: 24 means and 24 standard deviations for each image.

µl,k(m,n) =
1

MxN

M∑
m=1

N∑
n=1

|gIl,k(m,n)| (4.18)

σl,k(m,n) =

√√√√ 1

MxN

M∑
m=1

N∑
n=1

(|gIl,k(m,n)| − µl,k(m,n))2 (4.19)

In Figure 4.20, a GW example and the original filters can be seen. In the example, the
original image and two Gabor results are represented. The results correspond to the horizontal
(0◦) and vertical (90◦) orientation and they are represented with pseudo-color in order to improve
the details. Therefore, horizontal and vertical edges of the image are emphasized in those results.
As the original image has a wide range of orientations, the mean parameter will have a low value.

Figure 4.20: GW Example and GW filters
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Dimensionality Reduction

This chapter focus on the dimensionality reduction from the features. It can be defined as the
process of reducing the number of variables under consideration, and can be divided into two
subgroups, feature selection and feature extraction. In this way, we avoid working with features
that are redundant which could affect our classifiers by leading to a dimensionality problem.
Reducing features can also save storage and computation time.

5.1 Feature Data

After the feature calculation step, two variables are obtained:

• Feature vector: consists of 145 image observations divided into two groups, 106 benign
and 39 malignant, with 591 features for each image. These are:

– 512 LBP Histogram Counts: from (R=1; P=8) and (R=2; P=8)

– 4 LBP Histogram Features: Variance and Skewness from (R=1; P=8) and (R=2; P=8)

– 6 LBP Features: Entropy and Average Power from (R=1; P=8), (R=2; P=16), (R=3;
P=24)

– 1 FD

– 2 Entropy (Shannon and Kapur)

– 7 Invariant Moments

– 3 GLCM: Correlation, Entropy and 4 Moment

– 8 LTE

– 48 GW: 24 GW Mean and 24 GW Std

• Label: defines the group to which the 145 image observations belong. 0 corresponds to the
benign group and 1 to the malignant one.

In Figure 5.1, a diagram can be seen with the different steps of this chapter. First of all, an
exploratory data analysis will be made. After that, three methods for dimensionality reduction.
And finally, the data will be scaled as it will later be explained.

5.2 Exploratory Data Analysis

We start with an exploratory data analysis approach in order to summarize the main characteristics
of our data through visual methods.
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Therefore, in Figure 5.2 and 5.3 a high dimensional scatter data visualization of certain
pair of variables will be represented in order to see their distribution and possible overlapping
problems or redundant features. The benign group (0) will be represented with blue color, and
the malignant one (1) with red. Besides, all of them will be rescaled to the range (0,1). We
can conclude that those pair of features that represent a line distribution contribute less than the
others to the classification, because they are more correlated. In the diagonal of the representation,
the histogram of each feature can be seen. The information in both sides is symmetric so that we
can focus on one of them.

The intensity of the variable pairs relation can be calculated through the correlation coeffi-
cient (r). It measures the strength and the direction of a linear relationship between two variables
and it is sometimes referred to as the Pearson product moment correlation coefficient. As a high
number of variables is being considered, this coefficient will be represented in an image instead
of with numeric values. The correlation can be in between (−1, 1), so the absolute value will be
represented, including both positive and negative correlations. The image will be square and its
dimensions will be determined by the number of features. The diagonal will always represent the
highest correlation, when comparing a feature to itself. A correlation greater than 0.8 is generally
described as strong. Therefore, a binary image with just the correlation values that exceed 0.8
will be also represented, in order to highlight redundancy and facilitate the interpretation.

As we can see in Figure 5.5, the correlation matrix is represented for both SA and ROI
procedures. The features are arranged as in the “5.1 Feature Data” section list. It can be seen
that overall there are high correlated features. A zoom in the last 79 features is made, excluding
the two histogram counts calculation, where the correlation of the other calculated features is
represented. The same procedure is repeated for the ROI features. In this case, the correlation
coefficient is smaller due to the fact that only the regions of interest are contained.

Moreover, the silhouette value (si) can be calculated for our data. This value is defined
as a measure of how similar each point is to points in its own cluster, when compared to points
in the other cluster. In this project, we associate cluster 1 to the benign and cluster 2 to the
malignant group. This measure provides information about how different the two groups are for
each feature, so that the significant ones can be detected. Besides, the Silhouette value can also
provide information about the level of overlapping between both clusters. In the vertical axis, the
145 images are represented and the silhouette values in the horizontal one. The si value contrasts
the average distance to elements in the same cluster with the average distance to elements in other
clusters. Objects with a high si value are considered well clustered, objects with a low si value
may be outliers. By default, the squared Euclidean distance between points is used. Inside each
group or cluster, the images are reorder, from the maximum value to the minimum one. This
silhouette value si is theoretically calculated, as:

si =
(bi − ai)

max(ai, bi)
(5.1)

where ai is the average distance from the ith point to the other points in the same cluster
as i, and bi is the minimum average distance from the ith point to points in a different cluster,
minimized over clusters.

In Figure 5.6, the si values can be seen for the LBP Entropy 018 feature in the ROI procedure.
The negative si values correspond to images which would have been more appropriate in its
neighboring cluster. The near to zero si values correspond to images on the border of classification
between the two clusters, benign and malignant one. Therefore, it is clear that we are dealing with
complicated images. In this case, the malignant observations are correctly identified, but we have
a high rate of false positives. Most of the benign observations are being considered as malignant.
From these values, it can be concluded that the data has a high grade of overlapping.
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Figure 5.1: Diagram Dimension
Semi−Automated Procedure
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Figure 5.2: Scatter plot SA and ROI
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Semi−Automated Procedure
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Figure 5.3: Scatter plot SA and ROI

Ultrasound Image Discrimination Between Benign and Malignant Adnexal Masses 29



CHAPTER 5. DIMENSIONALITY REDUCTION

Figure 5.4: Correlation Matrix for Semi-automated Procedure

Figure 5.5: Correlation Matrix for ROI Procedure
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Figure 5.6: Histogram and Silhouette values for LBP Entropy 018 ROI Procedure

5.3 Feature selection

The feature selection approach tries to find a subset of the original variables, which are significant
or relevant in order to use them in the model construction of the classifier. Redundant features
will be those which provide no more information or repeated one. A possible algorithm is to test
each possible subset of features finding the one which minimizes the error rate. Therefore, a t-test
for two populations (benign and malignant group) will be applied on each feature and its p-value
will be compared as a measure of how effective it is at separating groups, as in [7], [8], [9], [10].
In other words, with the Student test features with a statistically different mean for both groups
can be selected.

5.3.1 Student t-test of 2 populations

The most common type of t-test, namely the Student t-test, is often used to assess whether the
means of two classes are statistically different from each other by calculating a ratio between the
difference of means and the variability of the two classes. There are several assumption underlying
a t-test. These are:

• Each of the two populations being compared should follow a normal distribution. This can
be tested using a normality test, or graphically using a normal quantile plot.

• The two populations being compared should have the same variance (testable using F-test,
for example). However, if the size of the populations being compared is equal, the presence
of unequal variances does not affect the test.

In probability theory [17], the central limit theorem (CLT) states that, given certain
conditions, the arithmetic mean of a sufficiently large number of independent random variables
(superior to 30) will be approximately normally distributed, regardless of the underlying distribu-
tion. In our case, the sample size contains a large number of image observations, specifically 106
benign and 39 malignant. Both groups exceed the limit of 30 samples, therefore we continue with
the Student t-test implementation.

