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Abstract

This paper analyzes the asymptotic properties of nonlinear least squares

estimators of the long run parameters in a bivariate unbalanced cointegra-

tion framework. Unbalanced cointegration refers to the situation where

the integration orders of the observables are different, but their corre-

sponding balanced versions (with equal integration orders after filtering)

are cointegrated in the usual sense. Within this setting, the long run link-

age between the observables is driven by both the cointegrating parameter

and the difference between the integration orders of the observables, which

we consider to be unknown. Our results reveal three noticeable features.

First, superconsistent (faster than
√
n-consistent) estimators of the differ-

ence between memory parameters are achievable. Next, the joint limiting

distribution of the estimators of both parameters is singular, and, finally,

a modified version of the “Type II” fractional Brownian motion arises in

the limiting theory. A Monte Carlo experiment and the discussion of an

economic example are included.
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1. Introduction

Since the seminal paper of Engle and Granger (1987), cointegration, which

has traditionally focused on the case of unit root observables with weak depen-

dent cointegrating errors, has been a fertile field of research. This original idea

has been generalized in various directions. Among these, one of the main devel-

opments is that of fractional cointegration, which given the concept of fractional

integration (introduced by Granger and Joyeux, 1980), extends and encompasses

naturally the standard notion of cointegration. In the simple bivariate case two

processes sharing the same integration order (say δ) are cointegrated if there is a

linear combination of them with integration order smaller than δ. In a multivari-

ate situation several definitions are available (see, e.g., Robinson and Yajima,

2002), although all of them share the idea of reducing-order linear combina-

tion. Inference procedures for fractional cointegration have been developed by,

e.g., Jeganathan (1999), Robinson and Marinucci (2001), Robinson and Yajima

(2002), Robinson and Hualde (2003), Marmol and Velasco (2004), Christensen

and Nielsen (2006), Hualde and Robinson (2007, 2010), Nielsen and Frederiksen

(2011), Johansen and Nielsen (2012). However, most of the previous literature

has not captured the situation termed by Hualde (2006) as unbalanced cointe-

gration (UC hereinafter), with the important exceptions of Johansen (2008) and

Franchi (2010), which give conditions under which such situation might arise in a

fractional vector autoregressive model, but do not develop inferential procedures.

In the simple bivariate case, UC denotes a situation where the integration orders

of the observables are different, but their corresponding balanced versions (where

one of the series is filtered adequately so it has identical integration order to the

other one) are cointegrated in the usual sense. This can be seen as a particular

case of the so-called polynomial cointegration, which in the integer orders case

has been studied by, e.g., Johansen (1995).

Denoting by θ the imbalance between the integration orders of the two observ-

ables, Hualde (2006) discusses two situations, one where θ = θn → 0 as n→∞,

(n denoting sample size), named weak UC, and the other where θ is an unknown

fixed real number different from zero, named strong UC. While the former situa-

tion is treated with a good deal of theoretical rigor, the latter (denoted simply as

UC hereinafter) is just briefly discussed. UC poses interesting challenges, meanly

because while in a “balanced” bivariate situation (where θ = 0), if there exists
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cointegration, the cointegrating parameter drives the long run linkage between

the observables, if there is UC (so θ �= 0), it is both θ and the cointegrating

parameter which are relevant in order to explain the long run comovements of

the observables. Thus, from a theoretical viewpoint, allowing for the possibil-

ity of an unknown (and possibly nonzero) θ is relevant, especially noting that

misspecification of θ could have very distorting effects (see Hualde, 2006). In

addition, empirical researchers usually admit the possibility that θ = 0 as the

outcome of testing procedures (e.g. Dickey and Fuller, 1979, or Robinson and

Yajima’s, 2002, test for equality of orders), so, even if θ = 0, a safer option is to

take the agnostic approach of considering θ to be an unknown parameter, and

not imposing knowledge of it in the estimation procedure.

While the main focus of the paper is to present formal theoretical discus-

sion of the limiting properties of particular estimators in UC, we would also like

to motivate UC from an empirical perspective. Interestingly, we find that UC

relates directly to the idea of multicointegration proposed by Granger and Lee

(1989, 1990) (which can be also seen as a particular case of polynomial cointegra-

tion). The idea of multicointegration appears to be the most empirically relevant

situation involving cointegration between processes with different but known in-

teger orders of integration and, as stated by Engsted and Haldrup (1999), this

phenomenon is likely to occur in stock-flow models. Here, two flow variables

(usually characterized as unit roots) cointegrate in the standard way, and the

cumulated cointegrating error (stock variable) cointegrates with at least one of

the flow observables. In a seminal contribution, Granger and Lee (1989) applied

this idea to the relationship between production and sales (flow variables) in a

given industry, exploring also the possibility of cointegration between the stock

of inventories (accumulated change of inventory) and sales, which would support

the idea of targeting (the target level of inventory being just a fixed proportion of

sales). An alternative analysis of the relationship between inventories and sales

was performed by Banerjee and Mizen (2006). Other works explore the existence

of multicointegration between housing starts, completions (flow variables) and

housing units under construction (stock) (see Lee, 1992), government spending,

revenues and debt (Leachman, 1996, Leachman and Francis, 2002, Leachman

et al., 2005), imports, exports and external debt (Leachman and Francis, 2000,

2002), or real per capita private consumption expenditure, real per capita dis-
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posable income and stock of consumer’s wealth (Siliverstovs, 2006).

The role of UC within the framework of multicointegration can be explained

as follows. One of the key assumptions behind the idea of multicointegration

is that the stock variable (accumulated cointegrating error) must have the same

integration order as that of the flows. This necessarily implies that the cointegrat-

ing gap (that is the reduction in order due to the cointegrating relation) in the

relationship between the flows be equal to one. However, empirical works in frac-

tional cointegration show substantial evidence in favour of smaller cointegrating

gaps (see, e.g., Gil-Alana and Hualde, 2009), which in terms of multicointegration

means that the stock variable would have a larger integration order than that of

the flows. Particularizing this possibility, e.g., to the relationship between inven-

tories (ht) and sales (st), even admitting the possibility that st is a unit root, if

the cointegrating gap arising from the relationship between production and sales

is d, the only interesting cointegrating possibility between inventories and sales

would be that between ht and ∆θst, where ∆ = 1−L, L being the lag operator,

and θ = d − 1, noting that ht and ∆θst would share the same integration order

2 − d (a proper definition of the fractional operator ∆θ will be given below). If

d �= 1, this would exemplify the situation of UC. Given that ∆θst is a linear com-

bination of present and past values of st, UC would lead to the idea of dynamic

targeting, where the target level of inventories is a proportion of present and past

sales.

Multicointegration is not the only setting where the idea of UC might be

useful. Another motivating example is that of predictive regressions, where rates

of return are regressed against the lagged values of a explanatory variable (see,

e.g., Torous, Valkanov and Yan, 2004). Here, it is standard to consider the rates

of return as weak dependent, whereas the assumption of weak dependence for

the regressor is usually unsatisfactory. We can exemplify this situation by the

forward premium anomaly, which consists on surprising negative estimates from

the regression of the change in the logarithms of the spot exchange rate (consid-

ered to be weak dependent) on the forward premium (stationary long memory or

nonstationary but mean reverting), where the theory predicts a value of one for

that slope (see e.g. Bekaert, 1996, Bekaert, Hodrick and Marshall, 1997). Ballie

and Bollerslev (2000) refer to the forward premium anomaly as an statistical

problem caused by the different integration orders of dependent and explanatory
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variables, and Maynard and Phillips (2001) gave theoretical justification to this

phenomenon. Recently, Maynard, Smallwood and Wohar (2013) provided an in-

teresting empirical analysis which, in particular, takes into account the possible

imbalance between the memories of the dependent variable and regressor. As

will be seen below (Remark 8), the results we obtain in the present paper are not

directly applicable to their problem, but an alternative approach focused on mod-

elling the relation between the spot exchange rate (possibly unit root) and the

integrated forward premium (which could have memory larger than one) might

fall within the UC setting. In any case, even if the situation considered is not

characterized by UC, the techniques developed in the present paper can be very

useful when dealing with cases, like that of Maynard, Smallwood and Wohar

(2013), where there is imbalance between the integration orders of dependent

variable and regressor.

The rest of the paper is organized as follows. In Section 2 we present a model

of UC and estimators of the relevant parameters, justifying also their limiting

properties. A Monte Carlo experiment of finite sample performance is presented

in Section 3. An empirical example is discussed in Section 4 and, finally, we

conclude in Section 5.

2. Model and estimation of long-run parameters

Before introducing our proposed model we present some definitions. We say

that a vector process ζt is integrated of order zero (I (0)) if ζt−E (ζt) is covariance

stationary with spectral density finite and nonsingular at all frequencies. Then,

denoting by rit the ith element of an arbitrary vector rt, we say, as in Robinson

and Gerolimetto (2006), that a scalar process ξt is integrated of order d (I (d))

if for any l × 1 zero mean I (0) vector ζt, ξt − E (ξt) =
∑l

k=1
ζkt (−dk), with

d = max1≤k≤l dk, where for a scalar or vector process ξt and real number α,

ξt (α) = ∆α {ξt1 (t > 0)} =
t−1∑

j=0

aj (−α) ξt−j, aj (α) =
Γ (j + α)

Γ (α) Γ (j + 1)
, α �= 0,−1, ...,

(1)

where 1 (·) denotes the indicator function (so ξt1 (t > 0) = ξt if t > 0; = 0 if t ≤
0), Γ (·) represents the gamma function, taking Γ(α) = ∞ for α = 0,−1,−2, ...,

and Γ (0) /Γ (0) = 1. Note that introducing the indicator function in (1) leads to

a truncation: in particular, ζkt (−dk) =
∑t−1

j=0
aj (dk) ζk,t−j, which can be com-
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pared to the untruncated sum ∆−dkζkt =
∑∞

j=0
aj (dk) ζk,t−j. The reason why

the indicator is introduced here is that it ensures that processes are well defined

in mean square sense. In fact, ∆−dkζkt is well defined in mean square sense just

if dk < 1/2, whereas ζkt (−dk) is well defined for any value of dk. Thus, the

truncation allows a uniform treatment of all integration orders, although, related

to the previous expression, it is certainly unnecessary when dk < 1/2, in which

case ∆−dkζkt is stationary. This truncation is very standard in the fractional

integration and cointegration literature and originates the so-called Type II frac-

tional processes. Additionally, we say that two scalar processes sharing the same

integration order are cointegrated if a linear combination of them has a smaller

integration order.

We introduce a bivariate model of UC. Let yt, xt, t ∈ Z, Z = {t : t = 0,±1, ...},
be two scalar observable series generated by model

yt = µ + νxt (θ) + u1t (−γ) , (2)

xt = u2t (− (δ + θ)) . (3)

Assuming ut = (u1t, u2t)
T is a zero-mean I (0) process (where superscript T de-

notes transposition), it is evident that if in (2), (3), ν �= 0 (which we impose

for identification, see Remark 7) and δ > γ, xt is I (δ + θ), yt is I (δ), and the

combination of both processes, yt− νxt (θ) is I (γ). Thus, yt and xt (θ) are (frac-

tionally) cointegrated. Note that even if (2), (3) allows for (and emphasizes) the

possibility of non-integer orders, it covers familiar situations. For example, if

δ = 1, γ = θ = 0, (2), (3) is the bivariate version of Phillips’ (1991) triangular

form. If instead δ = θ = 1, γ = 0, (2), (3) represents the case where yt, xt are

I (1), I (2), respectively, but yt and the first differences of xt are cointegrated in

the standard way, with an I (0) cointegrating error. But in general (2), (3) per-

mits a great variety of possibilities, including nonstationary but mean reverting

observables (with integration order greater or equal than 1/2 but smaller than

1), or asymptotically stationary observables (with integration order smaller than

1/2), see e.g. Robinson and Hualde (2003), Hualde and Robinson (2007), which

motivate different situations when θ = 0. Although other situations could be

considered, we will concentrate in this paper on the case where δ > 1/2, γ ≥ 0,

so at least one of the observables is purely nonstationary.
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The behaviour of yt, xt in (2), (3), is driven by various different parameters: µ,

θ, ν, δ, γ and those describing the joint structure of u1t, u2t. Here, we focus on the

estimation of ν, θ, which explain the long-run linkages between observables yt, xt.

Given a sample yt, xt, t = 1, ..., n, define, for any e ∈ R, ν̂ (e) = Cyx(e)/Cx(e),

where for any sequences at, bt, t = 1, ..., n, Cab = Σnt=1 (at − a)
(
bt − b

)
, Ca = Caa

and a = n−1Σnt=1at. If θ were known (e.g., θ = 0, as in the traditional balanced

setting), the most straightforward way of estimating ν would be by ordinary least

squares (OLS) ν̂ (θ). If θ �= 0, ν̂ (θ) is the balanced version of the standard OLS

estimator, but, as in general θ is unknown, this estimator is unfeasible. Thus,

defining

Qn(e) =
n∑

t=1

(yt − y − ν̂ (e) (xt (e)− x (e)))2 , x (e) =
1

n

n∑

t=1

xt (e) , (4)

the corresponding feasible estimators of θ, ν, are the nonlinear least squares

θ̂ = arg min
e∈Ξ

Qn (e) , ν̂ = ν̂(θ̂), (5)

where, for arbitrary real numbers ▽1 < ▽2, Ξ = [▽1,▽2]. There is an interest-

ing, but not obvious (in view of (5)), interpretation of θ̂. After some algebra it is

possible to show that θ̂ = arg maxe∈ΞC
2
yx(e)/CyCx(e), so θ̂ represents the particu-

lar argument e which maximizes the sample linear dependence between processes

yt and xt (e) (or, equivalently, θ̂ is the argument which maximizes the R-squared

from the regression of yt on a constant and xt (e)). Therefore, modelling the

relationship between yt and xt by choosing a particular a priori differentiation of

xt (e.g., leaving xt undifferenced) would lead to fit loses.

