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1. FORECAST model diagram
The ecosystem management simulation model FORECAST (Kimmins et al., 1999) has been used as a long-term management evaluation tool in several types of forest ecosystem (e.g., Morris et al., 1997; Seely et al., 2002; Wei et al., 2000, 2003; Welham et al., 2002), including tropical and sub-tropical plantations (Bi et al., 2007; Blanco and González, 2010). Evaluation exercises have demonstrated the reliability of this model (Blanco et al., 2007; Blanco & González, 2010; Seely et al., 2008). FORECAST was specifically designed to examine the impacts of different management strategies or natural disturbance regimes on long-term site productivity. The projection of stand growth and ecosystem dynamics is based on a representation of the rates of key ecological processes regulating the availability of, and competition for, light and nutrient resources (Figure S1). FORECAST was specifically designed to examine the impacts of different management strategies or natural disturbance regimes on long-term site productivity. FORECAST performs most of its calculations at the stand level but includes a submodel that disaggregates stand-level productivity into the growth of individual stems with user-inputted information on stem size distributions at different stand ages. Top height and diameter at breast height (DBH) are calculated for each stem and used in a taper function to calculate total and individual gross and merchantable volumes.
2. Model calibration
The majority of data for model calibration were derived from published studies from sites with climates similar to that of the central area of Chinese-fir plantations in Fujian and Hunan provinces. Given the fact that the data come from several studies, care was taken to ensure that selected data were from comparable sites. The input data were from sites covering the observed range of Chinese-fir plantation growth, qualitatively described as very poor, medium and very good. The sites were scaled quantitatively as 17, 21 and 27 (from poor to good, based on top height in meter at age 50 years) to represent a relative index of tree growth required for extrapolation within the model. We assume in these simulations that the range in tree growth data reflects primarily the range in site nutrient availability within the climatic area from which the data came. 
Data describing nutrient inputs in precipitation and slope seepage, mineral soil cation and anion exchange capacities, humus mass, nutrient concentrations in litterfall, litter decomposition rates, etc. were derived from Liu et al. (1991), Zhou et al. (1991), Tian and Zhao (1989), Tian et al. (1989), Tian (1994), Liao et al. (1999, 2000), Huang et al. (2000), Ding et al. (1999), Ding and Chen (1995), and Yang et al. (2000). The tree data on biomass, mortality and stand density, tree height and canopy height, nutrient concentrations of live tissues and other data were based on values reported by Pan et al. (1983), Wu (1984), Shao (1992),  Yang et al. (1999), Xiao et al. (1999), Lin et al. (1996), Liu et al. (1991), Tian et al. (1989), Tian (1994), Zhong and Hsiung (1993) and  Zhou (1994, 1999) for similar Chinese-fir plantations. 
Data for herb and shrub biomass, height, tissue nutrient concentrations and other relevant data came from Fan et al. (2001), Lin et al. (2001), Xiang et al. (2003) and Yan et al. (2003). 
Table S1 provides the values for the most important parameters used in the detailed field data on belowground minor vegetation biomass were not available, and were thus estimated from aboveground biomass by using the aboveground/belowground biomass ratios reported by Liao et al. (1999). The calibration data set used in this is an update of Bi et al.’s (2007) original calibration. Bi et al.’s (2007) original dataset was developed for a specific site in Fujian province. For this work we have updated the dataset to represent a wider variety of site qualities by updating the nutrient concentration in the Chinese fir tissues and updating the litter decomposition rates with data from more field studies (Table S1).
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Figure S1. A schematic representation of the ecosystem compartments and transfer pathways represented in FORECAST (adapted from Kimmins et al., 1999).

Table S1. Values used to calibrate FORECAST parameters related to Chinese-fir. Decomposition rates indicate the mass loss in one year as a fraction of the initial mass at that year. See text for list of bibliographical sources for model calibration.