5.3.2 Results Semi-automated procedure

In Table 5.1, the significant features results can be seen. All of them fulfill to have a p-value less
than 0.05, which indicates that the means are significantly different for the two classes: benign
and malignant. 41 significant features have been selected. The others are not discriminating.
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N Features Benign Malignant p-value
1 LBP hist Variance018 3, 87E − 04± 1, 76E − 04 3, 20E − 04± 7, 81E − 05 2,36E-02
2 LBP hist Variance028 3, 50E − 04± 2, 01E − 04 2, 78E − 04± 5, 52E − 05 2,81E-02
3 LBP hist Skewness018 3, 54E + 00± 1, 42E + 00 2, 91E + 00± 4, 08E − 01 7,14E-03
4 LBP hist Skewness028 4, 41E + 00± 1, 64E + 00 3, 86E + 00± 8, 57E − 01 4,87E-02
5 LBP Ent018 4, 611± 0, 240 4, 714± 4, 714 1,97E-02
6 LBP Ent216 4, 156± 0, 193 4, 247± 0, 170 9,77E-03
7 LBP AvgPower018 0, 652± 0, 030 0, 637± 0, 007 2,37E-03
8 LBP AvgPower216 0, 668± 0, 027 0, 653± 0, 007 1,57E-03
9 LBP AvgPower324 0, 664± 0, 028 0, 649± 0, 008 1,31E-03
10 E Shannon 7, 74± 1, 18E − 01 7, 37± 1, 58E − 01 7,68E-31
11 E Kapur 7, 74± 1, 15E − 01 7, 69± 9, 45E − 2 2,09E-02
12 IM1 6, 19E − 01± 1, 82E − 01 5, 06E − 01± 1, 13E − 01 3,79E-04
13 IM2 9, 71E − 02± 9, 99E − 02 5, 41E − 02± 4, 42E − 02 1,05E-02
14 GLCM CO 9, 35E − 01± 3, 37E − 02 9, 17E − 01± 2, 78E − 02 2,59E-03
15 GLCM EN 2, 40E + 00± 1, 81E − 01 2, 50E + 00± 1, 73E − 01 2,79E-03
16 GLCM M4 3, 01E − 01± 1, 25E − 01 3, 92E − 01± 1, 80E − 01 7,21E-04
17 GW mean 11 8, 86E − 04± 5, 53E − 04 1, 18E − 03± 7, 45E − 04 1,03E-02
18 GW mean 12 8, 88E − 04± 4, 90E − 04 1, 10E − 03± 6, 38E − 04 3,58E-02
19 GW mean 15 5, 79E − 04± 2, 77E − 04 6, 93E − 04± 3, 64E − 04 4,55E-02
20 GW mean 16 8, 85E − 04± 4, 83E − 04 1, 12E − 03± 6, 71E − 04 2,42E-02
21 GW mean 21 1, 89E − 03± 8, 75E − 04 2, 41E − 03± 9, 50E − 04 2,15E-03
22 GW mean 22 1, 77E − 03± 7, 44E − 04 2, 11E − 03± 7, 95E − 04 1,78E-02
23 GW mean 23 1, 10E − 03± 4, 49E − 04 1, 28E − 03± 5, 29E − 04 4,03E-02
24 GW mean 24 7, 18E − 04± 2, 86E − 04 8, 32E − 04± 3, 22E − 04 4,21E-02
25 GW mean 25 1, 09E − 03± 4, 33E − 04 1, 26E − 03± 4, 97E − 04 4,50E-02
26 GW mean 26 1, 77E − 03± 7, 48E − 04 2, 13E − 03± 8, 37E − 04 1,27E-02
27 GW mean 31 3, 16E − 03± 9, 00E − 04 3, 79E − 03± 7, 39E − 04 1,54E-04
28 GW mean 32 2, 86E − 03± 7, 17E − 04 3, 25E − 03± 5, 41E − 04 2,20E-03
29 GW mean 33 1, 80E − 03± 5, 14E − 04 2, 04E − 03± 5, 15E − 04 1,46E-02
30 GW mean 34 1, 36E − 03± 3, 59E − 04 1, 53E − 03± 3, 81E − 04 1,53E-02
31 GW mean 35 1, 79E − 03± 4, 93E − 04 2, 02E − 03± 4, 93E − 04 1,60E-02
32 GW mean 36 2, 85E − 03± 7, 36E − 04 3, 29E − 03± 6, 00E − 04 1,00E-03
33 GW mean 41 6, 53E − 03± 1, 15E − 03 7, 19E − 03± 9, 73E − 04 1,86E-03
34 GW mean 42 3, 60E − 03± 6, 53E − 04 3, 97E − 03± 4, 23E − 04 1,34E-03
35 GW mean 43 2, 45E − 03± 5, 01E − 04 2, 69E − 03± 4, 22E − 04 6,99E-03
36 GW mean44 5, 53E − 03± 1, 03E − 03 6, 06E − 03± 9, 90E − 04 6,15E-03
37 GW mean45 2, 43E − 03± 4, 76E − 04 2, 67E − 03± 4, 22E − 04 5,52E-03
38 GW mean46 3, 60E − 03± 6, 64E − 04 3, 99E − 03± 4, 43E − 04 8,10E-04
39 GW std 21 2, 91E − 03± 8, 95E − 04 3, 30E − 03± 1, 06E − 03 2,72E-02
40 GW std 31 4, 02E − 03± 8, 43E − 04 4, 47E − 03± 7, 84E − 04 4,21E-03
41 GW std 41 6, 73E − 03± 7, 33E − 04 7, 05E − 03± 6, 97E − 04 1,93E-02

Table 5.1: Student t-test significant results (p-value< 0.05). Semi-automated procedure

5.3.3 Results ROI procedure

In Table 5.2, the significant features results for the ROI procedure can be seen with a pvalue less
than 0.05. A total of 58 significant features are selected. In comparison with the SA procedure,
there are more significant features due to the fact that just the area of interest is taken into
account.
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N Features Benign Malignant p-value
1 LBP Ent018 4, 834± 0, 5840 5, 120± 0, 294 0,0041
2 LBP Ent216 4, 335± 0, 523 4, 601± 0, 247 2,73E-03
3 LBP Ent324 3, 659± 0, 480 3, 898± 0, 330 0,004
4 LBP AvgPower018 4, 834± 0, 584 5, 120± 0, 294 4,14E-03
5 LBP AvgPower216 9, 673± 0, 547 9, 447± 0, 313 0,016
6 LBP AvgPower324 4, 335± 0, 523 4, 601± 0, 247 2,73E-03
7 E Shannon 6, 30± 1, 12 7, 08± 3, 06E − 01 3,58E-05
8 E Kapur 7, 23E + 00± 3, 47E − 01 7, 48E + 00± 1, 57E − 01 2,74E-05
9 IM1 1, 223± 1, 166 0, 585± 0, 262 9,38E-04
10 GLCM EN 1, 83E + 00± 5, 60E − 01 2, 31E + 00± 2, 73E − 01 1,03E-06
11 GLCM M4 2, 77E − 01± 1, 60E − 01 4, 08E − 01± 2, 04E − 01 7,95E-05
12 LTE 6 3, 993± 1, 094 3, 581± 1, 037 0,043
13 GW mean 11 1, 38E − 03± 8, 90E − 04 1, 84E − 03± 1, 15E − 03 1,15E-02
14 GW mean 12 1, 04E − 03± 6, 14E − 04 1, 41E − 03± 8, 30E − 04 4,83E-03
15 GW mean 13 7, 03E − 04± 3, 53E − 04 9, 15E − 04± 4, 62E − 04 3,96E-03
16 GW mean 14 5, 88E − 04± 2, 76E − 04 7, 12E − 04± 2, 87E − 04 1,89E-02
17 GW mean 15 7, 24E − 04± 3, 66E − 04 8, 83E − 04± 3, 86E − 04 2,35E-02
18 GW mean 16 1, 09E − 03± 6, 60E − 04 1, 40E − 03± 8, 85E − 04 2,25E-02
19 GW mean 21 2, 73E − 03± 1, 44E − 03 3, 52E − 03± 1, 47E − 03 4,15E-03
20 GW mean 22 2, 02E − 03± 1, 02E − 03 2, 65E − 03± 1, 10E − 03 1,57E-03
21 GW mean 23 1, 24E − 03± 5, 98E − 04 1, 61E − 03± 6, 40E − 04 1,56E-03
22 GW mean 24 9, 74E − 04± 4, 59E − 04 1, 19E − 03± 4, 43E − 04 1,34E-02
23 GW mean 25 1, 28E − 03± 5, 97E − 04 1, 55E − 03± 5, 89E − 04 1,54E-02
24 GW mean 26 2, 10E − 03± 1, 07E − 03 2, 61E − 03± 1, 14E − 03 1,46E-02
25 GW mean 31 4, 25E − 03± 1, 69E − 03 5, 24E − 03± 1, 21E − 03 9,61E-04
26 GW mean 32 3, 19E − 03± 1, 21E − 03 4, 01E − 03± 9, 47E − 04 1,91E-04
27 GW mean 33 2, 01E − 03± 7, 97E − 04 2, 51E − 03± 6, 81E − 04 6,40E-04
28 GW mean 34 1, 65E − 03± 6, 44E − 04 2, 01E − 03± 5, 44E − 04 2,29E-03
29 GW mean 35 2, 05E − 03± 7, 98E − 04 2, 46E − 03± 6, 86E − 04 4,92E-03
30 GW mean 36 3, 29E − 03± 1, 28E − 03 3, 96E − 03± 9, 72E − 04 3,36E-03
31 GW mean 41 6, 46E − 03± 2, 57E − 03 8, 39E − 03± 1, 72E − 03 2,67E-05
32 GW mean 42 3, 97E − 03± 1, 34E − 03 4, 86E − 03± 8, 08E − 04 1,52E-04
33 GW mean 43 2, 74E − 03± 9, 28E − 04 3, 31E − 03± 6, 31E − 04 5,31E-04
34 GW mean 44 4, 79E − 03± 2, 11E − 03 6, 60E − 03± 1, 66E − 03 3,37E-06
35 GW mean 45 2, 76E − 03± 9, 30E − 04 3, 27E − 03± 7, 20E − 04 2,60E-03
36 GW mean 46 4, 05E − 03± 1, 39E − 03 4, 78E − 03± 8, 48E − 04 2,69E-03
37 GW std 11 2, 54E − 03± 8, 84E − 04 2, 99E − 03± 9, 35E − 04 8,81E-03
38 GW std 12 2, 03E − 03± 6, 31E − 04 2, 31E − 03± 7, 70E − 04 2,63E-02
39 GW std 13 1, 71E − 03± 4, 75E − 04 1, 94E − 03± 6, 05E − 04 1,81E-02
40 GW std 14 1, 55E − 03± 4, 83E − 04 1, 74E − 03± 5, 46E − 04 4,80E-02
41 GW std 15 1, 73E − 03± 5, 22E − 04 1, 97E − 03± 4, 86E − 04 1,28E-02
42 GW std 21 3, 27E − 03± 1, 08E − 03 3, 84E − 03± 1, 12E − 03 6,04E-03
43 GW std 22 2, 65E − 03± 9, 20E − 04 3, 12E − 03± 1, 05E − 03 1,03E-02
44 GW std 23 1, 99E − 03± 6, 22E − 04 2, 34E − 03± 7, 74E − 04 4,98E-03
45 GW std 24 1, 65E − 03± 4, 96E − 04 1, 87E − 03± 5, 79E − 04 2,91E-02
46 GW std 25 2, 01E − 03± 6, 50E − 04 2, 31E − 03± 6, 23E − 04 1,53E-02
47 GW std 31 4, 25E − 03± 1, 11E − 03 4, 87E − 03± 9, 25E − 04 2,14E-03
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N Features Benign Malignant p-value
48 GW std 32 3, 48E − 03± 9, 53E − 04 4, 04E − 03± 8, 73E − 04 1,69E-03
49 GW std 33 2, 50E − 03± 7, 11E − 04 2, 93E − 03± 7, 39E − 04 1,68E-03
50 GW std 34 2, 03E − 03± 5, 66E − 04 2, 29E − 03± 6, 19E − 04 1,57E-02
51 GW std 35 2, 52E − 03± 7, 47E − 04 2, 88E − 03± 6, 65E − 04 1,02E-02
52 GW std 36 3, 53E − 03± 1, 02E − 03 3, 98E − 03± 9, 68E − 04 1,82E-02
53 GW std 41 5, 62E − 03± 1, 43E − 03 6, 79E − 03± 9, 87E − 04 5,59E-06
54 GW std 42 3, 94E − 03± 8, 66E − 04 4, 52E − 03± 6, 87E − 04 2,55E-04
55 GW std 43 2, 92E − 03± 7, 24E − 04 3, 35E − 03± 6, 30E − 04 1,36E-03
56 GW std 44 3, 77E − 03± 1, 11E − 03 4, 72E − 03± 8, 75E − 04 3,50E-06
57 GW std 45 4, 05E − 03± 1, 11E − 03 4, 65E − 03± 9, 27E − 04 3,30E-03
58 GW std 46 2, 93E − 03± 7, 42E − 04 3, 29E − 03± 6, 76E − 04 9,74E-03