Before presenting the assumptions under which our results hold, we introduce

some additional notation. Throughout we denote by Ip the p×p identity matrix,

‖·‖ denotes the Euclidean norm and [·] integer part. Also, denote by W (r) the

2× 1 vector Brownian motion with covariance matrix Σ (see Assumption 1 (iii)

below), and for any d > 1/2 define the Type II fractional Brownian motion (see

Marinucci and Robinson, 2000)

W (r; d) =
1

Γ (d)

r∫

0

(r − s)d−1 dW (s) , (6)
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and the modified fractional Brownian motion (see Hualde, 2012)

A (r; d) =
1

Γ (d)

r∫

0

log (r − s) (r − s)d−1 dW (s) . (7)

As will be seen below, (6) and (7) have a crucial role in characterizing the limiting

properties of our estimators.

Assumption 1. The process ut = (u1t, u2t)
T , t ∈ Z, has representation ut =

B (L) εt, where B (s) = I2+
∑∞

j=1
Bjs

j, and the Bj are 2×2 matrices such that

(i) det{B (s)} �= 0, |s| ≤ 1;

(ii) B(eiλ) is differentiable in λ with derivative in Lip (̺) , ̺ > 1/2;

(iii) the εt are independent and identically distributed (iid) vectors with mean

zero, positive definite covariance matrix Σ, and E ‖εt‖q < ∞, q ≥ 4, q >

2/ (2δ − 1) .

Assumption 1 is sufficient to derive the different results given in Robinson

and Marinucci (2001). In particular, it is sufficient for the conditions related to

the cumulant spectral density, and imply square integrability of the univariate

spectra of u1t, u2t and fourth-order stationarity of ut. Also, by (ii), the derivative

of B(eiλ) has Fourier coefficients jBj = O (j−̺) as j →∞. Note also that the iid

assumption in (iii) can be undoubtedly relaxed, but this would require extending

the results in Hualde (2012) to cover more general processes.

Assumption 2. In (2), (3), δ > 1/2, γ ≥ 0, ν �= 0 and θ ∈ (▽1,▽2) .

First, we establish consistency of θ̂.

Theorem 1. Let Assumptions 1, 2 hold. Then, as n→∞, θ̂ →p θ.

The proof of Theorem 1 is given in Appendix A and it is based on a series of

lemmas introduced in Appendix B. As in related settings, the proof of consistency

is nonstandard (see, e.g., Robinson 1995, and Hualde and Robinson, 2011), due to

the non-uniform convergence of Qn (e) over a large admissible parameter space.

Next we establish the joint limiting distribution of θ̂, ν̂.

Theorem 2. Let Assumptions 1, 2 hold. Then, as n→∞,

qn (γ, δ)

(
θ̂ − θ

log−1 n (ν̂ − ν)

)
→d

(
1
ν

1

)
Ξ (γ, δ) , (8)
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where

qn (γ, δ) =
n2δ−1

log n
1 (γ + δ < 1) +

n2δ−1

log2 n
1 (γ + δ = 1, γ > 0) +

n

log n
1 (δ = 1, γ = 0)

+nδ−γ1 (γ + δ > 1,γ > 1/2) + nδ1 (γ + δ > 1,γ = 0) , (9)

and Ξ (γ, δ) is defined in (59).

The proof of Theorem 2 is given in Appendix A. As in Robinson andMarinucci

(2001), we are able to derive results for γ + δ > 1 only when γ = 0 or γ > 1/2.

Remark 1. As can be inferred from (8), the joint asymptotic distribution of θ̂

and ν̂ is singular. The reason for this phenomenon is that by the mean value

theorem,

ν̂(θ̂)− ν = ν̂(θ)− ν + ν̂′(θ)(θ̂ − θ), (10)

where for any real number p and functional f (·), f ′ (p) denotes the first derivative

of f (·) evaluated at p, and also
∣∣θ − θ

∣∣ ≤ |θ̂ − θ|. The behaviour of ν̂(θ) − ν is

well known from Robinson and Marinucci (2001), and, as can be inferred from

the proof of Theorem 2,
1

log n
ν̂ ′(θ) →p ν. (11)

Then given that in all cases ν̂ (θ)− ν = op (q−1n (γ, δ) log n), it can be shown that

(
qn (γ, δ) (θ̂ − θ)

qn (γ, δ) log−1 n(ν̂ − ν)

)
=

(
1

ν

)
qn (γ, δ) (θ̂ − θ) + op (1) , (12)

which leads to (8).

There is an intuitive reason behind the singularity of the joint limiting distrib-

ution. Linearizing the nonlinear least squares problem (5), it can be easily shown

that, approximately, our nonlinear problem corresponds to a linear one where

ν̂ and θ̂ are the estimated slopes corresponding to the pseudoregressors xt (θ)

and νx′t (θ), respectively. Then noting that xt (θ) =
∑t−1

j=0
aj (δ) u2,t−j, x

′
t (θ) =

−
∑t−1

j=1
a′j (δ) u2,t−j, where proceeding as in the proof of Lemma D.1 of Robinson

and Hualde (2003), a′j (δ) = (ψ (j + δ)− ψ (δ)) aj (δ), ψ (·) being the digamma

function, by the properties of the digamma function and results in Marinucci

and Robinson (2000), it can be shown that t1/2−δxt (θ) and −t1/2−δ log−1 tx′t (θ)

converge in distribution to the same random variable. In this particular sense,
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the regressors in the linearized model are asymptotically collinear an this is the

crucial issue behind the singularity of the joint limiting distribution. A similar

problem occurs in the regression with cointegrated regressors setting, see, e.g.,

Park and Phillips (1989).

Remark 2. Even if θ is a memory parameter, θ̂ could be superconsistent (under-

stood as faster-than-
√
n-consistent). This is a nonstandard result and, as far as

we know, it has not been hinted before in the literature on memory estimation,

which suggests that
√
n is the maximum rate achievable by memory estimators

even by parametric procedures (see e.g. Fox and Taqqu, 1986, Dalhaus, 1989,

Hualde and Robinson, 2011). The reason is that in our setting θ represents the

difference between the memories of two series, and the existence of cointegration

between them is the crucial distinctive aspect leading to the superconsistency re-

sult (unlike in the case of no cointegration where the maximum rate is
√
n). Note

that, as can be inferred from Remark 1, θ is similar to a cointegrating parameter

(it is the slope of the pseudoregressor νx′t (θ)). In fact, θ, like ν, characterizes a

singularity which arises in the spectral density of ∆δ (yt, xt)
′. Then, the higher is

the cointegrating gap δ − γ, the “stronger” is this singularity, and in this sense,

higher cointegrating gaps lead in general to faster convergence rates.

Remark 3. The limiting distribution of θ̂ (but not that of ν̂) depends on ν

(the presence of ν in the second equation of (12) cancels the dependence of the

limiting distribution of ν̂ on ν).

Remark 4. Our results are valid in the θ = 0 case (where (2), (3) become

a standard fractional cointegration model), noting that it is not very relevant

whether θ = 0 or θ �= 0, but whether the information about the true value of

θ is incorporated into the estimation. Also, the rate of convergence qn (γ, δ) in

(12) is, apart from a log−1 n factor when γ + δ ≤ 1, identical to that of the

estimator of ν in the situation where θ is correctly assumed to be known (see

Robinson and Marinucci, 2001). However, even if θ = 0, if the information about

θ is not incorporated into the estimation, the estimator of ν suffers from a slight

loss in rate of convergence. This is the main price to pay for allowing the greater

flexibility that letting θ be unknown permits. In addition, apart from the rate, the

asymptotic distribution of ν̂ differs substantially from that where θ is considered

to be known (see Hualde, 2006).

Remark 5. Different values of γ, δ, lead to different characterizations of ob-
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servables and cointegrating error which might arise in practice. Related to this,

Theorem 2 reflects the fact that, as usual in fractional cointegration (see, e.g.,

Robinson and Marinucci, 2001), the limiting behaviour of the estimators de-

pends on the integration orders of observables and cointegrating error. This

dependence affects convergence rates and also the form of Ξ (γ, δ) (see (59)),

which also depends on the (possibly infinite-dimensional) set of short run para-

meters characterizing ut. For particular cases of ut some simplifications of the

corresponding limiting distributions and convergence rates are possible (as it is

clearly the case when u1t and u2t are mutually independent sequences, because

in this case Ξ (γ, δ) = 0 when γ + δ ≤ 1).

Remark 6. As it is evident from the characterization of Ξ (γ, δ) given in (59), the

modified version of the Type II fractional Brownian motion given in (7) appears

in our limiting results. This process has been introduced by Hualde (2012) and

it is the limit of a normalized modified Type II fractional process.

Remark 7. Condition ν �= 0 (see Assumption 2) is necessary for identification,

because if ν = 0, θ is unidentified. Thus, when ν is close to zero it is expected

that our estimators of θ, ν perform poorly in finite samples, and this is confirmed

by an unreported Monte Carlo experiment.

Remark 8. An alternative way of estimating ν is to use a two-stage approach.

Given that θ represents the difference between the memories of xt and yt, this

can be estimated first by standard memory estimation methods (say we obtain

estimator θ), and then estimate ν by ν̂(θ). Actually, this estimator has been

already considered by Hualde (2006) (with the only difference that he did not

include a constant in the OLS regression) who denoted it by ν5. The properties

of this estimator were described in Hualde’s (2006) Theorem UCD. In view of the

results given in pp. 808-809 of Hualde (2006), if γ + δ > 1 with δ − γ ≥ 1/2 or

γ = 0, δ = 1, ν5 cannot have a faster convergence rate than ν̂, but, in most cases,

ν5 will be much slower than ν̂ (the difference in convergence rates in favour of

ν̂ being higher the higher the cointegrating gap δ − γ and the slower the rate of

convergence of θ). However, if γ + δ > 1 with δ − γ < 1/2, or γ + δ = 1, γ > 0,

or γ + δ < 1, ν5 might have a faster rate of convergence than ν̂ (which is at most

due to a log2 n factor), but again, depending on the orders δ, γ and also on the

rate of convergence of θ, ν̂ might be substantially faster than ν5. It is interesting

to note that the equivalent to ν5 in a model with constant has been considered
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by Maynard, Smallwood and Wohar (2013) in setting very similar to ours, but

imposing δ = γ = 0 (note that we consider the case where δ > 1/2, δ > γ) and

also strong restrictions on ut. Based on our results, we conjecture that in the

particular setting they consider, our ν̂ estimator will outperform their two-stage

estimator (although a formal and detailed analysis along the lines offered by our

present paper is warranted).

3. Monte Carlo evidence

With the aim of providing evidence of the finite sample behaviour of our

estimators, we run a small Monte Carlo experiment. There are two parts to our

experiment. The first one presents results of Monte Carlo bias and standard

deviation (SD) of θ̂, ν̂. These estimates were computed as in (5) with Ξ = [θ −
2, θ + 2] in different (γ, δ) situations. The second part focusses on the traditional

(γ, δ) = (0, 1) cointegrating case, comparing ν̂ with the OLS computed for three

different values of θ.

In both parts we generated 5,000 replications of ut in (2), (3), as Gaussian

white noise processes of dimensions n = 64, 128, 256, for different values of

the signal-to-noise ratio τ = V ar (u2t) /V ar(u1t) and correlation coefficient ρ,

where in all cases we set V ar (u1t) = 1. Then, for different choices of (γ, δ, θ) we

generated yt and xt from (2), (3) setting µ = 0.

In the first part of the experiment we fixed τ = 1, and present results for

cases ρ = .5, 0, −.5, (γ, δ) = (0, .6), (0, 1.2), (0, 2), (.4, .6), (.4, 1.2), (.8, 2), θ = 0,

ν = 1, 10. As shown by Theorem 2, our estimators of θ, ν are asymptotically

invariant to θ, and this was also reflected in finite samples by our experiment, so

we fixed θ = 0 without loss of generality. The estimator ν̂ is also asymptotically

invariant to ν, so, without loss of generality, we just give results of ν̂ for ν = 1.

On the contrary, θ̂ is affected by ν, hence we reported results for both ν = 1 and

ν = 10 cases.

Results for θ̂ are presented in Tables 1-4. In terms of Monte Carlo bias (Tables

1, 3), results are better the larger the cointegrating gap (δ − γ), except for the

(γ, δ) = (0, .6) case (which is the only situation when γ + δ < 1), which induces

the very slow rate of convergence n.2/ log n. The endogeneity bias is controlled

by ρ, which has a large influence in our results. Positive (negative) correlation

generates positive (negative) bias in an approximately symmetric way, except for

the (γ, δ) = (.4, .6), ν = 1, case, where bias is much larger in absolute value
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for negative ρ. Results are best for ρ = 0, where the endogeneity bias is not

present, noting that in this case θ̂ could enjoy faster convergence rates than

those presented in Theorem 2. As expected in view of Theorem 2, bias is much

smaller for ν = 10 (approximately 10 times smaller). In all cases bias reacts in

the appropriate direction when n increases.