	Parameter
	Unit
	Rich site
	Poor site

	Chinese fir parameters
	
	
	

	Nitrogen concentration in needles young / old / dead 
	%
	1.53 / 1.36 / 1.13
	1.21 / 1.11 / 0.93

	Nitrogen concentration in stem sapwood / heartwood
	%
	0.14 / 0.03
	0.12 / 0.03

	Nitrogen concentration in bark live / dead
	%
	0.44 / 0.27
	0.37 / 0.24

	Nitrogen concentration in branches live / dead
	%
	0.67 / 0.52
	0.55 / 0.47

	Nitrogen concentration in root sapwood / heartwood
	%
	0.37 / 0.06
	0.35 / 0.06

	Nitrogen concentration in fine roots live / dead
	%
	1.17 / 0.97
	0.96 / 0.79

	Shading by maximum foliage biomass
	% of full light
	8
	30

	Soil parameters
	
	
	

	Soil volume occupied at maximum fine root biomass
	%
	100
	95

	Efficiency of N root capture 
	%
	98
	100

	Retention time for young / old foliage / dead branches
	years
	1 / 2 / 40
	1 / 2 / 40

	Fine roots turnover
	Year-1
	0.95
	1.35

	Nitrogen concentration in slow / fast humus
	%
	2.75 / 1.20
	2.75 / 1.20

	Decomposition rate slow / fast humus
	% year-1
	0.17 / 3.00
	0.17 / 3.00

	CEC soil (CEC humus) / AEC 3
	kg N ha-1
	90.0 (0.2) / 7.0
	70.0 (0.2) / 5.0

	Decomposition rates
	
	

	Sapwood (by litter age)
	% year-1
	1-10 years (0.4); 11-15 years (10.0); 16-25 years (15.0); 25-40 years (10.0); >40 years (2.0)

	Heartwood
	% year-1
	1-3 years (0.1); 4-15 years (2.0); 15-20 years (12.0); 20-40 years (9.0); >40 years (2.0)

	Bark
	% year-1
	1-5 years (2.0); 6-20 years (12.0); 20-40 years (20.0); >40 years (4.0)

	Branches and large roots
	% year-1
	1-5 years (10.0); 6-10 years (45.0); 11-15 years (35.0); >15 years (4.0)

	Needles (poor site)
	% year-1
	1-2 years (20.0); 3-5 years (30.0); 6-10 years (40.0); >10 years (2.0)

	Needles (good site)
	% year-1
	1-2 years (27.0); 3-5 years (30.0); 6-10 years (40.0) >10 years (3.0)

	Fine roots
	% year-1
	1-2 years (30.0); 3-4 years (50.0); >4 years (9.0)


3. Model evaluation

Data to evaluate FORECAST performance for Chinese fir plantations in SE China were obtained from Tian (2003) and Rong et al. (2008), who compiled data from chronosequences of plantations in the area planted in sites of different quality. For our purposes we used the data described for a good site (27 m dominant height at stand age 50 years) and in areas with low levels of N deposition (5 kg ha-1 y-1), assuming that this is the historical level of N deposition in which the forests described by Tian (2003) and Rong et al. (2008) grew. To assess the performance of FORECAST relative to field observations, data pairs of observed vs. predicted were subjected to graphical comparisons, assessments of average and absolute biases, and measures of goodness-of-fit (Blanco et al., 2007). A linear regression of predicted vs. observed values was fitted to calculate the coefficient of determination (r2). In addition, two different indices were calculated. The first was Theil’s inequality coefficient (Theil, 1966):
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where Di is the difference between Observedi  and Predictedi, and n is the number of data pairs. U can assume values of 0 and greater. If U = 0 then the model produces perfect predictions. If U = 1 the model produces predictions of system behaviour that are not better than assuming the system does not change. If U > 1, then the predictive power of the model is worse than the no-change prediction. The second index was modelling efficiency (ME) (Vanclay and Skovsgaard, 1997):
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This statistic provides a simple index of performance on a relative scale, where ME = 1 indicates a perfect fit, ME = 0 reveals that the model is no better than a simple average, while negative values indicate poor performance. Finally, Reynolds (1984) critical error e* was calculated for two different confidence levels. This error can be interpreted as the smallest error level, in absolute terms, which will lead to the acceptance of the null hypothesis (i.e. that the model is within e* units of the true value). If e* is lower than the accuracy level defined by the model user (the minimum acceptable difference between observed and modelled values), then the model is accepted as suitable for the model user’s needs. All statistical analyses were carried out using JMP version 5.0.1.2 from SAS Institute.
All the indices of model performance indicated that FORECAST produced acceptable predictions (Table S2). Model predictions were better for the first half of the rotation (until year 25), after which there was a slight tendency to underestimate DBH, aboveground biomass and forest litter mass (Figure S2). Reynold’s critical values were low, less than 10% of the maximum value of all variables except forest floor litter mass, for which the values were 20% and 16% of the maximum mass for confidence levels of 95% and 80%, respectively.  
Table S2. Indices of FORECAST performance for simulations of four variables compared with field data by Tian (2003) and Rong et al. (2008). e*: value of Reynolds (1984) critical error at two different levels of confidence (95% and 80%).
	Measurement of 