Table 5.2: Student t-test significant results (p-value< 0.05). ROI procedure

5.4 Feature extraction

Feature extraction is another technique for dimensionality reduction. It is specially efficient with
data that is not only large but also redundant. As we have seen in the previous section, our data
is correlated so it could be interesting to transform it into a reduced representation set of features.
It is expected that the extracted features set will extract the relevant information. In our work,
the principal component analysis technique will be applied.

5.4.1 Principal Component Analysis (PCA)

Principal component analysis is a statistical procedure. It is based on an orthogonal transformation
that converts a set of image observations with correlated feature variables into a set of uncorrelated
variables, called principal components. Therefore, the number of principal components is always
less than or equal to the number of image observations available minus one. This is because
the covariance matrix has a size corresponding to the number of observations minus one when
doing PCA on centered data. One image is treated as a single point in a high-dimensional space.
The orthogonal transformation is defined so that the first principal component has the largest
possible variance, in a way that represents as much variability as possible. These components
are orthogonal because they correspond to the eigenvectors of the covariance matrix, which is
symmetric.

In this way, PCA transforms a set of correlated variables into a new set of uncorrelated vari-
ables. If the original variables were almost uncorrelated, the gain of the transformation will not be
high. Therefore, in our case this method can be profitable. Furthermore, it is important to take
into account that PCA is sensitive to the relative scaling of the original variables, so the entire
data needs to be in the same scale. Our features do not have the same units, because not all of
them are comparable: bits of information, pixel counts, a complex number and so on. Therefore,
the data will be first standardized, and then the PCA analysis will be applied. In comparison
with the feature selection approach, a big reduction in the number of features can be seen. The
maximal variability will be explained by the whole number of observations minus one, i.e. 144.
However, in comparison with the Student Test selection, in this case we are using all the features,
including LBP histogram counts, as part of the input data.

5.4.2 Results Semi-automated procedure

In Figure 5.7, two figures that represent the components variability for the SA procedure can be
seen. The one on the left represents the amount of variance explained for the first ten principal
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components. With 7 of the 591 features we can already explain the 90% of the variability, although
the first component is the ones that more variability explains. The image on the right represents
the number of coefficients needed to explain a higher percentage of variability. Therefore, it can
be seen that :

• To explain 90%, we need 7 coefficients.

• To explain 95%, we need 16 coefficients.

• To explain 99%, we need 70 coefficients.

• To explain 100%, we need 144 coefficients.

As we have said before, these percentages are associated with the fact that the variables are
highly correlated. The more coefficients we take, the more variability we can explain, but also
more computation is needed.

Figure 5.7: PCA Variability. Semi-automated Procedure

If we focus on the first coefficient, the one that represents the main part of the variability, it is
possible to see which is the combination of features presented on it. In the following expression,
only the 20 features with higher weight on the first coefficient will be represented due to the fact
that we are working with a large number of features. Those are:

COEF1 = 0, 0546 · LBPhist028 174 + 0, 0545 · LBPhist028 219 + 0, 0545 · LBPhist028 183

+ 0, 0545 · LBPhist028 108 + 0, 0542 · LBPhist028 74 + 0, 0603 · LBPhist028 83

+ 0, 0542 · LBPhist028 167 + 0, 0542 · LBPhist028 38 + 0, 0602 · LBPhist028 170

+ 0, 0541 · LBPhist028 44 + 0, 0540 · LBPhist028 149 + 0, 0601 · LBPhist028 173

+ 0, 0540 · LBPhist028 107 + 0, 0540 · LBPhist018 95 + 0, 0540 · LBPhist028 78

+ 0, 0539 · LBPhist028 179 + 0, 0539 · LBPhist028 203 + 0, 0598 · LBPhist018 245

+ 0, 0539 · LBPhist028 155

It can clearly be seen that the LBP histograms 018 and 028 express a high percentage of
variability in our dataset. It was supposed, as explained in the chapter before, to be a significant
feature. Therefore, it was directly included in the feature selection process without applying the
student test to it. If the LBP histogram counts are removed, it is possible to see the importance
of the other features, which also explain an important part of the variability. This importance is
the following:
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COEF1 = 0, 0510 ·GW m1 6 + 0, 0509 ·GW m1 2 + 0, 0501 ·GW m1 5

+ 0, 0499 · LBP Ent324 + 0, 0543 ·GW m2 2 + 0, 0493 ·GW std2 6

+ 0, 0493 ·GW m1 3 + 0, 0489 ·GW m2 6 + 0, 0489 ·GW std2 2

+ 0, 0488 · LTE8 + 0, 0488 · LTE7 + 0, 0487 ·GW m2 5

+ 0, 0482 ·GW m2 3 + 0, 0476 ·GW m1 1 + 0, 0472 · LTE1
+ 0, 0465 ·GW std2 1 + 0, 0465 ·GW std2 3 + 0, 0464 · LTE2
+ 0, 0463 ·GW std2 5

The Gabor Wavelet feature, for example, seems to have importance in the first principal
coefficient. This coefficient does not represent all features similarly, there are also some other
features (about 89) with a negative sign on it. This fact is also represented in Figure 5.8, where
the factorial plane (first and second coefficients) is plotted. It can be seen, that both the first
(horizontal axis) and second (vertical axis) coefficients have positive and negative variables. In
the first component, unlike in the second one, it is possible to differentiate between two groups
of variables. This group differentiation can lead to a possible discrimination in the classifier. The
variables that are close to zero are not explained. The red points of the diagram indicate with
coordinates the score of each observation for the two principal components. In Figure 5.9, the
first three principal components can be seen.

Figure 5.8: PCA 1 and 2 components. Semi-automated Procedure

5.4.3 Results ROI procedure

In Figure 5.10, two figures that represent the components variability for the ROI procedure can be
seen. In this case, the left one determines the explained variability of the ten principal components.
Whereas the right one determines the number of coefficients needed to explain a higher variability.
It can be seen that, in comparison with SA, a higher number of coefficients is needed to explain
the same variability of the data. Specifically:

• To explain 90%, we need 11 coefficients.

• To explain 95%, we need 27 coefficients.

• To explain 99%, we need 83 coefficients.