Results for the SD of θ̂ are presented in Tables 2, 4. In most cases smaller SD

is associated to larger cointegrating gaps, and SD is relatively unaffected by ρ

(except in the (γ, δ) = (.4, .6), ν = 1, case, where the estimator performs clearly

best and worst for ρ = .5 and ρ = −.5, respectively). As for the bias, SD is

approximately 10 times smaller when ν = 10 instead of ν = 1, and it decreases

as n increases.

Results for ν̂ are reported in Tables 5, 6. Bias and SD are substantially larger

than those corresponding to θ̂, but, as it could have inferred from our asymptotic

theory, the behaviour of both estimates is qualitatively very similar.

In the second part of the experiment we concentrate on the traditional coin-

tegrating case (γ, δ) = (0, 1). Here, we present results for τ = .5, 1, 2, ρ =

.25, 0,−.75, and compare ν̂ with the OLS ν̃θ =
∑n
t=1 xtyt/

∑n
t=1 x

2
t , in three dif-

ferent situations, corresponding to the cases where in (2), (3), θ = 0, .1,−.1. As

mentioned before, our estimators of θ, ν are asymptotically invariant to θ, so

results corresponding to ν̂ are just given for the θ = 0 case (almost identical

results were obtained if θ = ±0.1). Note that ν̃0 is expected to perform substan-

tially better than ν̂ because it incorporates the correct information about the

lack of imbalance between the observables. However, ν̃.1, ν̃−.1, are misspecified

estimators, and, as our experiment shows, behave substantially worse than ν̂ in

finite samples. This has important implications for empirical work, because a

difference (in absolute value) between the integration orders of the observables

as small as 0.1, could be very difficult to detect in practice, especially if the

sample size is relatively small. Results for bias are reported in Table 7. Bias

of ν̂, ν̃0, is heavily affected by τ and ρ: the larger and smaller are τ and |ρ|,
the better, with positive (negative) ρ associated to positive (negative) bias. On

the contrary, the misspecified estimators ν̃ .1, ν̃−.1, are hardly affected by these

parameters. As anticipated, ν̃0 performs better than ν̂ (although they behave in

a very similar way when ρ = 0), but this latter estimator outperforms clearly the

misspecified ones, especially as n increases, where the inconsistency of ν̃ .1, ν̃−.1 is
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more noticeable. A positive (negative) θ induces negative (positive) bias in the

misspecified estimators, negative θ having generally more perverse effects.

Results for SD are given in Table 8. Here, ν̃0 performs best and ν̃−.1 is worst.

Noticeably, as n increases, ν̂ improves relative to the misspecified estimators, so

when n = 128, 256 and τ = 1, 2, ν̂ performs clearly better than ν̃.1. Again, the

misspecification caused by negative θ appears to have stronger negative effects.

4. Empirical example

Next we present an empirical application to US quarterly inventory (ht) and

sales (st) data for the period 1982Q1-2001Q4 (n = 80). Both series were recorded

in billions of chained (2000) dollars, seasonally adjusted, end-of-period quarterly

totals drawn from the BEA database. Banerjee and Mizen (2006), who previ-

ously analyzed this data set, estimated a polynomially cointegrated model arising

from the linear quadratic inventory model proposed by Holt et al. (1960), which

was also analyzed by Ramey and West (1999) and Hamilton (2002). Before

proceeding to analyze the data, we justify why UC can be derived from the

linear-quadratic inventory model. Suppose we deal with model (1), (2), (3) of

Hamilton (2002) (or (1) of Banerjee and Mizen, 2006), with the only modification

that the last term of the cost function (2) is replaced by b2 (ht−1 − b4 − b3st (θ))
2

(to avoid confusion with our fractional parameters note the change in notation, so

the a’s in Hamilton’s, 2002, notation become b’s in ours). This term reflects the

costs associated to deviations of inventories from optimal levels (assumed to be

b3st (θ)), see Ramey and West (1999, p.909). Our flexible characterization of the

optimal inventory (making it depend, in general, on present and past sales) cov-

ers the usual parameterization (θ = 0), but letting θ be free controls for possible

differences between the integration orders of ht and st, leading to a closer approx-

imation between realized and optimal inventories (therefore avoiding important

losses). As anticipated in the Introduction, in the present situation it is likely

that θ < 0, which has important implications concerning the dependence of opti-

mal inventories on past sales. In particular, note that st (θ) =
∑t−1

j=0
aj (−θ) st−j,

where aj+1 (−θ) = (j − θ) aj (−θ) / (j + 1), so it is straightforward to show that

for θ < 1 all coefficients aj (−θ), j ≥ 1 have opposite sign to that of θ. Thus

if θ < 0, the optimal inventory b3st (θ) is modelled as a linear combination of

present and past sales with positive coefficients. This is possibly more appropri-

ate than just restricting to present sales, which nevertheless is also a possibility
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covered by our general framework. We further assume that st (δ + θ) = b5 + vst,

where vst is a white noise, so st ∼ I (δ + θ), covering both Hamilton’s (2002) and

Banerjee and Mizen’s (2006) assumptions, where δ + θ = 1 and 2, respectively.

Robinson (1978) and Granger (1980) demonstrated that fractional integration

could originate from aggregation of data exhibiting heterogeneous dynamic be-

haviour at the individual level, so given that Ramey and West (1999) stressed

that inventory and sales data are obtained by aggregating across heterogeneous

firms, our fractional setting appears to be sensible.

Proceeding as Hamilton (2002), Banerjee and Mizen (2006) (and assuming

for simplicity b0 = 0, as in Hamilton, 2002), we derive the first order condition

for cost minimization

Et ((qt − uct)− β (qt+1 − uc,t+1) + βb2 (ht − b4 − b3st+1 (θ))) = 0,

where qt is quantity produced, uct is the shock to marginal cost of production and

β is the discount rate. As in Hamilton (2002), we assume uct = st+vct, where vct

is white noise, which implies that uct and st are cointegrated. This might occur if

for example technological advance (an upward trend in uct) generates an upward

trend in sales. Noting that aj+1 (−θ)− aj (−θ) = aj+1 (−θ − 1), it can be easily

shown that st+1 (θ) = st (θ) + st+1 (θ + 1), so, given that qt = ∆ht + st, it can be

derived that

βb2 (ht − b4 − b3st (θ)) + ∆ht − βEt (∆ht+1) = βb2b3Et (st+1 (θ + 1)) + vct. (13)

We interpret (13). Let ξt be an arbitrary I (0) process and ζt =
∑t−1

j=0
aj (d) ξt−j,

so ζ t ∼ I (d). Clearly Et−1 (ζt) = ζt − ξt, so Et−1 (ζt) inherits the integration

order of ζt. Noting that st+1 (θ + 1) ∼ I (δ − 1), the immediate implication of

(13) is that necessarily ht ∼ I (δ) and the linear combination ht − b3st (θ) is

cointegrating, so our particular parameterization of the optimal inventory leads

to UC.

Next, we proceed to the statistical analysis. We just focus on estimating the

UC relationship ht− b4− b3st (θ), although, given that (13) suggests much richer

dynamics than just those implied by UC, practitioners could consider our em-

pirical analysis simplistic. However, a complete treatment of (13) would require

more sophisticated techniques than those provided in this paper, and, at this
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stage, our aim is just to propose a sensible methodology incorporating the tech-

niques developed in the paper. In order to support the use of the UC techniques,

we first test for equality of the integration orders δ and δ + θ of the two observ-

able series ht and st, respectively. In particular, we estimated semiparametrically

their respective integration orders by local Whittle, using second differences of

the series and then adding back 2. We present these estimates in Table 9 for

a wide set of bandwidths mi, i = 1, ..., 10 (setting m1 = 16, mi+1 = mi + 1).

In all cases δ̂ > δ̂ + θ, which supports the likability of a negative θ: Based on

these estimates, we tested formally for equality of the orders (that is, θ = 0) by

means of Robinson and Yajima’s (2002) test statistic τ̂hs with trimming sequence

h (n) = 0. Theoretically h (n) should be a positive sequence tending to zero, but

in practice, for a given sample, any positive number, no matter how small it is,

satisfies the required condition for h (n), noting that for positive choices of h (n),

the presented statistics should be slightly smaller (in absolute value). Results

for the same set of bandwidths are presented in Table 9, and, although they are

not entirely conclusive (note that the presented values should be compared with

critical values from N (0, 1)), they cast serious doubt on the θ = 0 hypothesis

(this is clearly the case for large mi’s).

Next, we test for UC by means of the X∗∗ statistic of Robinson (2008). This

statistic, unlike other proposals, is robust to distinct integration orders and,

particularized to the bivariate situation, captures the possibility of UC. The

values of X∗∗ for bandwidths mi, i = 1, ..., 10 (setting m1 = 26, mi+1 = mi + 1)

are presented in Table 9. These values need to be compared with nominal ones

from a χ21 distribution, so along with the results concerning the test for θ = 0,

the likability of UC is supported (at least for large mi). As shown by Robinson

(2008), X∗∗ displays very poor power for small bandwidths, which justifies our

choice of relatively large mi’s.

Finally, we estimate ν, θ in (2) setting yt = ∆ht, xt = ∆st. Using model

(2), (3) with raw variables is not realistic because (3) imposes a zero mean to

xt. Thus we avoid this problem by modelling first differenced observables, not-

ing that the UC structure is preserved under differencing. In view of the local

Whittle estimates provided in Table 9, the nonstationarity of yt appears to be

supported by the data. We also took this opportunity to examine the issue of

truncation, which always arises when dealing with fractional models. In (2), (3),
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the truncation is inherent in the model, so there is no “error” associated with

it. However, the model reflects the time when the data begins, and if we were

to drop the first observation, say, and start the model off at the next one, the

degree of filtering applied to all subsequent observations would change, and it

is possible that this could have a marked effect, especially with nonstationary

data. Thus, in Table 9 we report computations of our estimates based on the

last n′ = n − j observations, for j = 0, 1, ..., 9, in order to explore sensitivity to

starting value. Finally, given that we are modelling first differenced data, µ �= 0

implies the presence of a linear trend in levels. We analyze heuristically the ef-

fect of omitting this linear trend by estimating a more parsimonious model where

knowledge of µ = 0 is imposed. These alternative estimators, which we denote by

ν̂µ0, θ̂µ0, minimize a very similar loss function to Qn(e), with the only difference

that sample means are not substracted in (4). Also, the limiting theory for ν̂µ0,

θ̂µ0, is almost identical to that for ν̂, θ̂, just accounting for the effect of the sample

means (which just affects Ξ (γ, δ)). Results are reported in Table 9 for different

values of n′. They are similar for both estimated models (possibly suggesting

that µ = 0) and quite robust to different n′. The estimates of θ correspond ap-

proximately to the evidence based on local Whittle estimates and ν̂, ν̂µ0, differ

heavily from the OLS of ht on st (including also a constant in the regression),

which takes value 2.08. Note that given that it is likely that θ < 0, in view of

our Monte Carlo experiment, we could have anticipated that OLS would suffer a

severe positive bias, which might explain the huge difference between ν̂, ν̂µ0 and

OLS.

Finally, our results allow us to calculate the estimated optimal inventory

ν̂st(θ̂). For example, taking ν̂ = .657, θ̂ = −.296 (which correspond to n′ = 76

and model imposing µ = 0), ν̂st(θ̂) = .657st+ .194st−1 + .126st−2 + .096st−3+ ....

5. Final comments

In this paper we have proposed nonlinear least squares estimators of long

run parameters in a bivariate UC framework, where the integration orders of the

observables might be different, but their corresponding balanced versions (with

equal integration orders after filtering) are cointegrated in the usual sense. The

UC setting appears to be relevant in at least two empirically relevant research

areas: multicointegration and predictive regressions. We have analyzed the lim-

iting properties of these estimators, and discovered three noticeable features:
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the possible superconsistency of the estimator of the difference between memory

parameters, the singularity of the joint limiting distribution of the estimators,

and the particular form of the joint limiting distributions, which can be partially

characterized by a modified version of the “Type II” fractional Brownian motion.

Although our bivariate system (2), (3), extends in a nontrivial direction some

results given in the literature (e.g., Robinson and Marinucci, 2001), there are

many different aspects which are not covered by the present paper, but which

will be object of future research.

1. It is straightforward to derive a frequency domain representation for our

estimators, and noting that both θ and ν describe long run properties of

the observables, this representation leads to consideration of narrow band

(NB) versions of ν̂, θ̂. As in Robinson and Marinucci (2001), NB estimators,

whose focus is the long-run components of the series, could display better

asymptotic properties than ν̂, θ̂. In particular, in view of Robinson and

Marinucci (2001), it is expected that NB enjoy a faster convergence rate

and different limiting distribution when γ+δ < 1 or γ+δ = 1 (with γ > 0),

the same rate (but different distribution) when γ = 0, δ = 1, and identical

properties to those in Theorem 2 when γ + δ > 1. In view of the proof of

Theorem 2 and results in Robinson and Marinucci (2001), the properties of

the NB should be easily derivable.

2. Both nonlinear least squares and NB estimators lead, in general, to non-

standard limiting distributions, which make them unsuitable for inference.