model performance
	Top height
	Dominant DBH
	Aboveground 

biomass
	Forest floor 

litter mass

	Average bias
	0.66 m
	-0.47 cm
	-5.89 Mg ha-1
	0.01 Mg ha-1

	Mean absolute deviation
	1.01 m
	0.98 cm
	11.38 Mg ha-1
	0.59 Mg ha-1

	r2
	0.97
	0.96
	0.95
	0.82

	Theil’s inequality coefficient
	0.07
	0.07
	0.13
	0.21

	Modelling efficiency
	0.96
	0.92
	0.95
	0.85

	e* (α = 0.05)
	1.63 m
	1.69 m
	21.91 Mg ha-1
	1.03 Mg ha-1

	e* (α = 0.20)
	1.23 m
	1.27 m
	15.94 Mg ha-1
	0.78 Mg ha-1
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Figure S2. Comparison between simulated values of four variables and field values reported by Dilan et al. (2003) and Yi et al. (2008) for a Chinese fir plantation in SE China with site index 27 m at year 50 in areas with low levels of N deposition (5 kg ha-1 y-1).
Low average biases and absolute differences, together with high r2 values, indicate acceptable agreement between observed and predicted values. However, it has been argued that r2 is not the most reliable measure of model performance (Power, 1983) because it is not related to the "perfect fit" line (the line in which observed equals predicted). As a consequence, this coefficient is more about a model's capacity to use the calibration data set to reduce differences between observed and predicted values rather than a measure of the accuracy of a model's predictions. A different measure of model performance is given by Theil’s U coefficient, whose values were always lower than 1, indicating that the model always performed better than a general average value such as that provided by traditional growth and yield tables. Modelling efficiency, recommended as a more adequate measure of model performance (Mayer and Butler, 1993; Power, 1993; Smith et al., 1997), was close to 1 for all variables, indicating acceptable agreement between observed and simulated values. 
Finally, Reynolds’ critical values were low, showing that FORECAST is capable of meeting the requirements of users who need high levels of accuracy. FORECAST is an ecosystem-level model that integrates key ecosystem processes with field observations, with a hybrid approach that provides robustness to the predictions and improves the ecological performance of the model (Blanco et al., 2007; Kimmins et al., 1999, 2010). The acceptable results of predictions from this study are evidence of this ecological performance. These positive evaluation results are in agreement with the performance of FORECAST in other similar subtropical Chinese fir forests (Bi et al., 2007), temperate and tropical plantations (Blanco et al., 2007; Blanco and González, 2010) and boreal natural forests (Seely et al., 2008). Therefore, FORECAST appears to be a valuable tool for studying ecological processes in forest ecosystems in situations when robust predictions are needed.
4. Additional results
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Figure S3. Chinese fir gross timber volume at the end of each rotation at two sites of different quality in south-east China under several N deposition rates. Poor site: dominant high 18 m at year 50, rich site 26 m.
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Figure S4. Site quality at the end of each rotation at two different Chinese fir sites under six different N deposition levels. The “x” marks the initial site quality in each site at the beginning of all the simulations.
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Figure S5. Total belowground C (litter + humus + roots) at the end of each rotation at two Chinese fir plantations in sites of different quality in south-east China under several N deposition rates. Poor site: dominant high 18 m at year 50, rich site 26 m.
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Figure S6. Average Chinese fir net primary production for each rotation at two sites of different quality in south-east China under several N deposition rates. Poor site: dominant high 18 m at year 50, rich site 26 m.
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