• To explain 100%, we need 144 coefficients.

Therefore, 145 images with 591 features can be represented in 144 different planes. To conclude,
it can be said that in the ROI procedure more PCA coefficients are needed, because the data is
less redundant.
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Figure 5.9: PCA three components. Semi-automated Procedure

Figure 5.10: PCA Variability. ROI Procedure
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In this case, if we also focus our interest on the first coefficient, we can see which is the
combination of features presented on it. We will also represent the 20 features with more weight
on this first coefficient. These are:

COEF1 = 0, 0574 · LBPhist028 44 + 0, 0574 · LBPhist028 213 + 0, 0571 · LBPhist028 174

+ 0, 0571 · LBPhist028 183 + 0, 0571 · LBPhist028 170 + 0, 0624 · LBPhist028 213

+ 0, 0571 · LBPhist028 105 + 0, 0570 · LBPhist018 256 + 0, 0570 · LBPhist028 175

+ 0, 0569 · LBPhist028 172 + 0, 0569 · LBPhist028 122 + 0, 0568 · LBPhist028 235

+ 0, 0568 · LBPhist028 45 + 0, 0568 · LBPhist028 174 + 0, 0568 · LBPhist028 212

+ 0, 0567 · LBPhist018 47 + 0, 0567 · LBPhist028 152 + 0, 0567 · LBPhist028 155

+ 0, 0566 · LBPhist018 227

The LBP histograms 018 and 028 have also high significance in this ROI procedure. Removing
the histogram bins, the following features can be seen.

COEF1 = 0, 0485 ·GW m1 3 + 0, 0483 ·GW m2 6 + 0, 0478 · LTE7
+ 0, 0473 · IM4 + 0, 0467 ·GW m1 5 + 0, 0467 · LBP Ener018

+ 0, 0467 · LBP Ener216 + 0, 0464 · IM4 + 0, 0464 · IM1

+ 0, 0463 · IM3 + 0, 0463 · LTE5 + 0, 0461 · LTE4
+ 0, 0461 · LTE1 + 0, 0038 · LTE7 + 0, 0460 · LBPhist Skew
+ 0, 0460 ·GLCM CO+ 0, 0031 ·GW std1 4 + 0, 0458 · LTE2
+ 0, 0458 · LTE8 + 0, 0457 · LTE6

Some Gabor Wavelet features, invariant moments and LBP Energies seem to have importance
for the first principal coefficient. This fact is also represented in Figure 5.11, where the factorial
plane (first and second coefficients) is plotted. The first (horizontal axis) and second (vertical
axis) coefficients have positive and negative variables. In this case, it can also be seen that with
the first component, it is easier to differentiate between two groups of variables. The red points
also indicate the score of each observation. In Figure 5.12, the first three principal components
can be seen.
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Figure 5.11: PCA 1 and 2 components. ROI Procedure
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Figure 5.12: PCA three components. ROI Procedure

5.5 Hybrid Method: ST and PCA

Another possible approach will be a combination of both Student Test results and Principal
Components Analysis. Both methods have their own advantages and disadvantages. In Figure
5.13, the worst cases of each method can be seen. The left one corresponds to ST method and the
right one to PCA.

Figure 5.13: Problems in ST and PCA

As we can see on the left image, two groups can be differentiated. However, their mean values
are not significantly different because they are very close to each other, so it will not be selected.
On the right, two groups can also be differentiated. However, the first principal component will
indicate the direction with the highest variability. If we consider just this component supposing
that the explained percentage is enough, it will not be possible to differentiate them.

If the methods are now exchanged, the problem will disappear, as it can be seen in Figure
5.14. On the left, the groups with no mean significance can be separated with the first principal
component. On the right, the groups with high variability can also be significant due to the mean
difference.

Therefore, a combination of both methods creating an hybrid one will lead to a proper selection
of features and a better dimensional reduction.

Ultrasound Image Discrimination Between Benign and Malignant Adnexal Masses 39



CHAPTER 5. DIMENSIONALITY REDUCTION

Figure 5.14: Solution in ST and PCA

5.6 Feature scaling

Feature scaling or feature normalization is a method used to standardize the range of independent
variables or features of data. Since the range of values of raw data varies widely, there is a need
to normalize.

First of all, it is applied after the Student-test and before PCA. It is needed that the features
from PCA have similar variances, if not the feature with biggest variance will control the first
principal component. During the Student test, feature scaling is not needed because each feature
is compared individually. However, it will be needed before the classifier, as it will be later
explained.

Two main methods can be differentiated:

1. Rescaling: Consists in a rescale of the range of features in order to make them independent.
We will use the range [0,1] for scaling. The value will be given by the following equation,
where x is the original value, x’ is the normalized one.

x′ =
x−min(x)

max(x)−min(x)
(5.2)

2. Standarization: It makes the values of each feature in the data have zero-mean and unit-
variance. The general method is to determine the distribution mean and standard deviation
for each feature. Next we subtract the mean and we divide the values of each feature by its
standard deviation.

x′ =
x−mean(x)

std(x)
(5.3)

We will use both of them through the thesis.

5.7 Feature vector Summary (FV)

From the original 591 calculated features, we have reduced their dimensionality in both the semi
automated procedure and in the ROI one. In Figure 5.15, the FV structure can be seen.

5.7.1 FV Semiautomated Procedure

The Semiautomated procedure differentiates between:

• Feature selection (ST): We have chosen 41 significant features, which have a p-value less
than 0.05. To all these features, we add the LBP histogram counts that are supposed to be
already significant. Therefore, plus 510 counts, we have 551 features.

• Feature extraction (PCA): To explain a 95% of the variability, we need 21 coefficients.
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Figure 5.15: Feature Vector

5.7.2 FV ROI Procedure

The ROI procedure differentiates between:

• Feature selection (ST): We have chosen 58 significant features, which have a p-value less
than 0.05. To all these features, we add the LBP histogram counts that are supposed to be
already significant. Therefore, plus 510 counts, we have 568 features.

• Feature extraction (PCA): To explain a 95% of the variability, we need 37 coefficients.
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Chapter 6

Classification System

This chapter will lead with the implementation of an accurate classifier, called Neural Networks.
Different configurations will be made and all the results compared.

6.1 Classifier Evaluation: K-fold cross validation (CV)

The feature vector observations will be used to train our classifier. In order to have an indication of
how good is our classifier when dealing with new predictions, the entire data will not be used when
training it. The removed data will be used to test the performance of our classifier. Therefore,
data needs to be divided into two sets: training data and test data. The training data will train
the classifier and the test data (remaining samples) will be used to evaluate its performance. This
evaluation method is called, cross-validation.

One kind of cross validation is called, K-fold cross validation. As we can see in Figure 6.1,
the data set is divided into ki(i = 1, 2, ...,K) disjoint subsets. Each time, one of the ki subsets is
used as the test set and the other subsets are collect to form a training set. Then, the average
error or validation accuracy across all subsets is computed in order to get a final cross-validation
accuracy. K = 10 different sets divisions will be considered. Each sub-sample has roughly equal
size. As the same benign and malignant image proportion as in our database wants to be ensured,
a separate cross validation will be made for both groups (106 for benign and 39 for malignant).
Then, the corresponding train and test sets will be joined. The training and testing size tend to
have the same size in all the divisions. Different executions of the cross validation code will lead
to different data divisions.

Figure 6.1: Cross validation example

The advantage of this method is that it does not depend on how the data gets divided. Every
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data point gets to be in a test set exactly once, and gets to be in a training set K − 1 times.
Besides, it is ensured that all the test sets are completely different from one to the other, avoiding
repetitions. Therefore, the variance of the resulting estimate is reduced as the number of sets K
is increased. However, the training algorithm will have to be rerun from scratch more times and
it will involve more computation.

6.2 Artificial Neural Network Classifier (ANN)

The name neural networks covers a wide variety of processing architectures which involve simple
processing units with a large number of connections by weighted links. The basic idea takes
inspiration from models in true neurons, therefore it is called artificial neural networks. In Figure
6.2, we can see the relationship between the neural and the artificial model, where the axon is
related to the output, the soma is the activation function and the synapses are the weighted inputs.
The neural network function starts with several inputs (plus a bias term). Then, it multiplies each
input by its correspondent weight. Inside the neuron, an activation function is applied to the sum
of the results, and finally an output result is obtained.

Figure 6.2: Neural Network Relationship

A single neuron cannot do very much. However, several neurons can be combined into a layer
or multiple layers that have great power. Therefore, a neural network model is built from many
neurons, where each neuron contains a learning model. The neuron (also called activation unit)
has features as input, and the output is the model h(x). The layers in between are called Hidden
Layers.

Each unit in the hidden layer is a weighted sum of the values in the first layer. Bias and
Weights neurons can also be differentiated. Bias neurons can shift the transfer function curve
horizontally allowing us to customize the input-to-output mapping to suit our particular needs.
Weights neurons, also called thetas or parameters, manipulate the shape or curvature of the
transfer function. An example of a real artificial network is the perceptron. In Figure 6.3, an
example of the weights and bias role is shown in a perceptron network with a sigmoid activation
function. A small weight (red) is related to a gradual slope, whereas a high weight (blue) is related
to a steep one.