Thus, improved methods which correct for the endogeneity caused by the

relation between u1t and u2t, in the lines developed by Robinson and Hualde

(2003), Hualde and Robinson (2007) (as those hinted by Hualde (2006) in

the parametric setting), could be developed, but this is definitely a nontriv-

ial extension of the results in the present paper. It is expected that these

improved estimators would enjoy in some cases faster convergence rates

than those displayed by ν̂, θ̂, or, alternatively, by their NB versions. Gen-

eralizing this improved theory to a semiparametric situation (as in Hualde

and Robinson, 2010, for the balanced case) could be even more demanding,

but these extensions are very relevant, because they could lead to estima-

tors with standard asymptotic properties and, therefore, straightforward

inference would apply.
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3. As in Robinson and Marinucci (2001), our results only cover cases where

at least one of the observables (yt) is purely nonstationary (because we

impose δ > 1/2). Note that xt is allowed to be asymptotically stationary

(when θ is negative), but we do not cover interesting cases (for example for

financial data) where both observables are asymptotically stationary. In

this case, our guess is that ν̂, θ̂ would be in general inconsistent, but their

NB versions could retain consistency. Improved methods for this particular

case could be developed in the spirit of the “weak cointegration” literature

(see e.g. Hualde and Robinson, 2007, 2010).

4. Undoubtedly, our bivariate system could be extended to multivariate set-

tings. However, non-trivial extensions allowing for different integration or-

ders among the observables, cointegrating errors and imbalance parameters,

raise important difficulties regarding the identification and estimation of a

general multivariate system. Some of these difficulties where considered by

Hualde and Robinson (2010), but allowing for the greater flexibility implied

by the possibly unbalanced series, complicates matters substantially.

Appendix A. Proof of Theorems

Proof of Theorem 1. The behaviour of Qn (e) is not uniform across the pa-

rameter space, so it is not possible to rely on uniform convergence arguments to

justify consistency. Thus our proof will be based on an alternative strategy simi-

lar to that of Hualde and Robinson (2011) (HR hereinafter). For some arbitrarily

small ε > 0, such that ε < min {θ −▽1,▽2 − θ}, define Nε = {e : |e− θ| < ε},
Nε = {e : |e− θ| ≥ ε}. Then, as in Robinson (1995),

Pr
(∣∣∣θ̂ − θ

∣∣∣ > ε
)

= Pr

(
inf
Nε∩Ξ

Qn (e) ≤ inf
Nε∩Ξ

Qn (e)

)
≤ Pr

(
inf
Nε∩Ξ

Sn (e) ≤ 0

)
,

where Sn (e) = n−2δ (Qn (e)−Qn (θ)). In order to simplify subsequent notation

let c = δ + θ − e, noting that xt (e) ∼ I (c). Then Pr
(
infNε∩Ξ

Sn (e) ≤ 0
)

=

Pr (infc∈I Sn (δ + θ − c) ≤ 0), where I = [δ + θ −▽2, δ − ε]∪ [δ + ε, δ + θ −▽1].

We give the proof for the most general case where δ + θ−▽2 < 1/2, but our

proof trivially covers the δ + θ−▽2 ≥ 1/2 situation, for which some of the steps

described below are superfluous. We split the admissible c-interval onto four dis-

joint intervals: I1= [δ + θ −▽2, 1/2− η], I2= (1/2− η, 1/2), I3= [1/2, 1/2 + η),
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I4= [1/2 + η, δ − ε] ∪ [δ + ε, δ + θ −▽1], where η > 0 is arbitrarily small and

η < min {1/2, 1/2− (δ + θ −▽2) , δ − 1/2− ε}. The idea of splitting the I in-

terval in four subsets reflects the distinct behaviour of xt (e) when c > 1/2 or

c < 1/2, whereas the behaviour of xt (e) when c is in a neighborhood of 1/2

requires a special treatment. Then Theorem 1 holds on showing that

Pr

(
inf
Ii

Sn (δ + θ − c) ≤ 0

)
→ 0 as n→∞, i = 1, 2, 3, 4. (14)

Clearly

Sn (δ + θ − c) =
ν2

n2δ

(
Cx(θ) −

C2
x(e)x(θ)

Cx(e)

)
− 2νCx(e)x(θ)Cx(e)u1(−γ)

n2δCx(e)
−

C2
x(e)u1(−γ)

n2δCx(e)

+
2νCx(θ)u1(−γ)

n2δ
+

C2
x(θ)u1(−γ)

n2δCx(θ)
=

5∑

i=1

pi.

First, we show (14) for i = 1, 2, 3. Clearly

inf
Ii

Sn (δ + θ − c) ≥ ν2Cx(θ)
n2δ

− sup
Ii

bn (c) ,

where bn (c) = ν2n−2δC2
x(e)x(θ)C

−1
x(e) +

∑5

i=2
|pi|. Then

Pr

(
inf
Ii

Sn (δ + θ − c) ≤ 0

)
≤ Pr

(
ν2Cx(θ)
n2δ

≤ sup
Ii

bn (c)

)
.

Let D (r; ·), E (r; ·) be W (r; ·) or A (r; ·) (defined in (6), (7)), D̃ (r; ·) = D (r; ·)−∫ 1
0
D (s; ·) ds and define for any 2× 1 vectors v, w

BvwD(c)E(d) = vTB (1)

1∫

0

D̃ (r; c) ẼT (r; d) drBT (1)w, BvD(c) = BvvD(c)D(c).

By Assumption 1, Marinucci and Robinson (2000) (MR hereinafter) and the

continuous mapping theorem n−2δCx(θ) →d BξW (δ) > 0, a.s., where ξ = (0, 1)T .

Then, (14) for i = 1, 2, 3, holds on showing that supIi bn (c) = op (1). First, note

that p4 and p5 are not c-dependent, and by results in Robinson and Marinucci

(2001) (RM hereinafter), n−2δCx(θ)u1(−γ) = op (1), so |p4|+ |p5| = op (1). Also, as
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δ > γ, p2 and p3 cannot be larger in order of magnitude than n−2δC−1
x(e)C

2
x(e)x(θ),

so (14) holds on showing that supIi n
−2δC−1

x(e)C
2
x(e)x(θ) = op (1). For i = 1, 2,

sup
Ii

C2
x(e)x(θ)

n2δCx(e)
≤

supIi

(
1

nδ+
1
2

Cx(e)x(θ)

)2

infIi
1
n
Cx(e)

= op (1) , i = 1, 2,

by (60), (61) of Lemma 1 and (68), (69) of Lemma 2, for i = 1, 2, respectively.

Similarly, for i = 3,

sup
I3

C2
x(e)x(θ)

n2δCx(e)
≤ supI3

(
1

nδ+c
Cx(e)x(θ)

)2

infI3
1
n2c

Cx(e)
= op (1) ,

by (62) of Lemma 1 and (70) of Lemma 2.

The proof for i = 4 is slightly different. Given that Cx(e) ≥ 0,

Pr

(
inf
I4

Sn (δ + θ − c) ≤ 0

)
≤ Pr

(
inf
I4

Cx(e)
n2c

Sn (δ + θ − c) ≤ 0

)
. (15)

Now

inf
I4

Cx(e)
n2c

Sn (δ + θ − c) ≥ ν2 inf
I4

1

n2(δ+c)
[
Cx(θ)Cx(e) − C2

x(e)x(θ)

]
−sup

I4

1

n2c
Cx(e)dn (c) ,

where dn (c) =
∑5

i=2
|pi|. Then

Pr

(
inf
I4

Sn (δ + θ − c) ≤ 0

)

≤ Pr

(
ν2 inf

I4

1

n2(δ+c)
[
Cx(θ)Cx(e) − C2

x(e)x(θ)

]
≤ sup

I4

1

n2c
Cx(e)dn (c)

)
. (16)

Defining for any at, ãt = at − a, it is straightforward to show that

Cx(θ)Cx(e) − C2
x(e)x(θ) =

n−1∑

t=1

n∑

k=t+1

(x̃t (θ) x̃k (e)− x̃k (θ) x̃t (e))
2

≥ 1

n2

(
n−1∑

t=1

n∑

k=t+1

(x̃t (θ) x̃k (e)− x̃k (θ) x̃t (e))

)2

. (17)

Noting that
∑j

l=0
al (c) = aj (c + 1), so

∑t

l=1
xl (e) = xt (e− 1) and xt (e− 1)−
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xt−1 (e− 1) = xt (e), using repeatedly summation by parts, the right side of (17)

equals n−2 (gn (c) + hn (c))2, where

gn (c) = xn (e− 1)xn (θ − 1)− 2

n
xn (e− 1) xn−1 (θ − 2)

−2
n∑

t=1

xt (θ) xt (e− 1) +
2

n
xn (θ − 1)xn−1 (e− 2) ,

hn (c) =
∑n

t=1
xt (θ)xt (e). Then the right side of (16) is bounded by

Pr

(
inf
I4

(
1

nδ+c+1
gn (c)

)2
≤ ν−2 sup

I4

1

n2c
Cx(e)dn (c) + 2 sup

I4

1

n2(c+δ)+2
|gn (c)hn (c)|

)
,

so the required result follows on showing that for an arbitrarily small ǫ > 0

Pr

(
inf
I4

(
1

nδ+c+1
gn (c)

)2
> ǫ

)
→ 1 as n→∞, (18)

sup
I4

1

n2c
Cx(e)dn (c) = op (1) , (19)

sup
I4

1

nc+δ+1
|gn (c)| = Op (1) , (20)

sup
I4

1

nc+δ+1
|hn (c)| = op (1) . (21)

First, as |p4|+ |p5| = op (1), noting (62), (19) follows by showing

sup
I4

1

n2c
Cx(e) = Op (1) , (22)

sup
I4

1

nc+δ
Cx(e)u1(−γ) = op (1) . (23)

First, (22) easily follows by very similar arguments to those in the proof of (62),

whereas by the Cauchy inequality

sup
I4

1

nδ+c
Cx(e)u1(−γ) ≤

{
sup
I4

1

n2c
Cx(e)

1

n2δ
Cu1(−γ)

} 1

2

= op (1) ,

by (22) and results in RM to establish (23). Next, (20), (21), follow by very sim-

ilar arguments to those in the proof of (62). Finally, considering n−(δ+c+1)gn (c)
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as a process indexed by c, we show first that

1

nδ+c+1
gn (c) ⇒ g (c) , (24)

where

g (c) = ξTB (1)
[
W (1; c + 1)W T (1; δ + 1)− 2W (1; c + 1)W T (1; δ + 2)

+2W (1; c + 2)W T (1; δ + 1)− 2

1∫

0

W (r; δ)W T (r; c + 1) dr


BT (1) ξ,

where⇒ means weak convergence in the space of continuous functions on I4. We

give this space the uniform topology. Note that by integration by parts g (δ) = 0,

a.s., but for c ∈ I4, g (c) �= 0, a.s. Convergence of the finite dimensional distri-

butions of the processes involved follows by MR, whereas tightness follows by

almost identical arguments to those in HR. Thus (24) follows by the continuous

mapping theorem. Then infI4
(

1
nδ+c+1

gn (c)
)2 ⇒ infI4 g

2 (c), again by the contin-

uous mapping theorem, where infI4 g
2 (c) > 0, a.s, because the infimum is taken

over a compact set. Thus, as n→∞,

Pr

(
inf
I4

(
1

nδ+c+1
gn (c)

)2
> ǫ

)
→ Pr

(
inf
I4

g2 (c) > ǫ

)
,

and (18) follows because ǫ is arbitrarily small. Thus we conclude the proof for

i = 4 and thence complete the proof of the theorem.

Proof of Theorem 2. First, we show that θ̂ is nτ -consistent for a fixed τ such

that 0 < τ < δ−max {γ, 1/2}. Noting the results in the proof of Theorem 1, the

result holds on establishing that

Pr

(
inf
Inτ

Sn (δ + θ − c) ≤ 0

)
→ 0 as n→∞, (25)

where Inτ = [δ − ε, δ − ε/nτ ] ∪ [δ + ε/nτ , δ + ε]. Denote Iε = [δ − ε, δ + ε]. As

in (15)

Pr

(
inf
Inτ

Sn (δ + θ − c) ≤ 0

)
≤ Pr

(
inf
Inτ

Cx(e)
n2c

Sn (δ + θ − c) ≤ 0

)
.

23



Now

inf
Inτ

Cx(e)
n2c

Sn (δ + θ − c) ≥ ν2 inf
Inτ

1

n2(δ+c)
[
Cx(θ)Cx(e) − C2

x(e)x(θ)

]
−sup

Iε

1

n2c
Cx(e)dn (c) ,

so that

Pr

(
inf
Inτ

Sn (δ + θ − c) ≤ 0

)
≤ Pr

(
ν2 inf

Inτ

Cx(θ)Cx(e) − C2
x(e)x(θ)

n2(δ+c)
≤ sup

Iε

Cx(e)dn (c)

n2c

)
.

We introduce some notation. First, noting that xt (e) /n
c = n−cΣt−1j=0aj (c)u2,t−j,

denote ft (c) = xt (e) /n
c (there is a slight abuse of notation here because ft (c)

is n-dependent). Also, as in Remark 1,

a′j (c) = (ψ (j + c)− ψ (c)) aj (c) . (26)

Then it is simple to derive that f ′t (c) = dft (c) /dc = gt (c) − r (c) ft (c), where

gt (c) = n−c
∑t−1

j=0
ψ (j + c) aj (c)u2,t−j, r (c) = ψ (c) + log n. For c ∈ Inτ , by the

mean value theorem, ft (c) = ft (δ) + (c− δ) f ′t (c), where |c− δ| ≤ |c− δ| and
c ∈ Iε. Then it is straightforward to show that

1

n2(δ+c)
(
Cx(θ)Cx(e) − C2

x(e)x(θ)

)
= Cf(δ)Cf(c) − C2

f(c)f(δ) = (c− δ)2 Pn (c) ,

where Pn (c) = Cf(δ)Cf ′(c) − C2
f(δ)f ′(c). Thus

Pr

(
inf
Inτ

Sn (δ + θ − c) ≤ 0

)
≤ Pr

(
ν2 inf

Inτ
(c− δ)2 inf

Iε
Pn (c) ≤ sup

Iε

Cf(c)dn (c)

)
,

so given that infInτ (c− δ)2 = ε2/n2τ , (25) holds on showing that, as n→∞,

n2τ sup
Iε

Cf(c)dn (c) = op (1) , (27)

Pr

(
inf
Iε

Pn (c) ≤ ǫ

)
→ 0, (28)

for ǫ > 0 arbitrarily small. First, (27) holds on showing n2τ supIε Cf(c)
∑5

i=2
|pi| =

op (1). First, noting that as in (22), supIε Cf(c) = Op (1), then n2τ supIε Cf(c)
∑5

i=4
|pi| =
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op (1) by results in RM. Thus, given that as in (62), supIε Cf(c)f(δ) = Op (1), (27)

holds on showing that n2τ supIε n
−(δ+c)Cx(e)u1(−γ) = op (1), which holds straight-

forwardly by the Cauchy inequality, (22) and RM, as τ < δ−max {γ, 1/2}. Next,
by Lemma 3, for an arbitrarily small ρ > 0,

Pr

(
inf
Iε

Pn (c) ≤ ǫ

)
≤ Pr

(
sup
Iε

|rn (c)| > ρ

)
+ Pr

(
inf
Iε

Xn (c) ≤ ǫ + ρ

)
. (29)

By (83) the first term on the right side of (29) tends to zero as n→∞. In view

of (82), noting that X1n (c) ≥ 0, the second term is bounded by

Pr

(
inf
Iε

X2n (c) + inf
Iε

X3n (c) ≤ ǫ + ρ

)
,

which for an arbitrarily small τ > 0 is bounded by

Pr

(
inf
Iε

X3n (c) ≤ ǫ + ρ + τ

)
+ Pr

(
inf
Iε

X2n (c) ≤ −τ

)
. (30)

Then, as in (24), we have

X3n (c) ⇒ BξW (δ)B
ξ
A(c) −

(
BξξW (δ)A(c)

)2
≡ X3 (c) , (31)

X2n (c) ⇒ 2ψ (c)
(
BξW (δ)B

ξξ
W (c)A(c) −BξξW (δ)W (c)B

ξξ
W (δ)A(c)

)
≡ X2 (c) . (32)

Under Assumption 1, (31), (32) follow by the continuous mapping theorem, not-

ing that convergence of the corresponding finite dimensional distributions of the

processes involved follow by MR and Hualde (2012), whereas tightness can be

justified as in HR. Then, by the continuous mapping theorem, infIε X3n (c) ⇒
infIε X3 (c) > 0, a.s., so the first term in (30) can be made arbitrarily small on

setting ǫ, ρ, τ , arbitrarily close to zero. Similarly

inf
Iε

X2n (c) ⇒ inf
Iε

X2 (c) . (33)

Noting that X2 (c) evaluated at c = δ is identically zero, by (33) and continuity

of X2 (c), the second probability in (30) can be made arbitrarily small on setting

ε close enough to zero, to conclude the proof of (25), and hence nτ -consistency

of θ̂ is established.
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Next, by the mean value theorem, θ̂ − θ = −Q′
n (θ) /Q′′

n

(
θ
)
, where

∣∣θ − θ
∣∣ ≤∣∣∣θ̂ − θ

∣∣∣ andQ′
n (θ), Q′′

n

(
θ
)
, are the first and second derivatives ofQn (e), evaluated

at e = θ, θ, respectively. Define gn (γ, δ) = n2δq−1n (γ, δ) (see (9)). As will be

shown below, gn (γ, δ) and n2δ are the exact normalizations for Q′
n (θ), Q′′

n (θ),

respectively. Thus

n2δg−1n (γ, δ) (θ̂ − θ) = −n2δg−1n (γ, δ)
Q′
n (θ)

Q′′
n (θ)

+ op (1) , (34)

holds on showing that n−2δ
(
Q′′
n

(
θ
)
−Q′′

n (θ)
)

= op (1), which follows if

sup
c∈Inτ

∣∣n−2δ (Q′′
n (e)−Q′′

n (θ))
∣∣ = op (1) , (35)

where Inτ is defined in Lemma 4 below. Taking derivatives in (4), Q′
n (e) =

−2ν̂ (e)Cyx′(e) + 2ν̂2 (e)Cx(e)x′(e), and

Q′′
n (e) = −2ν̂′ (e)Cyx′(e) + 4ν̂′ (e) ν̂ (e)Cx(e)x′(e) − 2ν̂ (e)Cyx′′(e)

+2ν̂2 (e)Cx(e)x′′(e) + 2ν̂2 (e)Cx′(e), (36)

where x′t (e) = dxt (e) /de, x
′′
t (e) = d2xt (e) /de

2 and

ν̂′ (e) =
dν̂ (e)

de
= C−1

x(e)Cyx′(e) − 2ν̂ (e)C−1
x(e)Cx(e)x′(e). (37)

The proof follows after tedious but mainly straightforward calculations, so we just

present the main steps. By Lemma 4 and results in MR, RM, it is straightforward

to obtain that

sup
Inτ

|ν̂ (e)− ν̂ (θ)| = Op
(
n−τ log n

)
,

sup
Inτ

∣∣ν̂ ′ (e)− ν̂ ′ (θ)
∣∣ = Op

(
n−τ log2 n

)
. (38)

Similarly, analyzing every term in Q′′
n (e)−Q′′

n (θ), we conclude that

sup
Inτ

|Q′′
n (e)−Q′′

n (θ)| = Op
(
n2δ−τ log3 n

)
,

to conclude for (35). Then
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n2δg−1n (γ, δ)
(
θ̂ − θ

)
= −n2δg−1n (γ, δ)

Fn (θ)

Hn (θ)
+ op (1) ,

where Fn (θ) = Cx(θ)Q
′
n (θ), Hn (θ) = Cx(θ)Q

′′
n (θ). Fn and Hn are introduced be-

cause in our particular setting it is simpler to consider the joint limiting behaviour

of (n−4δHn (θ) , n−2δg−1n (γ, δ)Fn (θ)) (where the extra n−2δ in the normalization

is due to the presence of Cx(θ), see RM), in order to derive the asymptotic distri-

bution of θ̂, than that of
(
n−2δQ′′

n (θ) , g−1n (γ, δ)Q′
n (θ)

)
.

We first analyze the behaviour of Hn (θ). Let

xt,n (θ) =
t−1∑

j=0

u2,t−jaj (δ)
n∑

k=j

(k + δ)−1 .

Then, noting the approximation in Lemma 6, by Theorem 1 of MR, Theorem 1

of Hualde (2012) and the continuous mapping theorem, as n→∞,

1

n4δ
Hn (θ) →d 2ν2

(
BξW (δ)B

ξ
A(δ) −

(
BξξA(δ)W (δ)

)2)
> 0, a.s. (39)

Next, we analyze the behaviour of Fn (θ) noting the approximation given in

Lemma 5. Here, the limiting properties of Cu1(−γ)x(θ), Cx(θ), follow directly from

RM, those of Cx(θ)xn(θ) from MR, Theorem 1 of Hualde (2012) and the continuous

mapping theorem, so we concentrate on the analysis of Cu1(−γ)xn(θ). This element

equals

log (n + 1 + δ)
n∑

t=1

u1t (−γ) xt (θ)−
n∑

t=1

u1t (−γ)
t−1∑

j=0

aj (δ) log (j + δ)u2,t−j

+
n∑

t=1

u1t (−γ)
t−1∑

j=0

aj (δ) cj,nu2,t−j −
1

n

n∑

t=1

u1t (−γ)
n∑

t=1

xt,n (θ) (40)

where cj,n =
∑n

k=j

1
k+δ

−
∫ n+1

j

1
z+δ

dz. First, we discuss the γ+δ < 1 case. Here,

by Theorems 4.1 and 5.1 of RM, as n→∞,

1

n log n
log (n + 1 + δ)

n∑

t=1

u1t (−γ)xt (θ) →p

∫ π

−π

a (γ;λ) a (δ;−λ) f12 (λ) dλ,

(41)
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where a (d;λ) =
∑∞
j=0 aj (d) eijλ and fij (λ) the ijth element of f (λ) (which is

the spectral density matrix of (u1t, u2t)
T ). Next, the expectation of the second

term in (40) is
n∑

t=1

t−1∑

j=0

aj (γ)
t−1∑

k=0

ak (δ) log (k + δ) γj−k, (42)

where γj = E (u10u2j). Under Assumption 1,
∑∞

j=0

∣∣γj
∣∣ < ∞, so (42) can be

easily shown to be O (n). Also, by a simple extension of Theorem 5.1 of RM

V ar

(
n∑

t=1

u1t (−γ)
t−1∑

j=0

aj log (j + δ) u2,t−j

)
= O

(
n2(γ+δ) log2 n

)
,

so the second term in (40) is op (n log n). Next, noting that

|cj,n| ≤
n∑

k=j

sup
k≤v≤k+1

(
1

k + δ
− 1

v + δ

)
=

n∑

k=j

1

(k + δ) (k + 1 + δ)
≤ Kj−1, (43)

uniformly in n, where K denotes an arbitrarily large finite constant, it is easily

shown that the third term in (40) is also op (n log n). Finally, by MR and Hualde

(2012), the fourth term in (40) is also op (n logn), so that

1

n log n
Cu1(−γ)xn(θ) →p

∫ π

−π

a (γ;λ) a (δ;−λ) f12 (λ) dλ.

Next, we discuss the γ + δ = 1, γ > 0 case. By Theorems 4.2 and 5.1 of RM,

as n→∞,

1

n log2 n
log (n + 1 + δ)

n∑

t=1

u1t (−γ)xt (θ) →p 2f12 (0) sin (δπ) . (44)

Next, the expectation of the second term in (40) equals

2πf12 (0)
n∑

t=1

t−1∑

j=0

aj (γ) aj (δ) log (j + δ) +
n∑

t=1




n−1∫

−n−1

+

∫

n−1≤|λ|≤ε

+

∫

ε≤|λ|≤π




×
t−1∑

j=0

aj (γ) eijλ
t−1∑

k=0

ak (δ) log (k + δ) e−ikλf12 (λ) dλ, (45)
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where f 12 (λ) = f12 (λ) − f12 (0), and for a fixed η > 0, ε ∈ (0, π) is chosen

such that sup|λ|<ε
∣∣f12 (λ)

∣∣ < η. Note that by Assumption 1, given any η, such

ε always exists. As in the proof of Theorem 4.2 of RM the first term in (45) is

asymptotically equivalent (meaning that the ration between this term and (46)

below tends to one as n→∞) to

2πf12 (0)

Γ (γ) Γ (δ)

n∑

t=1

(n− t) t−1 log t = f12 (0) sin (δπ)n log2 n + o
(
n log2 n

)
, (46)

by the reflection formula for the Gamma function, approximating summation by

integrals, and noting that

∫ n+1

1

x−1 log xdx = log2 (n + 1) /2. Next, we show that

the contribution to the expectation of the remaining terms in (45) is o
(
n log2 n

)
.

First, by a simple extension of Lemma 3.2 of RM, for 0 < |λ| ≤ π, 0 < d < 1,

∣∣∣∣∣

t−1∑

j=0

aj (d) log (j + δ) eijλ

∣∣∣∣∣ ≤ K min

{
td log t,

1

|λ| ,
log |λ|
|λ|d

}
. (47)

Then noting (47), for n large enough (such that n−1 < ε), the second term in

(45) is bounded by

K
n∑

t=1

n−1∫

−n−1

t log tdλ ≤ Kn log n. (48)

Next, again by (47) and Lemma 3.2 of RM, the third term in (45) is bounded by

Kηn

∫

n−1≤|λ|≤ε

|λ|−1 log |λ| dλ ≤ Kηn log2 n. (49)

Finally, the fourth term in (45) is bounded by

Kn

π∫

ε

|λ|−2 dλ ≤ Knε−1, (50)

noting (47) and Lemma 3.2 of RM. Thus, given that η is arbitrary, the first term
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in (45) is the leading one. Next, by a simple extension of Theorem 5.1 of RM

V ar

(
n∑

t=1

u1t (−γ)
t−1∑

j=0

aj (δ) log (j + δ)u2,t−j

)
= O

(
n2 log2 n

)
, (51)

so

1

n log2 n

n∑

t=1

u1t (−γ)
t−1∑

j=0

aj (δ) log (j + δ) u2,t−j →p f12 (0) sin (δπ) . (52)

Next, by (43) the third term in (40) can be easily shown to be op
(
n log2 n

)
, where

again by MR, the fourth term in (40) is op
(
n log2 n

)
, so noting (44), (52), we

conclude that
1

n log2 n
Cu1(−γ)xn(θ) →p f12 (0) sin (δπ) .

Next we discuss the γ = 0, δ = 1 case, for which

Cu1(−γ)xn(θ) =
n∑

t=1

u1t

t−1∑

j=0

u2,t−j

n∑

k=j

1

δ + k
− 1

n

n∑

t=1

u1t (−γ)
n∑

t=1

xt,n (θ) (53)

First, the expectation of the first term on the right side of (53) is

n log (n + 1 + δ)
n−1∑

t=0

γ−t − log (n + 1 + δ)
n−1∑

t=0

tγ−t − n
n−1∑

t=0

γ−t log (t + δ)

+

n−1∑

t=0

tγ−t log (t + δ) +
n−1∑

t=0

(n− t) γ−tct,n. (54)

First Assumption 1 implies that |γt| = O (t−1−̺), so
∑n

t=1
t |γt| = O (n1−̺).