One major advantage, is that we are not constrained to the basic input features. Considering
a three layers network, the raw features are just the input for the second (hidden) layer. Then,
the hidden layer learns those features and finds its theta parameters. Therefore, the output layer
will not be using the raw input features, but the hidden layer learned ones. Typically, an ANN is
defined by three types of parameters:
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Figure 6.3: Weights and Bias Example in Perceptron

1. The interconnection pattern between the different layers. This allows to differentiate two
different architectures: feed-forward networks and feed-back networks, which are presented in
Figure 6.4. The first ones allow the signals to travel one way from input to output, whereas
in the second one, the signals travel as loops in the network and the output is connected to
the input. In prediction, for example, a forward propagation pattern is used, whereas when
calculating the cost function the back propagation algorithm is used.

Figure 6.4: Forward and Back propagation Example

2. The learning process for updating the weights of the interconnections. A learning rule
is defined as a procedure for modifying the weights and biases of a network. The learning
rule is applied to train the network to perform some particular task. It determines the
specificity of the networks, making them special for different tasks. We can differentiate
between supervised and non supervised learning. The first one will be used when the classes
of the data are known with the purpose of setting the correct weights, that is for the training
process. This sorts of problems are Classification problems. The network adjustment is the
result of the estimation of the parameters, which is constantly obtained by minimizing a cost
function. The second one will be used when the classes are not known with the purpose of
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discovering which is the correct output class. This is a Clustering problem.

3. The activation function that converts a neuron’s weighted input to its output activation.
This transformation determine the different kind of networks, except from the input nodes.

6.2.1 Problems

According to [3], several problems should be faced during the implementation. In the following
points, the most important problems will be discussed.

Under-fitting (High Bias)

It occurs when a statistical model or machine learning algorithm cannot capture the underlying
trend of the data. Specifically, under-fitting occurs if the model or algorithm shows low variance
but high bias of the estimation. The bias of the estimation is referred to the difference between
the gold standard value and the estimated one. Under-fitting is often a result of an excessively
simple model.

Over-fitting (High Variance)

It occurs when a statistical model describes random error or noise instead of the underlying
relationship. Over-fitting generally occurs when a model is excessively complex, such as having
too many parameters relative to the number of observations. A model that has been over-fit
will generally have poor predictive performance, as it can exaggerate minor fluctuations in the
data. There are two possible solutions to deal with over-fitting while keeping all the features. The
first one is called early stopping and consists in dividing the data set into three different subsets:
training, testing and also a validation set. The validation set will decide when to stop training
depending on its error. The second solution is called regularization and consists of reducing the
magnitude of the theta parameters. When regulated, our model becomes much simpler.

In Figure 6.5, an example can be seen. Imagine that, a simple parameter such as the tumor
size is compared with the risk of malignancy, then different responses from our data can be drawn.

Figure 6.5: Underfitting, Suitable and Overfitting Model Relationship

Besides, in order to check a possible over-fitting problem, the learning curve can be calculated.
This curve plots the training set error, the testing error and the CV error (in case of the early
stopping method) as a function of the number of training images set. Therefore, we will start
learning with just one image, then with two and so on. As ten different divisions of the data have
been made, different learning curves can be obtained. This differences depend on the random
image group which is included for learning in the training state, for example, a difficult or an easy
differentiable ultrasound image. An example can be seen in Figure 6.6, which shows three different
cases. Depending on the data features and data divisions, different results can be obtained.

Ultrasound Image Discrimination Between Benign and Malignant Adnexal Masses 45



CHAPTER 6. CLASSIFICATION SYSTEM

In the first one, any method against over-fitting has been applied. Therefore, we are dealing
with it specially at the beginning, until the training model achieves to make a generalization
of the data (some point around 30 images). From that point on, the errors decrease meeting a
value around 0.2 error. We make three divisions of the data in order to compare it with the next
method. In the second case, the early stopping method is applied and the CV set error is used
during training in order to decide when to stop the network learning procedure. Therefore, at
the beginning a high training error is obtained, because the network has not enough images to
classify correctly. This error decreases, when using more images. In the last case, regularization
is applied. It is enough to make two divisions of the data, so that more images can be used for
training. However, at the beginning the over-fitting effect is not removed. It affects less than in
the first case, but more data is needed in order to realize it. From now on, the early stopping
method will be used in our implementation.

Figure 6.6: Learning Curve for Division 6

6.2.2 Implementation

According to [12], we will proceed to select the data, create and train a network, and evaluate
its performance. Pattern recognition networks are feed-forward networks that can be trained
to classify inputs according to target classes. Implementing a NN models follows a number of
systemic procedures. Regarding [6], there are six basics steps: (1) pre-processing data, (2)
building the network, (3) data division, (4) parameters initialization, (5) training, and (6) testing
the performance of the model. The diagram implementation steps can also be seen in Figure 6.7.

Data pre-processing

As it has been said before, the data needs to be rescaled before entering the classifier. The reason
is to make it easier for the neural network to adapt to the inputs, since mixing variables with large
and small magnitudes will confuse the learning algorithm on the importance of each variable.
Apart from normalization, the data can also be randomized.

Building the network

In this stage, it is needed to choose the network architecture. The best architecture to use depends
on the type of problem to be represented by the network.

The Activation function converts a neuron’s weighted input to its output activation. MAT-
LAB provides a wide range of built-in transfer functions. In Figure 6.8, four examples can be seen,
Linear (purelin), Hyperbolic tangent sigmoid (tansig), Logarithmic sigmoid (logsig) and Softmax
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Figure 6.7: Implementation

transfer function. It is important for the activation functions to be differentiable in order to apply
certain algorithms. For pattern recognition, it is advisable to use either the sigmoid function or
the softmax one. In the hidden units, the sigmoid activation functions are usually preferable. A
small change in the weights will usually produce a change in the outputs, which makes it possible
to tell whether that change in the weights is good or bad.

Figure 6.8: Activation function examples

According to the layers number, we can differentiate between one input layer, one output
layer and a certain number of hidden layers. A good default is to start with one hidden layer and
increase the number if needed. However, in practice, it is uncommon to see neural networks with
more than two or three hidden layers.

Regarding the units number, we clearly see that in the input layer, this number is determined
by the number of input variables: significant features in ST or coefficients in PCA. However, the
number of units in the last layer depends on the number of classes we have, i.e. benign and
malignant groups. In Figure 6.9 and 6.10, two networks will be represented. With green color
we will refer to several inputs and with the blue one to particular ones. Inside of each layer the
weight and bias boxes will be represented. Therefore, we can use:

• Two output neurons, one for each class, with a softmax activation function. If a1 and a2
are the outputs of the two output neurons, P (y = y1|x) = a1 and P (y = y2|x) = a2 with
a1 + a2 = 1.

• A single output neuron with a sigmoid activation function. If a is the output of the neuron,
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Figure 6.9: Two outputs network

we can set P (y = y1|x) = a and P (y = y2|x) = 1− a.

Figure 6.10: Single output network

The first option has twice more parameters in the last layer and thus, has more flexibility
and can potentially model more complicated relationships. The second option has twice less
parameters, and thus, is less prone to over-fitting. Finally, in the hidden layer, it is advisable that
the number of units is greater than the number of features. We will call the different networks by
the number of units in its successive layers: (Input layer - Hidden layer 1 - ... - Hidden layer n-
Output layer).

The Training function is the algorithm that will update the network during the training.
We will proceed to evaluate seven different back-propagation training algorithms in order to see,
which one is the most appropriate for our data. Some of them require more memory and computa-
tion time, others perform better in function fitting (nonlinear regression) than pattern recognition
problems. The algorithms include: Resilient Backpropagation (RP), Scaled Conjugate Gradi-
ent (SCG), Powell-Beale Conjugate Gradient(CGB), Fletcher-Powell Conjugate Gradient (CGF),
Polak-Ribiere Conjugate Gradient (CGP), One Step Secant (OSS) and Variable Learning Rate
Gradient Descent (GDX).

The Perform function is used to measure a network’s usefulness during training. For ex-
ample, the mean squared error or the cross-entropy function. Minimizing them leads to good
classifiers. We will use the MSE.

• Mean square error (MSE): Measure of the differences between the target value from the
gold standard and the predicted value by the neural network model. It will take into account
the closeness of a prediction to its original value.

MSE =
1

N

∑
(Target−Output)2 (6.1)

• Average cross entropy error (ACE): Measure of the product of the logarithm of each
computed output multiplied by its corresponding target. It leads to faster training.