Noting also (43), it is clear that the first term in (54) dominates. Then

1

n log n
E

(
n∑

t=1

u1t

t−1∑

j=0

u2,t−j

n∑

k=j

1

δ + k

)
→

∞∑

j=0

E (u10u2,−j) ,

as n→∞. Next, we show that

V ar

(
n∑

t=1

u1t

t−1∑

j=0

u2,t−j

n∑

k=j

1

δ + k

)
= o

(
n2 log2 n

)
. (55)
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The left side of (55) is

n∑

t=1

t−1∑

j=0

n∑

k=j

n∑

s=1

s−1∑

l=0

n∑

m=l

1

(δ + k) (δ + m)
(E (u1tu1s)E (u2,t−ju2,s−l)

+E (u1tu2,s−l)E (u1su2,t−j) + κ) , (56)

where κ is the fourth cumulant of u1t, u1s, u2,t−j, u2,s−l. We just analyze the

contribution of the first term in brackets in (56), which is bounded by

K

π∫

−π

π∫

−π

∣∣∣∣∣

n∑

t=1

t−1∑

j=0

n∑

k=j

1

δ + k
e−it(µ+λ)eijλ

∣∣∣∣∣

2

dµdλ ≤ K
n∑

t=1

t−1∑

j=0

(
n∑

k=j

1

δ + k

)2

≤ K
n∑

t=1

(n− t) log2
t

n
≤ Kn2

1∫

0

(1− x) log2 xdx ≤ Kn2. (57)

By the Cauchy inequality the contribution of the other terms in brackets in (56)

can be easily shown to be also bounded by Kn2, to conclude the proof of (55).

Thus, noting that by previous arguments the second term on the right of (53) is

Op (n) ,

1

n log n
Cu1(−γ)xn(θ) →p

∞∑

j=0

E (u10, u2,−j) .

Next, if γ + δ > 1, γ > 1/2, by MR, Hualde (2012) and the continuous mapping

theorem n−(γ+δ)Cu1(−γ)xn(θ) →d BξζA(δ)W (γ), where ζ = (1, 0)T , whereas if δ > 1,

γ = 0, n−δCu1(−γ)xn(θ) →d DA(δ), where for E (r; ·) being W (r; ·) or A (r; ·),

DE(d) = ξTB (1)

1∫

0

Ẽ (r; d) dW T (r)BT (1) ζ.

Collecting all these results, it is straightforward to derive the limiting distribution

of θ̂, by routine application of Theorem 1 of MR, Theorem 1 of Hualde (2012),

the continuous mapping theorem and Theorem 2.2 of Kurtz and Protter (1991)

(see e.g. Proposition 3 of Robinson and Hualde, 2003). In order to derive the

joint limiting distribution of θ̂, ν̂, in view of (10), we need to show (11) and (12).
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Clearly
1

log n
ν̂′(θ) =

1

logn
ν̂′(θ) +

1

log n
(ν̂ ′(θ)− ν̂′(θ)). (58)

First, by a similar analysis to that of (38), the second term in (58) isOp(q
−1
n (γ, δ) log n) =

op (1). Next, by (37), ν̂′ (θ) = (ν − 2ν̂ (θ))Cx(θ)x′(θ)/Cx(θ). By a very similar

derivation to that of Theorem ABCU of Hualde (2006), log−1 nCx(θ)x′(θ)/Cx(θ) →p

−1, so (11) holds as ν̂ (θ) →p ν. Then, noting that in (10) by the rates derived

in RM, ν̂ (θ)− ν is in every circumstance of smaller order than ν̂ ′(θ)(θ̂− θ), (12)

is justified.

Finally, collecting all previous results, we specify Ξ (γ, δ). Define P = BξW (δ)B
ξ
A(δ)−(

BξξA(δ)W (δ)

)2
. Noting that by Theorems 4.1, 4.2, 4.3, 5.1 of RM, Theorem 1 of

Hualde (2012) and the continuous mapping theorem, the first term in Fn (θ) is

of smaller order when γ + δ ≤ 1,

Ξ (γ, δ) = P−1BξW (δ)

∫ π

−π

a (γ;λ) a (δ;−λ) f12 (λ) dλ, if γ + δ < 1;

= P−1BξW (δ)f12 (0) sin (δπ) , if γ > 0, γ + δ = 1;

= P−1BξW (δ)

∞∑

j=0

E (u10, u2,−j) , if γ = 0, δ = 1;

= P−1
(
BξW (δ)B

ξζ
A(δ)W (γ) −BξξA(δ)W (δ)B

ξζ
W (δ)W (γ)

)
, if γ + δ > 1, γ > 1/2;

= P−1
(
BξW (δ)DA(δ) −BξξA(δ)W (δ)DW (δ)

)
, if γ + δ > 1, γ = 0, (59)

to conclude the proof of the theorem.

Appendix B. Technical lemmas

Lemma 1 (Behaviour of Cx(e)x(θ)). Let Assumptions 1, 2 hold. Then, as

n→∞,

sup
I1

1

nδ+
1

2

Cx(e)x(θ) = op (1) , (60)

sup
I2

1

nδ+
1

2

Cx(e)x(θ) = Op (1) , (61)

sup
I3∪I4

1

nδ+c
Cx(e)x(θ) = Op (1) . (62)

Proof. First we show (60). Noting that by results in RM, n−(δ+1/2)Σnt=1xt (θ) =
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Op (1), the result follows on showing

sup
I1

1

nδ+
1

2

n∑

t=1

xt (e) xt (θ) = op (1) , (63)

sup
I1

1

n

n∑

t=1

xt (e) = op (1) . (64)

First, (63) holds on showing

sup
I1

1

nδ+
1

2

∣∣∣∣∣

n∑

t=1

E (xt (e) xt (θ))

∣∣∣∣∣ ≤ Kn−η, (65)

sup
I1

1

nδ+
1

2

∣∣∣∣∣

n∑

t=1

(xt (e) xt (θ)− E (xt (e)xt (θ)))

∣∣∣∣∣ ≤ Kn−η, (66)

where η was introduced when defining I1. Noting that

1

nδ+
1

2

n∑

t=1

xt (e) xt (θ) =
1

nδ+
1

2

(
n−1∑

j=0

aj (c) aj (δ)

n−j∑

l=1

u22,l

+
n−2∑

j=0

n−1∑

k=j+1

aj (c) ak (δ)

n−j∑

l=k−j+1

u2,lu2,l−(k−j)

+
n−2∑

j=0

n−1∑

k=j+1

aj (δ) ak (c)

n−j∑

l=k−j+1

u2,lu2,l−(k−j)

)
, (67)

the proof of (65) is almost immediate by simple application of Stirling’s approx-

imation, noting that supI1 j
c−1 = j−1/2−η and

∑∞

k=1
|E (u2,tu2,t−k)| <∞. Next,

(66) holds by almost identical steps to those in the proof of (2.12) of HR, just

accounting for few minor differences.

Next we show (64). Clearly

1

n

n∑

t=1

xt (e) =
1

n

n−1∑

j=0

aj (c)

n−j∑

l=1

u2,l.
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It can be easily shown that uniformly in j, Σn−jl=1 u2,l = Op
(
n1/2

)
, so

E sup
I1

1

n

n∑

t=1

xt (e) ≤ K
1

n
1

2

sup
I1

n∑

j=1

jc−1 ≤ Kn−η,

to conclude the proof of (60).

The proof of (61) is omitted because it is almost identical to that of (60),

just replacing η by 0, so the bounds of the corresponding terms above become K

(instead of Kn−η).

Finally the proof of (62) is again almost identical to that of (60), (61), so

it is again omitted. The only difference is the different normalization nδ+c (in-

stead of nδ+1/2) but the required result follows straightforwardly noting that

supI3∪I4
(
j
n

)c
=
(
j
n

)1/2
.

Lemma 2. (Behaviour of Cx(e)). Let Assumptions 1, 2 hold. Then, for

arbitrarily large and small positive K, ǫ, respectively, as n→∞,

Pr

(
inf
I1

1

n
Cx(e) > ǫ

)
→ 1, (68)

Pr

(
inf
I2

1

n
Cx(e) > K

)
→ 1, (69)

Pr

(
inf
I3

1

n2c
Cx(e) > K

)
→ 1. (70)

Proof. First we show (68). Clearly n−1Cx(e) = U (c) + Tn (c), where U (c) =

E
(
Σ∞
j=0aj (c) ξTut−j

)2
and

Tn (c) =
1

n

n∑

t=1

x2t (e)−E

(
∞∑

j=0

aj (c) ξTut−j

)2

−
(

1

n

n∑

t=1

xt (e)

)2

,

noting that for c ∈ I1, Σ∞
j=0aj (c) ξTut−j is a covariance stationary process. The

proof of (68) follows on showing that for some τ > 0

inf
I1

U (c) > τ, (71)
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and supI1 |Tn (c)| = op (1). Clearly

U (c) =
1

2π

π∫

−π

∣∣1− eiλ
∣∣−2c ξTB

(
eiλ

)
ΣBT

(
e−iλ

)
ξdλ.

By Assumption 1, there exists φ > 0 such that infλ ξ
TB

(
eiλ

)
ΣBT

(
e−iλ

)
ξ ≥ φ,

so

U (c) ≥ φ

2π

π∫

−π

∣∣1− eiλ
∣∣−2c dλ =

φΓ (1− 2c)

2πΓ2 (1− c)
, (72)

(see, e.g., Brockwell and Davis, 1991, p. 522), where the right side of (72) is

positive for any c ∈ I1, so (71) holds because I1 is compact.

Next, noting (64), (68) would hold on showing

sup
I1

∣∣∣∣∣∣
1

n

n∑

t=1



(
t−1∑

j=0

aj (c)u2,t−j

)2

− E

(
t−1∑

j=0

aj (c) u2,t−j

)2


∣∣∣∣∣∣

= op (1) , (73)

sup
I1

∣∣∣∣∣
1

n

n∑

t=1

t−1∑

j=0

∞∑

k=t

aj (c) ak (c) γj−k

∣∣∣∣∣ = op (1) , (74)

sup
I1

∣∣∣∣∣
1

n

n∑

t=1

∞∑

j=t

∞∑

k=t

aj (c) ak (c) γj−k

∣∣∣∣∣ = op (1) , (75)

which follows by almost identical (but simpler) arguments to those in the proofs

of (2.12), (2.13), (2.14) of HR.

Next we show (69). Clearly ut = B (1) εt+vt−1−vt, where vt =
∑∞

j=0
B∗
j εt−j,

B∗
j =

∑∞

k=j+1
Bk, and by Assumption 1, vt is well defined in the mean square

sense. Noting that aj+1 (c)− aj (c) = aj+1 (c− 1) ,

xt (e) = ξTB (1)
t−1∑

j=0

aj (c) εt−j −
t−1∑

j=0

aj (c− 1) ξTvt−j + at−1 (c) ξTv0.
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Then

Cx(e) ≥
n∑

t=1

(
t−1∑

j=0

aj (c) ξTB (1) εt−j

)2

−2

∣∣∣∣∣ξ
TB (1)

n∑

t=1

t−1∑

j=0

aj (c) εt−j

t−1∑

k=0

ak (c− 1) vTt−kξ

∣∣∣∣∣

−2

∣∣∣∣∣ξ
TB (1)

n∑

t=1

t−1∑

j=0

aj (c) εt−jat−1 (c) vT0 ξ

∣∣∣∣∣

−2

∣∣∣∣∣ξ
T

n∑

t=1

t−1∑

j=0

aj (c− 1) vt−jat−1 (c) vT0 ξ

∣∣∣∣∣− n

(
1

n

n∑

t=1

xt (e)

)2

= (b1)− (b2)− (b3)− (b4)− (b5) .

The proof of (69) follows on showing that infI2 n
−1 (b1) can be made arbitrarily

large on setting η arbitrarily close to zero, and supI2 n
−1 (bi) = Op (1), i = 2, 3, 4,

given that, as in the proof of Lemma 1, supI2 n
−1 (b5) = Op (1). First, noting

that da2j (c) /dc = 2 (ψ (j + c)− ψ (c)) a2j (c), so a2j (c) is strictly increasing in I2
(because ψ (·) is strictly increasing), implying that

inf
I2

1

n
(b1) ≥ ξTB (1)

n

n∑

t=1

t−1∑

j=0

a2j (1/2− η) εt−jε
T
t−jB

T (1) ξ (76)

−2

n
sup
I2

∣∣∣∣∣ξ
TB (1)

n−2∑

j=0

n−1∑

k=j+1

aj (c) ak (c)

n−j∑

l=k−j+1

εlε
T
l−(k−j)B

T (1) ξ

∣∣∣∣∣ .

Then, by an almost identical treatment to that of (2.24) of HR, it can be shown

that

inf
I2

1

n
(b1) ≥ ξTB (1) ΣBT (1) ξ

Γ (2η)

Γ2
(
1
2

+ η
) − sup

I2

|dn (c)| , (77)

where supI2 |dn (c)| = Op (1), so the result holds because the first term on the

36



right of (77) can be made arbitrarily large by setting η close enough to zero. Next

(b2) ≤ 2

∣∣∣∣∣ξ
TB (1)

n−1∑

j=0

aj (c) aj (c− 1)

n−j∑

l=1

εlv
T
l ξ

∣∣∣∣∣

+2

∣∣∣∣∣

n−1∑

j=1

aj (c− 1)

j−1∑

k=0

ak (c)

n−j∑

l=1

ξTB (1) εl+j−kv
T
l ξ

∣∣∣∣∣

+2

∣∣∣∣∣

n−1∑

j=1

aj (c)

j−1∑

k=0

ak (c− 1)

n−j∑

l=1

ξTB (1) εlv
T
l+j−kξ

∣∣∣∣∣
= (b21) + (b22) + (b23) .