ACE = − 1

N

∑
(ln(Output) ∗ Target) (6.2)
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Data division

One of the major advantages of neural nets is their ability to generalize. That means that the net
could classify data that has never seen before as the learning data. However, as many developers,
we have a small part of possible patterns (145 images) so to reach the best generalization, the
data set will be split. In the K-fold cross validation section we required two main groups (training
and testing). However, as explained before, in order to avoid NN over-fitting, we will use the early
stopping procedure. Therefore, the training group will be further divided into two sets. The final
division, following this method, will be:

1. The training set is used to train a neural net. The 90% of the data is used here, but we
can differentiate two subsets:

• Training set: It will help during the training, by adjusting the weights of the network
and making the actual output close to the target one. In this way, the error of this data
set is minimized during the training stage. It will allocate the 80% of the total data,
which is equivalent to around 117-119 patients.

• Validation set (CV) is used to determine the performance of a neural network on
patterns that are not trained during learning. It will allocate the 10% of the total
data, which is equivalent to around 13-15 patients. It can help to find the best neural
network configuration and training parameters, for example by minimizing over-fitting.
The weights of the network are not being adjusted with this data set, but it is being
verified that any increase in accuracy over the training data set actually yields to an
increase in accuracy over a validation set, that has not been shown to the network. If
the accuracy over the training data set increases, but the accuracy over the validation
data set stays the same or decreases, then the neural network is over-fitting and it
should stop training. This validation method is also called, early stopping.

2. The testing set for finally checking the performance of a neural net. This set will also
allocate the 10%, which means around 13-15 patients. It is collected separately from training
and validation sets to help ensure independence. It remains as an unbiased estimate of the
network.

Therefore, the CV and Testing set will both have the same size. It is also important to be
sure that all those sets contain both positive and negative examples with the purpose to learn
to separate ones from the others. Classifiers are trained to accept or detect positive samples,
and reject negative ones. As explained in the previous section, we will require to have the same
proportion of benign and malignant samples in each of those sets as in the database. That is, if
145 images correspond to the 100%, then 106 benign and 39 malignant images will correspond
to the 73% and 27% respectively in each of the sets. In Figure 6.11, a data division example is
presented. The training group set of image characteristics will be given with their gold standard
value, whereas the test set group will be used to see its performance and check their results.

The partitioning of input data is performed randomly with the certain ratio of input entities
mentioned and following the K-fold cross validation division, explained at the beginning. In Figure
6.12, the first three random divisions of the whole data can be seen. Each of the sets has been
assigned a color, so that we can easily appreciate its randomness: blue is assigned to training,
green to validation and red to the test set.

Parameters Initialization

Before training a neural network, it is also needed to initialize all the parameters. Instead of
initializing all the parameters to zero, which works for a Logistic Regression, it is needed to
initialize parameters randomly. If thetas are all the same on the first iteration, it can be probed
that they would still be equal to each other on the following one, which means that all activation
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Figure 6.11: Data division

Figure 6.12: Data random divisions
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units will have the same values and therefore, they will be redundant. Hence, the results after
training the network can vary slightly every time the example is run. However, testing the data
for several initial conditions, verify the robustness of the performance. Another option is setting
the random seed from the beginning so as to reproduce the same results every time.

Training the network

As we have said before, during the training process the weights are adjusted in order to make the
actual outputs close to the target outputs of the network. Besides, the multiple times training (as
explained in the CV section) is included. In that way, ten random divisions of the data will be
made in order to generalize the results. We can differentiate two options:

• Re-train multiple times and average the outputs of all the testing sets. This will give in-
formation about how good is our classifier and it is likely to generalize better to additional
new images, because it takes into account all the different subsets.

• Re-train multiple times and take the testing set division with the lowest error, i.e. best
performance. The NN group with the highest performance is the best division from our
dataset.

Therefore, two testing results will be presented. In this way, it will not be a problem if the
easiest images fall into the training group and the difficult ones into the testing group, which may
cause a bad result, because the average results are also presented. Besides, we can be sure that
at least the test set is divided into 10 disjoint subsets.

Testing the network

The next step is to test the performance of the developed model. At this stage unseen data included
in the test set is exposed to the model. In order to evaluate the performance of the developed
ANN models quantitatively and verify whether there is any underlying trend in performance of
ANN models, statistical analysis involving the mean square error (MSE), classification error (CE),
sensitivity, specificity, accuracy and positive predictive value were conducted.

Defining positive as the malignancy group and negative as the benign one, these concepts
can be defined as follows. The nomenclature is: True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN).

• Classification error (CE): Measure of the number of false (positive and negative) classific-
ations in the neural network model. It will estimate the effectiveness of the neural network.

CE =

∑
FP + FN∑

Total Population (TP + TN + FP + FN)
(6.3)

• Sensitivity/ True positive rate (Sn): Proportion of malignant images which are correctly
identified. It will be presented in percentage.

Sn =

∑
TP∑

Condition Positive (TP + FN)
(6.4)

• Specificity/ True negative rate (Sp): Proportion of benign images correctly identified.
It will be presented in percentage.

Sp =

∑
TN∑

Condition Negative (TN + FP)
(6.5)
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• Accuracy (ACC): Measure of how well the binary classifier correctly identifies or excludes
a condition, that is the proportion of true results (both benign and malignant) among the
total number of cases. It will be presented in percentage.

ACC =

∑
TP + TN∑

Total Population (TP + TN + FP + FN)
(6.6)

• Positive Predictive Values (PPV): Proportion of the positive results that are true pos-
itive, or in other words, the amount of malignant images that are truly malignant. It will
be presented in percentage.

PPV =

∑
TP∑

Test outcome Positive (TP+ FP)
(6.7)

A perfect predictor would be described as 100% sensitive (all malignant images are identified as
malignant) and 100% specific (all benign are identified as benign). In the same way, an accuracy
of 100% means that the measured values are exactly the same as the given values. And a 100%
in PPV will show that there are no false benign images. On the opposite side, the classifier will
return a NaN, if there is no positive images identified. All these concepts and many others are
reflected in Figure 6.13. The confusion matrix can be seen, which allows visualization of the
performance of an algorithm.

Besides, it should also be taken into account that the PPV value can only be estimated using
data from a cross-sectional study in which valid prevalence estimates may be obtained. In contrast,
the sensitivity and specificity can be estimated from case-control studies. In our case, the real
proportion in the appearance of benign or malignant adnexal mass is taken into account, so that
all parameters can be calculated.

Figure 6.13: Confusion Matrix

6.2.3 Network programming

In Figure 6.14, a network diagram can be seen. This diagram explains the data work flow in our
neural network. As we have said, the data will be randomly divided and each of the sets will be
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trained and tested in order to save the corresponding performances.

Figure 6.14: Diagram Network

We will proceed to represent different networks configurations and compare their results in or-
der to obtain an optimal NN configuration. We will work on a specific network called, Multilayer
perceptron, which is a multilayer feed-forward network, that means that it will have three or
more layers. We will start with three. The network is trained by the back propagation learning
rule.

A commonly used cost function is the mean-squared error, and the goal is to minimize this
value between the networks output and the target value over all the examples. This minimization
is done by several training algorithms, as we have already mentioned, from where we can emphasize
those with Gradient descent optimization algorithm. The method calculates the gradient of a loss
function with respect to all the weights in the network, as seen in Figure 6.15. However, there
are several alternatives of these training algorithms are available.

Figure 6.15: Gradient descent
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During the training, both the training and CV set will be evaluated. As we have said, this
technique is usually called as the Early stopping, provided for all the supervised networks. In
Figure 6.16, an example can be seen. The first subset is the training set, which is used for
computing the gradient and updating the network weights and biases and the second subset is the
validation set, whose error is monitored during the training process. The validation error normally
decreases during the initial phase of training, as does the training set error. However, when the
network begins to over-fit the data, the error on the validation set typically begins to rise. In this
moment, if the validation set error increases or keeps constant for a specified number of iterations
or usually called epochs, the training is stopped, and the weights and biases at the minimum of the
validation error are returned. This network is supposed to be the optimal one, and its parameters
will be saved. The test set error is not used during training, but during evaluation of the saved
networks. Then the performance error of the independent test set will be calculated, and also the
confusion matrix values. Finally, the mean and minimum error results will be presented.
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Figure 6.16: Performance (Early stopping)

It is also possible to represent the obtained errors for the different sets. The errors are calculated
as the target output, minus the obtained one. Here it is also possible to detect outliers, looking
to the specific errors obtained. In Figure 6.17, the blue colors correspond to the training set, the
green to the validation and the red ones to the test set. We can see that in this network, the errors
are between −0.8 and 0.8.

Algorithm selection

According to the network that corresponds to the ST parameters for the Semi-automated procedure
as example, we will proceed to make an study in order to select the proper algorithm. Therefore,
we start with 38 input units and 46 units in the hidden layer (20% more). Therefore, this network
can be called 38-46-2. We can see, that we do not exceed the 87 units (restriction for the training
number of patients). Using small NN would be prone to high bias and under-fitting, as we have
few parameters. However, these networks are computationally cheaper. Using a large NN with
more parameters are more prone to over-fitting. But in general, large networks usually do better
job than smaller networks, although they are more computationally expensive too.
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Figure 6.17: Error histogram

To choose the optimal algorithm, in Table 6.1 the results of seven different ones are presented.
Mean Squared Error, Classification Error, Sensitivity, Specificity, Accuracy and Positive Predictive
Value are included. The average result of the ten data divisions is taken too.