It can be easily shown that, uniformly in j, n, E
∣∣∣
∑n−j

l=1
ξTB (1) εlv

T
l ξ
∣∣∣ = O (n),

so that

E sup
I2

1

n
(b21) ≤ K

n∑

j=1

j−2 ≤ K.

Next, it can be easily shown that, uniformly in j, k, n, E
∣∣∣
∑n−j

l=1
ξTB (1) εl+j−kv

T
l ξ
∣∣∣ =

O
(
n1/2

)
, so

E sup
I2

1

n
(b22) ≤

K

n
1

2

n∑

j=1

j−
3

2

n∑

k=1

k−
1

2 ≤ K.

Regarding (b23), we show first that for any j, k,

E

∣∣∣∣∣

n−j∑

l=1

ξTB (1) εlv
T
l+j−kξ

∣∣∣∣∣ ≤ K
(
n
∥∥B∗

j−k

∥∥ + n
1

2

)
. (78)

Now

E

(
n−j∑

l=1

ξTB (1) εlv
T
l+j−kξ

)
= E

(
n−j∑

l=1

∞∑

r=0

ξTB (1) εlε
T
l+j−k−rB

∗T
r ξ

)

= (n− j) ξTB (1) ΣB∗T
j−kξ ≤ Kn

∥∥B∗
j−k

∥∥ .
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Next

V ar

(
n−j∑

l=1

ξTB (1) εlv
T
l+j−kξ

)
=

n−j∑

l=1

n−j∑

m=1

{
E
(
ξTB (1) εlε

T
mB

T (1) ξ
)
E
(
ξTvm+j−kv

T
l+j−kξ

)

+ E
(
ξTB (1) εlv

T
m+j−kξ

)
E
(
ξTB (1) εmv

T
l+j−kξ

)
+ κ

}
,

(79)

where κ is the fourth cumulant of ξTB (1) εl, ξTB (1) εm, ξTvl+j−k, ξTvm+j−k.

Clearly, the contribution of the first and third terms on the right of (79) is

bounded by Kn. Regarding the contribution of the second term, this is equal to

n−j∑

l=1

(
E
(
ξTB (1) εlv

T
l+j−kξ

))2
+2

n−j∑

l=2

l−1∑

m=1

E
(
ξTB (1) εlv

T
m+j−kξ

)
E
(
ξTB (1) εmv

T
l+j−kξ

)
.

(80)

The first term of (80) equals (n− j)
(
ξTB (1) ΣB∗T

j−kξ
)2
, whereas the second is

2

n−j∑

l=2

l−1∑

m=1

ξTB (1) ΣB∗T
m−l+j−kξξ

TB (1) ΣB∗T
l−m+j−kξ1 (m− l + j − k ≥ 0)

= 2

n−j−1∑

s=1

(n− j − s) ξTB (1) ΣB∗T
−s+j−kξξ

TB (1) ΣB∗T
s+j−kξ1 (−s + j − k ≥ 0) .

Thus, noting that ‖B∗
s‖ is uniformly bounded, (80) is bounded by

Kn

(
1 +

∞∑

s=0

∥∥B∗
s+j−k

∥∥∥∥B∗
−s+j−k1 (−s + j − k ≥ 0)

∥∥
)
≤ Kn

(
1 +

∞∑

s=0

‖B∗
s‖2

)
≤ Kn,

to conclude the proof of (78). Then

E sup
I2

1

n
(b23) ≤ K

n∑

j=1

j−
1

2

j∑

k=1

k−
3

2

∥∥B∗
j−k

∥∥ +
K

n
1

2

n∑

j=1

j−
1

2

j∑

k=1

k−
3

2 . (81)

The second term on the right of (81) is clearly O (1), whereas noting that by
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Assumption 1 (ii), B∗
j = O (j−̺), where ̺ > 1/2, the first is bounded by

K
n∑

j=1

j−
1

2

[j/2]∑

k=1

k−
3

2 (j − k)−̺ + K
n∑

j=1

j−
1

2

j−1∑

k=[j/2]+1

k−
3

2 (j − k)−̺

≤ K
n∑

j=1

j−
1

2
−̺

∞∑

k=1

k−
3

2 + K
n∑

j=1

j−2
j−1∑

k=[j/2]+1

(j − k)−̺

≤ K + K
n∑

j=1

j−1−̺ ≤ K,

to conclude that E supI2 n
−1 (b2) = O (1). Next, it is easy to show that

E sup
I2

1

n
(b3) ≤

K

n

n∑

t=1

t∑

j=1

j−
1

2 t−
1

2 = O (1) .

Finally,

E sup
I2

1

n
(b4) ≤

K

n

n∑

t=1

t∑

j=1

j−
3

2 t−
1

2 = O
(
n−

1

2

)
,

to conclude the proof of (69).

Next the proof of (70) follows on showing that infI3 n
−2c (b1) can be made

arbitrarily large on setting η arbitrarily close to zero, and supI3 n
−2c (bi) = Op (1),

i = 2, 3, 4. First, by almost identical arguments to those in the proof of (2.30) of

HR, it can be shown that for an arbitrarily largeK, Pr
(
infI3

1
n2c

(b1) > K
)
→ 1 as

n→∞, by setting η arbitrarily close to zero. Next, the proof of supI3 n
−2c (bi) =

Op (1), is almost identical to the corresponding one for I2, to complete the proof

of the lemma.

Lemma 3. (Approximation of Pn (c)). Let Assumptions 1, 2 hold. Then, as

n→∞,

Pn (c) = Xn (c) + rn (c) = X1n (c) + X2n (c) + X3n (c) + rn (c) , (82)
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where

X1n (c) = ψ2 (c)
(
Cf(δ)Cf(c) − C2

f(δ)f(c)

)
,

X2n (c) = 2ψ (c)
(
Cf(δ)Cf(c)fn(c) − Cf(δ)f(c)Cf(δ)fn(c)

)
,

X3n (c) = Cf(δ)Cfn(c) − C2
f(δ)fn(c),

where

ft,n (c) =
1

nc

t−1∑

j=0

aj (c)u2,t−j

n∑

k=j

1

k + c
,

and

sup
Iε

|rn (c)| = op (1) . (83)

Proof. Noting f ′t (c) = gt (c) − r (c) ft (c) and the recurrence formula for the

digamma function, by summation by parts

f ′t (c) = bt−1 (c) ft (c)− ht (c) , (84)

where

bt−1 (c) = ψ (t− 1 + c)− r (c) , ht (c) =
1

nc

t−2∑

j=0

1

j + c

j∑

i=0

ai (c)u2,t−i.

First, we show that

n∑

t=1

(f ′t (c))
2

= b2n−1 (c)
n∑

t=1

f 2t (c)−2bn−1 (c)
n∑

t=1

ft (c) ft,n (c) +
n∑

t=1

f 2t,n (c)+ op (1) ,

(85)

uniformly in c ∈ Iε. By (84), using the summation by parts formula repeatedly,

n∑

t=1

(f ′t (c))
2

= b2n−1 (c)
n∑

t=1

f 2t (c)− (bn−1 (c) + bn−2 (c))
n−1∑

t=1

1

t− 1 + c

t∑

j=1

f2j (c)

+
n−2∑

t=1

(
1

t + c
+

1

t− 1 + c

) t∑

s=1

1

s− 1 + c

s∑

j=1

f2j (c) +
n∑

t=1

h2t (c)

−2bn−1 (c)
n∑

t=1

ft (c)ht (c) + 2
n−1∑

t=1

1

t− 1 + c

t∑

j=1

fj (c) hj (c) . (86)
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Noting that

n−1∑

t=1

1

t− 1 + c

t∑

j=1

fj (c)hj (c) =
n−1∑

t=1

ft (c) ht (c)
n−2∑

k=t−1

1

k + c

=
n∑

t=1

ft (c) ht (c)
n∑

k=t−1

1

k + c
+ op (1) ,

n−2∑

t=1

(
1

t + c
+

1

t− 1 + c

) t∑

s=1

1

s− 1 + c

s∑

j=1

f 2j (c) =
n−2∑

t=1

f 2t (c)
n−3∑

k=t−1

1

k + c

n−2∑

j=t−1

1

j + c

=
n∑

t=1

f 2t (c)

(
n∑

k=t−1

1

k + c

)2

+ op (1) ,

uniformly in c ∈ Iε, and supc∈Iε |bn−1 (c)− bn−2 (c)| ≤ Kn−1, the right hand side

of (86) is

b2n−1 (c)
n∑

t=1

f 2t (c)− 2bn−1 (c)

(
n−1∑

t=1

1

t− 1 + c

t∑

j=1

f2j (c) +
n∑

t=1

ft (c) ht (c)

)

+
n∑

t=1

(
ht (c) + ft (c)

n∑

k=t−1

1

k + c

)2

+ op (1) ,

uniformly in c ∈ Iε. Now, noting that for any sequence zt

n−1∑

t=1

1

t− 1 + c

t∑

j=1

zjfj (c)+
n∑

t=1

ztht (c) =
n∑

t=1

ztft,n (c)−
(

1

n + c
+

1

n− 1 + c

) n∑

t=1

ztft (c) ,

(see (37) in Hualde, 2012), and also that

ht (c) + ft (c)
n∑

k=t−1

1

k + c
= ft,n (c) ,

(85) holds. Next, by very similar arguments is is simple to show that

(
n∑

t=1

f ′t (c)

)2

=

(
bn−1 (c)

n∑

t=1

ft (c)−
n∑

t=1

ft,n (c)

)2

+ op (1) ,
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uniformly in c ∈ Iε, so that

Cf ′(c) = b2n−1 (c)Cf(c) − 2bn−1 (c)Cf(c)fn(c) + Cfn(c) + op (1) ,

uniformly in c ∈ Iε. By almost identical arguments, it can be shown that,

uniformly in c ∈ Iε,

Cf(δ)f ′(c) = bn−1 (c)Cf(δ)f(c) − Cf(δ)fn(c) + op (1) ,

so that

Pn (c) = b2n−1 (c)
(
Cf(δ)Cf(c) − C2

f(δ)f(c)

)
− 2bn−1 (c)

(
Cf(δ)Cf(c)fn(c) − Cf(δ)f(c)Cf(δ)fn(c)

)

+Cf(δ)Cfn(c) − C2
f(δ)fn(c) + op (1) ,

uniformly in c ∈ Iε. Then, noting (31), (32), the lemma is established on showing

that

sup
Iε

|ψ (n− 1 + c)− logn| = o (1) . (87)

Clearly

sup
Iε

|ψ (n− 1 + c)− logn| ≤ sup
Iε

|ψ (n− 1 + c)− ψ (n)|+ |ψ (n)− log n| .

Now, ψ (n)− logn = o (1), whereas (see, e.g., Gradshteyn and Ryzhik, 2000, p.

893)

|ψ (n− 1 + c)− ψ (n)| =

∣∣∣∣∣

∞∑

k=0

(
1

n + k
− 1

n− 1 + c + k

)∣∣∣∣∣

≤ |c− 1|
∞∑

k=0

1

(n− 1 + c + k) (n + k)
,

so

sup
Iε

|ψ (n− 1 + c)− ψ (n)| ≤ K
∞∑

k=1

1

k (n + k)
= K

1

n
(ψ (n + 1)− ψ (1)) = o (1) ,

(88)

the equality in (88) following again by Gradshteyn and Ryzhik (2000, pp. 893-

94), to conclude the proof of (87).
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Lemma 4. Let Assumptions 1, 2 hold. Then, as n → ∞ uniformly in t =

1, ..., n,

sup
c∈Inτ

∣∣∣x(i)t (e)− x(i)t (θ)
∣∣∣ = Op(n

δ−1/2−τ logi+1 n), i = 0, 1, 2, (89)

where Inτ =
[
δ − ε

nτ
, δ + ε

nτ

]
, x

(0)
t (e) = xt (e), x

(1)
t (e) = x′t (e), x

(2)
t (e) = x′′t (e).

Proof. First, we consider the result for i = 0. By the mean value theorem, for

t > 1 (note that for t = 1 the difference below is zero)

xt (e)− xt (θ) = (c− δ)
t−1∑

j=1

a′j (c) u2,t−j , (90)

where |c− δ| ≤ |c− δ|. Then, by summation by parts, the right side of (90) is

(c− δ) a′t−1 (c)
t−1∑

j=1

u2,t−j − (c− δ)
t−2∑

j=1

(a′j+1 (c)− a′j (c))

j∑

i=1

u2,t−i, (91)

where for t = 2 the second term in (91) is identically zero. Noting (26), the first

term in (91) is bounded in absolute value by

|ψ (t− 1 + c)− ψ (c)| |c− δ| |at−1 (c)|
∣∣∣∣∣

t−1∑

j=1

u2,t−j

∣∣∣∣∣ ≤ K |c− δ| tc−1 log t

∣∣∣∣∣

t−1∑

j=1

u2,t−j

∣∣∣∣∣ ,

by Lemma D.1 of Robinson and Hualde (2003). Then, the supremum over Inτ of

the absolute value of the first term in (91) is bounded by

K log t sup
Inτ

|c− δ| tδ−1+ ε

nτ

∣∣∣∣∣

t−1∑

j=1

u2,t−j

∣∣∣∣∣ .