Algorithm Network MSE CE Sn Sp ACC PPV
RP 38-46-2 0,262 0,273 11,66 95,36 72,65 11,66
SCG 38-46-2 0,243 0,303 17,50 88,54 69,63 17,50
CGB 38-46-2 0,241 0,266 15,83 94,36 73,31 15,83
CGF 38-46-2 0,245 0,303 14,16 90,27 69,65 14,16
CGP 38-46-2 0,239 0,260 23,33 92,27 73,93 23,33
OSS 38-46-2 0,250 0,303 18,33 88,45 69,69 18,33
GDX 38-46-2 0,242 0,307 13,33 89,90 69,22 13,33

Table 6.1: Results for the network 38− 46− 2

The algorithm with the lowest mean squared error is CGP (Polak-Ribiere Conjugate Gradient)
with an MSE error of 0,239 and with a classification error of 0,260. From now on, we will use this
algorithm to calculate the following results.

6.2.4 Results

We will present the results of two networks with different activation functions: softmax and
sigmoid. The number of units in the hidden layer will be the number of input units plus the 20%
and the training algorithm is called Polak-Ribiere Conjugate Gradient. The maximum number
of units in the hidden layer will be set to 117, which corresponds to the number of the training
set patients. We will present the best division and the average results, which will be different
depending on the K-fold cross-validation division of each execution. The best division results will
also depend on the size of that test, which will vary between 13 and 15 images.

We will present both the MSE and CE error. The first one will indicate the closeness of a
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prediction to its gold standard value (Target - Output) and the second one will estimate the
effectiveness of the neural network, or in other words how many false (positive and negative)
classifications the network has. For the best division network, we will choose the division with the
lowest CE. In case that several networks with the same CE are presented, the one with a smaller
difference between specificity and sensitivity will be taken.

Besides, as it has been said before, sensitivity, specificity, accuracy and positive predictive
value are evaluated. In the best division results, the percentage of right answers in the malignant
and benign groups, respectively, is taken into account.

Semi-automated Procedure

In Table 6.2, 6.3 and 6.4, the results for the softmax activation function can be seen. In
Table 6.5, 6.6 and 6.7, the results for the sigmoid activation function can be seen. Compar-
ing them, it can be said that:

• Results for ST Semi-automated: Using 38 features leads to better average division results.
Sigmoid function (0,284) presents lower CE results than the Softmax (0,328), which means
that the values have high accuracy. The MSE error is also low and therefore the predictions
are closer to their target values.

• Results for PCA Semi-automated: The 90% and 99% variability present the same CE for
the best division in the softmax function. However the 90% has a lower MSE and the Sn
and Sp are more balanced. Softmax function for 90% (0,289) presents a lower CE error than
sigmoid (0,335).

• Results for Hybrid Semi-automated: In the softmax function, both best divisions present the
same results, although the first one has a lower MSE. The average division for 48 features (
38 ST and 10 PCA) present the best results in the softmax function (0,262) in comparison
with the sigmoid (0,297).

ROI Procedure

In Table 6.8, 6.9 and 6.10, the results for the softmax activation function can be seen. In
Table 6.11, 6.12 and 6.13, the results for the sigmoid activation function can be seen. Comparing
them, it can be said that:

• Results for ST ROI : Softmax presents the better average results with a lower CE (0,239)
in comparison with sigmoid CE (0,249). Therefore the network with 59 features is more
appropiate. The best division results have the lowest CE (0,076) with a 100% of Sn and a
90% of Sp.

• Results for PCA ROI : Softmax presents the second best average results with a CE (0,255)
in 95% variability in comparison with sigmoid, which has a CE (0,304) in 90% variability.
Increasing in variability above 95% does not contribute much.

• Results for Hybrid ROI: Softmax presents better results. The best division presents the
same CE error, although the network with 96 features(37 PCA and 59 ST) present the
lowest MSE. The average results are also better.
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Best division Softmax

Network MSE CE Sn Sp ACC PPV %
41-49-2 0,126 0,142 50,00 100,00 85,71 100,00 2/4,10/10
553-117-2 0,219 0,214 25,00 100,00 78,57 100,00 1/4,10/10

Average division Softmax

Network MSE CE Sn Sp ACC PPV
41-49-2 0,280 0,328 10,83 88,00 67,13 33,57
553-117-2 0,339 0,364 15,83 81,45 63,58 19,47

Table 6.2: Results for ST Semi-automated Softmax

Best division Softmax

Variability Network MSE CE Sn Sp ACC PPV %
90% 7-8-2 0,154 0,133 50,00 100,00 86,66 100,00 2/4,11/11
95% 16-19-2 0,221 0,200 50,00 90,90 80,00 66,66 2/4,10/11
99% 70-84-2 0,129 0,133 50,00 100,00 86,66 100,00 2/4,11/11
100% 144-117-2 0,185 0,200 25,00 100,00 80,00 100,00 1/4,11/11

Average division Softmax

Variability Network MSE CE Sn Sp ACC PPV
90% 7-8-2 0,216 0,289 20,83 89,451 71,02 38,33
95% 16-19-2 0,246 0,316 20,00 86,00 68,31 36,22
99% 70-84-2 0,261 0,289 7,50 94,36 71,02 23,33
100% 144-117-2 0,277 0,322 7,50 89,72 67,73 12,00

Table 6.3: Results for PCA Semi-automated Softmax

Best division Softmax

Combination Network MSE CE Sn Sp ACC PPV %
90% + pv(0,05) 48-58-2 0,132 0,133 50,00 100,00 86,66 100,00 2/4,11/11
95% + pv(0,05) 57-68-2 0,147 0,133 50,00 100,00 86,66 100,00 2/4,11/11

Average division Softmax

Combination Network MSE CE Sn Sp ACC PPV
90% + pv(0,05) 48-58-2 0,240 0,262 22,50 92,27 73,73 58,33
95% + pv(0,05) 57-68-2 0,264 0,890 18,33 90,54 71,06 38,88

Table 6.4: Results for Hybrid Semi-automated Softmax
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Best division Sigmoid

Network MSE CE Sn Sp ACC PPV %
41-49-1 0,147 0,200 50,00 90,90 80,00 66,66 2/4,10/11
553-117-1 0,051 0,066 100,00 90,90 93,33 80,00 4/4,10/11

Average division Sigmoid

Network MSE CE Sn Sp ACC PPV
41-49-1 0,203 0,284 17,50 91,27 71,58 33,33
553-117-1 0,200 0,306 25,83 85,54 69,35 31,11

Table 6.5: Results for ST Semi-automated Sigmoid

Best division Sigmoid

Variability Network MSE CE Sn Sp ACC PPV %
90% 7-8-1 0,152 0,230 0,00 100,00 76,92 NaN 0/1,10/10
95% 16-19-1 0,151 0,153 33,33 100,00 84,61 100,00 1/3,10/10
99% 70-84-1 0,212 0,266 25,00 90,90 73,33 50,00 1/4,10/11
100% 144-117-1 0,150 0,200 25,00 100,00 80,00 100,00 1/4,11/11

Average division Sigmoid

Variability Network MSE CE Sn Sp ACC PPV
90% 7-8-1 0,227 0,335 22,50 82,27 66,45 32,61
95% 16-19-1 0,249 0,303 26,66 85,63 69,69 46,11
99% 70-84-1 0,274 0,400 25,00 72,63 59,90 31,04
100% 144-117-1 0,258 0,317 5,00 91,45 68,26 21,42

Table 6.6: Results for PCA Semi-automated Sigmoid

Best division Sigmoid

Combination Network MSE CE Sn Sp ACC PPV %
90% + pv(0,05) 48-58-1 0,195 0,214 25,00 100,00 78,57 100,00 1/4,10/10
95% + pv(0,05) 57-68-1 0,181 0,200 75,00 81,81 80,00 60,00 3/4,9/11

Average division Sigmoid

Combination Network MSE CE Sn Sp ACC PPV
90% + pv(0,05) 48-58-1 0,204 0,309 2,50 93,45 69,01 14,28
95% + pv(0,05) 57-68-1 0,253 0,297 23,33 87,36 70,21 39,79

Table 6.7: Results for Hybrid Semi-automated Sigmoid
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Best division Softmax

Network MSE CE Sn Sp ACC PPV %
58-70-2 0,117 0,076 100,00 90,00 92,30 75,00 3/3,9/10
570-117-2 0,131 0,133 75,00 90,90 86,66 75,00 3/4,10/11

Average division Softmax

Network MSE CE Sn Sp ACC PPV
58-70-2 0,236 0,239 27,50 94,45 76,04 61,45
570-117-2 0,280 0,300 12,50 91,09 70,00 28,33

Table 6.8: Results for ST ROI Softmax

Best division Softmax

Variability Network MSE CE Sn Sp ACC PPV %
90% 11-13-2 0,162 0,200 75,00 81,81 80,00 60,00 3/4,9/11
95% 27-32-2 0,161 0,153 33,33 100,00 84,61 100,00 1/3,10/10
99% 83-100-2 0,225 0,230 33,33 90,00 76,92 50,00 1/3,9/10
100% 144-117-2 0,230 0,230 0,00 100,00 76,92 NaN 0/3,10/10

Average division Softmax

Variability Network MSE CE Sn Sp ACC PPV
90% 11-13-2 0,249 0,347 20,00 81,81 65,28 22,52
95% 27-32-2 0,248 0,274 15,83 93,54 72,55 54,66
99% 83-100-2 0,286 0,290 5,83 95,00 70,97 35,00
100% 144-117-2 0,325 0,368 2,50 85,45 63,12 2,85

Table 6.9: Results for PCA ROI Softmax

Best division Softmax

Combination Network MSE CE Sn Sp ACC PPV %
90% + pv(0,05) 69-83-2 0,154 0,200 50,00 90,90 80,00 66,66 2/4, 10/11
95% + pv(0,05) 95-114-2 0,143 0,200 75,00 81,81 80,00 60,00 3/4, 9/11

Average division Softmax

Combination Network MSE CE Sn Sp ACC PPV
90% + pv(0,05) 69-83-2 0,262 0,283 15,83 92,27 71,63 33,33
95% + pv(0,05) 95-114-2 0,246 0,261 24,16 92,54 73,78 51,66

Table 6.10: Results for Hybrid ROI Softmax

Ultrasound Image Discrimination Between Benign and Malignant Adnexal Masses 59



CHAPTER 6. CLASSIFICATION SYSTEM

Best division Sigmoid

Network MSE CE Sn Sp ACC PPV %
58-70-1 0,068 0,066 100,00 90,90 93,33 80,00 4/4,10/11
570-117-1 0,092 0,066 75,00 100,00 93,33 100,00 3/4,11/11

Average division Sigmoid

Network MSE CE Sn Sp ACC PPV
58-70-1 0,244 0,304 30,83 83,90 69,59 30,92
570-117-1 0,183 0,249 49,16 84,81 75,04 54,16

Table 6.11: Results for ST ROI Sigmoid

Best division Sigmoid

Variability Network MSE CE Sn Sp ACC PPV %
90% 11-13-1 0,107 0,133 50,00 100,00 86,66 100,00 2/4,11/11
95% 27-32-1 0,228 0,316 66,66 80,00 76,92 50,00 2/3,8/10
99% 83-100-1 0,206 0,266 50,00 81,81 73,33 50,00 2/4,9/11
100% 144-117-1 0,254 0,266 0,00 100,00 73,33 NaN 0/4,11/11

Average division Sigmoid

Variability Network MSE CE Sn Sp ACC PPV
90% 11-13-1 0,208 0,304 36,66 81,72 69,54 46,83
95% 27-32-1 0,228 0,316 34,16 80,90 68,31 35,18
99% 83-100-1 0,293 0,399 25,00 72,90 60,90 20,66
100% 144-117-1 0,289 0,324 5,83 90,63 67,58 15,00

Table 6.12: Results for PCA ROI Sigmoid

Best division Sigmoid

Combination Network MSE CE Sn Sp ACC PPV %
90% + pv(0,05) 69-83-1 0,123 0,142 50,00 100,00 85,71 100,00 2/4,10/10
95% + pv(0,05) 95-114-1 0,195 0,282 75,00 90,00 71,78 47,50 3/4,9/10

Average division Sigmoid

Combination Network MSE CE Sn Sp ACC PPV
90% + pv(0,05) 69-83-1 0,218 0,287 28,33 86,90 71,22 49,44
95% + pv(0,05) 95-114-1 0,195 0,282 27,50 87,90 71,78 47,50

Table 6.13: Results for Hybrid ROI Sigmoid
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6.2.5 Summary

This higher specificity presented in all the average cases, may be due to the fact that there are
more negative (10-11 benign) than positive (3-4 malignant) samples in the test group. Therefore,
the network is more specialized in recognizing negatives than positives. Since the probability of a
sample being negative is much higher than the probability of being positive, the network achieves
a greater number of total correct classified samples by classifying most of them as negatives. A
possible solution, if we want to achieve more balanced results, would be either to adopt a down-
sampling strategy like in [4] to form a regular dataset for classification or to insert a penalty
whenever a positive sample is classified incorrectly. However, in this way, we will be losing the
benign and malignant probability of appearance in the population. More images in the database
will be useful to overcome this problem.

We will mainly focus on the average results, because although they are different on each code
execution due to the fact of the different K-fold cross validation, the standard deviation of all of
them is not high. The more images we get, the less standard deviation we will have.

In Figure 6.18, different PCA variabilities will be compared in order to see how they affect
to the average results. We can clearly see how the more PCA variability is explained, the more
negative samples are identified. However, the positive samples percentage decrease. As we have
said before, this can be due to the imbalanced dataset. We have also enclosed in blue the best
variability results for each case, which is often 90% or 95%.

Figure 6.18: PCA variabilities comparison

If the enclosed PCA variabilities are chosen, a simple comparison with the other methods can
be done. In Figure 6.19, it can be seen that ST is the one, which provides the best results in
most of the cases. ROI average results overcome the SA results specially when dealing with the
positive samples detection.

In Table 6.14 and 6.15 , the best division and average results will be selected for each of
the three dimensional reduction methods (DRM) and activation functions (AF). The ROI results
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Figure 6.19: All methods comparison

present a lower CE (0,239) in comparison with SA (0,262). This means that they can identify
around 76,1% and 73,8% of the results correctly. In the best division results, both SA and ROI
present the same CE (0,066), which means the 93,4% of the images in the test set. However, the
MSE error is a bit smaller in the SA method.

Average division

DRM AF Network MSE CE Sn Sp ACC PPV
SA Hybrid Softmax 48-58-2 0,240 0,262 22,50 92,27 73,73 58,33
ROI ST Softmax 58-70-2 0,236 0,239 27,50 94,45 76,04 61,45

Table 6.14: Summary average results for SA and ROI

Best division

DRM AF Network MSE CE Sn Sp ACC PPV %
SA ST Sigmoid 553-117-1 0,051 0,066 100,00 90,90 93,33 80,00 4/4,10/11
ROI ST Sigmoid 58-86-1 0,068 0,066 100,00 90,90 93,33 81,00 4/4,10/11

Table 6.15: Summary best division results for SA and ROI

From these results, we can conclude that there is a big difference between the best division
and the average results. This can be due to the fact that the images are quite heterogeneous. ST
and Hybrid method seem to be the more useful dimensional reduction methods. According to the
activation function, the softmax function presents the best average results and the sigmoid one
the best division ones.
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Chapter 7

Conclusions

Throughout this project a CAD technique for discriminating benign from malignant ultrasound
images has been developed. With this aim a feature extraction process, a dimensionality reduction
step and a neural network approach have been implemented. It is formulated in MATLAB.

I want to underline that one of the main contributions in this work is the importance of working
with just one optimal image from each of the patient volumes in order to create a generalizable
classifier. Besides, the database has been created following a heterogeneous mix of pathologies
and taking into account the probability of appearance in the population of benign and malignant
adnexal masses. Although the presented features have been previously described in different
articles, the present work is the first one to provide such a wide collection gathering several of
them in one project, with the aim to provide more information to the classifier. These seven
features represent a total of 591 different values for each image. Therefore, more importance to
the dimensionality reduction step has been also given.

In order to deal with the optimal ultrasound image of the volumes database, two procedures
have been tested: a semi-automated and a ROI one. The ultrasound images have been manually
segmented when obtaining the ROI, however, manual tracing is an available function in ultrasound
machines so that bias selection should not be a significant disadvantage. One goal was to analyze
the results for both methods. It can be concluded from the dimensionality reduction process, that
with the ROI procedure not only more significant features are achieved in the Student test but also
more PCA coefficients for the same percentage of variability than the Semi-automated method.
Therefore, it can be assured that with the ROI image more specific information is obtained.

Having the optimal features selected, a neural network for pattern recognition has been im-
plemented. Different configurations have been made in order to achieve a good combination for
both, true positives and true negatives rate. Regarding to the problems associated with NN, we
have tried to overcome them by using different methods: a complicate model against under-fitting
and the early stopping method against over-fitting. The ROI procedure presents the best average
results with a classification error of 0,239 (76,04% correctly identifications) with a sensitivity of
27, 50% and a specificity of 94, 45%. The best division results are presented in both SA and ROI
with a classification error of 0,066 (93,4% correct identifications) with a sensitivity of 100, 00%
and a specificity of 90, 90%.

As future work, more images can be included in order to continue testing this network. A
different image classification technique can also be used in order to select just the most uncertain
images for the gynecologists and to be more specific in a certain image group. Different configur-
ations of this network or any other classification algorithm can be made with the aim to improve
the results too.
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