Noting that uniformly in t, t
ε

nτ ≤ n
ε

nτ → 1 as n → ∞, and also that under

Assumption 1,
∑t−1
j=1 u2,t−j = Op

(
t1/2

)
, the first term of (91) is, uniformly in t,

Op
(
nδ−1/2−τ log n

)
.
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For t > 2, the second term of (91) is bounded in absolute value by

|c− δ|
t−2∑

j=1

|ψ (j + 1 + c)− ψ (j + c)| |aj+1(c)|
∣∣∣∣∣

j∑

i=1

u2,t−i

∣∣∣∣∣

+ |c− δ|
t−2∑

j=1

|ψ (j + c)− ψ (c)| |aj+1(c)− aj(c)|
∣∣∣∣∣

j∑

i=1

u2,t−i

∣∣∣∣∣ . (92)

Noting (D.2), (D.7), (D.9) in Robinson and Hualde (2003),
∑j

i=1
u2,t−i = Op

(
j1/2

)
,

uniformly in t, by the mean value theorem the supremum over Inτ of (92) is

bounded by

Kn−τ
t−2∑

j=1

jδ+
ε

nτ
−2 log j

∣∣∣∣∣

j∑

i=1

u2,t−i

∣∣∣∣∣ = Op
(
nδ−1/2−τ logn

)
,

uniformly in t, by a similar analysis to that of the first term of (91), (89) being

justified for i = 0.

The proof of (89) for i = 1 is very similar to that for i = 0. For t > 2

(otherwise the difference below is zero)

x′t (e)− x′t (θ) = (c− δ)
t−1∑

j=2

a′′j (c) u2,t−j ,

with the slight abuse of notation that the intermediate point c could differ from

that in the proof for i = 0. As in (D.5) of Robinson and Hualde (2003), it is

immediate to show that

a′′j (c) =
(
ψ′ (j + c)− ψ′ (c) + (ψ (j + c)− ψ (c))2

)
aj (c) , (93)

so the proof follows as in the i = 0 case noting that the term ψ2 (j + c) aj (c)

dominates in (93), and ψ2 (j + c) contributes a further log n factor.

Similarly, for t > 3 (otherwise the difference below is zero)

x′′t (e)− x′′t (θ) = (c− δ)
t−1∑

j=3

a′′′j (c) u2,t−j,

where the dominant term in a′′′j (c) is ψ3 (j + c) aj (c), so (89) follows immediately
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for i = 2.

The proofs of the following two lemmas are omitted as they are straightfor-

ward extensions of Propositions 1 and 2 of Hualde (2012), respectively.

Lemma 5. (Approximation of Fn (θ)). Let Assumptions 1, 2 hold. Then, as

n→∞,

Fn (θ) = 2ν
(
Cu1(−γ)x(θ)Cx(θ)xn(θ) − Cu1(−γ)xn(θ)Cx(θ)

)
+ op

(
n2δgn

)
. (94)

Lemma 6. (Approximation of Hn (θ)). Let Assumptions 1, 2 hold. Then, as

n→∞,

Hn (θ) = 2ν2
(
Cx(θ)Cxn(θ) − C2

x(θ)xn(θ)

)
+ op

(
n4δ

)
.
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Table 1. Monte Carlo bias of θ̂ for ν = 1
n = 64 n = 128 n = 256

γ δ\ρ .5 0 −.5 .5 0 −.5 .5 0 −.5

0 .6 .127 .003 -.149 .109 .001 -.120 .094 .000 -.098

0 1.2 .041 .000 -.036 .018 .000 -.017 .008 .000 -.008

0 2 -.001 .000 .001 .000 .000 .000 .000 .000 .000

.4 .6 .058 .003 -.132 .054 .001 -.106 .051 .001 -.093

.4 1.2 .062 -.002 -.064 .037 -.001 -.037 .022 -.001 -.022

.8 2 .014 -.002 -.016 .006 -.001 -.007 .003 .000 -.003

Notes: Monte Carlo bias over 5,000 replications of θ̂ where in (2), (3) µ = 0, ν = 1,

θ = 0, ut is a Gaussian white noise with V ar (u1t) = V ar (u2t) = 1 and correlation ρ

Table 2. Monte Carlo SD of θ̂ for ν = 1
n = 64 n = 128 n = 256

γ δ\ρ .5 0 −.5 .5 0 −.5 .5 0 −.5

0 .6 .050 .059 .063 .033 .033 .038 .023 .019 .025

0 1.2 .031 .023 .026 .014 .010 .012 .006 .004 .005

0 2 .005 .005 .005 .001 .001 .001 .000 .000 .000

.4 .6 .070 .122 .222 .052 .082 .115 .039 .060 .076

.4 1.2 .044 .048 .046 .025 .026 .025 .015 .014 .014

.8 2 .026 .030 .026 .011 .013 .011 .005 .005 .005

Notes: Monte Carlo SD over 5,000 replications of θ̂ where in (2), (3) µ = 0, ν = 1,

θ = 0, ut is a Gaussian white noise with V ar (u1t) = V ar (u2t) = 1 and correlation ρ

Table 3. Monte Carlo bias of θ̂ for ν = 10
n = 64 n = 128 n = 256

γ δ\ρ .5 0 −.5 .5 0 −.5 .5 0 −.5

0 .6 .014 .000 -.014 .012 .000 -.012 .010 .000 -.010

0 1.2 .004 .000 -.004 .002 .000 -.002 .001 .000 -.001

0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000

.4 .6 .008 .000 -.008 .007 .000 -.007 .006 .000 -.007

.4 1.2 .006 .000 -.006 .004 .000 -.004 .002 .000 -.002

.8 2 .001 .000 -.002 .001 .000 -.001 .000 .000 .000

Notes: Monte Carlo bias over 5,000 replications of θ̂ where in (2), (3) µ = 0, ν = 10,

θ = 0, ut is a Gaussian white noise with V ar (u1t) = V ar (u2t) = 1 and correlation ρ
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Table 4. Monte Carlo SD of θ̂ for ν = 10
n = 64 n = 128 n = 256

γ δ\ρ .5 0 −.5 .5 0 −.5. .5 0 −.5

0 .6 .005 .006 .006 .004 .003 .004 .002 .002 .002

0 1.2 .003 .002 .003 .001 .001 .001 .001 .000 .001

0 2 .001 .001 .001 .000 .000 .000 .000 .000 .000

.4 .6 .009 .011 .010 .007 .008 .007 .005 .006 .005

.4 1.2 .005 .005 .004 .003 .003 .003 .001 .001 .001

.8 2 .003 .003 .003 .001 .001 .001 .001 .001 .000

Notes: Monte Carlo SD over 5,000 replications of θ̂ where in (2), (3) µ = 0, ν = 10,

θ = 0, ut is a Gaussian white noise with V ar (u1t) = V ar (u2t) = 1 and correlation ρ

Table 5. Monte Carlo bias of ν̂ for ν = 1
n = 64 n = 128 n = 256

γ δ\ρ .5 0 −.5 .5 0 −.5 .5 0 −.5

0 .6 .455 .005 -.371 .436 .001 -.348 .418 .000 -.328

0 1.2 .120 .000 -.094 .064 .000 -.054 .033 .000 -.030

0 2 -.006 .000 .005 -.002 .000 .002 -.001 .000 .001

.4 .6 .496 .003 -.475 .487 -.003 -.465 .480 -.005 -.457

.4 1.2 .234 -.001 -.187 .161 -.001 -.134 .107 -.002 -.095

.8 2 .049 -.001 -.047 .024 -.001 -.024 .012 -.001 -.012

Notes: Monte Carlo bias over 5,000 replications of ν̂ where in (2), (3) µ = 0, ν = 1,

θ = 0, ut is a Gaussian white noise with V ar (u1t) = V ar (u2t) = 1 and correlation ρ

Table 6. Monte Carlo SD of ν̂ for ν = 1
n = 64 n = 128 n = 256

γ δ\ρ .5 0 −.5 .5 0 −.5 .5 0 −.5

0 .6 .111 .118 .095 .080 .081 .066 .059 .054 .047

0 1.2 .090 .069 .064 .047 .036 .036 .024 .018 .020

0 2 .016 .016 .016 .005 .005 .005 .002 .001 .002

.4 .6 .142 .170 .154 .115 .135 .118 .092 .110 .094

.4 1.2 .139 .130 .107 .096 .088 .074 .064 .059 .052

.8 2 .084 .090 .074 .043 .047 .039 .022 .023 .021

Notes: Monte Carlo SD over 5,000 replications of ν̂ where in (2), (3) µ = 0, ν = 1,

θ = 0, ut is a Gaussian white noise with V ar (u1t) = V ar (u2t) = 1 and correlation ρ
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Table 7. Monte Carlo bias of ν̂, ν̃θ for ν = 1, γ = 0, δ = 1, θ = 0, .1,−.1

n = 64 n = 128 n = 256

τ ρ .25 0 −.75 .25 0 −.75 .25 0 −.75

ν̂ .163 .003 -.316 .112 .000 -.237 .074 -.001 -.172

.5 ν̃0 .029 -.001 -.083 .014 .000 -.043 .007 .000 -.022

ν̃.1 -.226 -.241 -.280 -.286 -.291 -.306 -.337 -.339 -.345

ν̃−.1 .305 .253 .101 .369 .337 .244 .448 .429 .376

ν̂ .111 .001 -.244 .077 .000 -.179 .051 -.001 -.128

1 ν̃0 .021 .000 -.059 .010 .000 -.030 .005 .000 -.015

ν̃.1 -.230 -.241 -.269 -.287 -.291 -.302 -.337 -.339 -.343

ν̃−.1 .290 .253 .147 .359 .337 .272 .442 .429 .393

ν̂ .077 .001 -.183 .053 .000 -.133 .036 -.001 -.094

2 ν̃0 .015 .000 -.042 .007 .000 -.021 .004 .000 -.011

ν̃.1 -.233 -.240 -.262 -.289 -.290 -.299 -.338 -.339 -.342

ν̃−.1 .278 .253 .179 .353 .337 .291 .438 .430 .404

Notes: Monte Carlo bias over 5,000 replications of ν̂, ν̃θ, where in (2), (3) µ = 0, ut

is a Gaussian white noise with V ar (u1t) = 1, V ar (u2t) = τ and correlation ρ

Table 8. Monte Carlo SD of ν̂, ν̃θ for ν = 1, γ = 0, δ = 1, θ = 0, .1,−.1

n = 64 n = 128 n = 256

τ ρ .25 0 −.75 .25 0 −.75 .25 0 −.75

ν̂ .141 .125 .102 .086 .072 .073 .051 .041 .053

.5 ν̃0 .075 .072 .083 .037 .036 .042 .019 .019 .021

ν̃.1 .098 .086 .055 .070 .066 .050 .060 .057 .050

ν̃−.1 .119 .137 .196 .111 .125 .164 .120 .127 .151

ν̂ .097 .088 .078 .059 .051 .057 .035 .029 .041

1 ν̃0 .053 .051 .058 .026 .026 .030 .013 .013 .015

ν̃.1 .085 .076 .051 .067 .063 .052 .058 .057 .052

ν̃−.1 .108 .122 .167 .110 .120 .149 .121 .126 .143

ν̂ .067 .062 .060 .041 .036 .044 .024 .021 .031

2 ν̃0 .038 .036 .041 .019 .018 .021 .009 .009 .011

ν̃.1 .077 .070 .051 .064 .062 .054 .058 .056 .053

ν̃−.1 .103 .114 .147 .110 .118 .138 .122 .125 .137

Notes: Monte Carlo SD over 5,000 replications of ν̂, ν̃θ, where in (2), (3) µ = 0, ut is

a Gaussian white noise with V ar (u1t) = 1, V ar (u2t) = τ and correlation ρ
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Table 9. Empirical example

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

δ̂ 1.88 1.92 1.98 2.00 2.03 2.04 2.07 2.03 1.94 1.80

δ̂ + θ 1.77 1.84 1.81 1.68 1.73 1.66 1.65 1.67 1.64 1.53

τ̂hs -.605 -.501 -1.02 -1.96 -1.89 -2.44 -2.73 -2.45 -2.10 -2.02

X∗∗ .715 1.12 1.33 2.31 3.33 5.66 7.04 6.81 6.81 7.70

n′ 80 79 78 77 76 75 74 73 72 71

ν̂ .651 .652 .701 .679 .653 .652 .665 .667 .688 .660

θ̂ -.329 -.329 -.324 -.310 -.296 -.287 -.272 -.271 -.286 -.309

ν̂µ0 .579 .579 .588 .625 .657 .676 .709 .711 .682 .626

θ̂µ0 -.327 -.327 -.323 -.308 -.296 -.289 -.278 -.278 -.285 -.304

Notes: δ̂, δ̂ + θ: local Whittle estimates of the memories of the observables ht, st,

respectively (bandwidths: m1 = 16, mi+1 = mi + 1); τ̂hs: Robinson and Yajima’s

(2002) test for equality of orders of integration (bandwidths: m1 = 16,

mi+1 = mi + 1); X∗∗: Robinson’s (2008) test statistic for the null of no cointegration

(bandwidths: m1 = 26, mi+1 = mi + 1); n′: sample size; ν̂, θ̂: estimates of the long

run parameters (model with constant); ν̂µ0, θ̂µ0: estimates of the long run parameters

(model without constant)
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