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Abstract 
 
We theoretically and experimentally study a zero sum betting market: the Pelota betting system, 
but with commonly known objective probabilities and without commissions. We know that risk-
averse expected utility maximizers with identical objective probabilities cannot agree on a bet. 
Nevertheless, the rank dependent expected utility model allows us to explain the existence of 
such betting markets even assuming individuals are all identical even in utilities. We focus on 
behaviour in a given period in a Pelota betting market and we aim to explain the volume of bets 
assuming that all individuals are equal and their marginal utility on wealth is decreasing. We do 
this in two stages. First, subjects are asked to take betting decisions and the power utility 
function and probability weighting function are estimated. Once the underlying utility and 
probability weighting function are known, in a second stage subjects interact in a betting market 
and we test whether the volume of bets differs from proposed theoretical predictions. 
 
Keywords: Pelota betting market, experiment, rank dependent expected utility, sport betting 
market. 
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1. Introduction 
 
Betting markets offer major opportunities for economic analysis in that they are especially 
simple financial markets in which the scope of the pricing problem is reduced. In “The 
Economics of Wagering Markets” Raymond D. Sauer analyzes the economics of betting 
markets in which participants take a financial position on the outcome of a sporting event such 
as a horse race or a football game. But there is a betting market that he does not mention at all:  
the one which goes with Pelota (Jai Alai) matches, a sport of two teams. For more details see 
the description of the sport and its betting system in Llorente, L. and J.M. Aizpurua (2006). We 
emphasize that although the Pelota betting system has operated for centuries in the Basque 
Country, Navarra and La Rioja rule are not written rules but passed on verbally. This has 
hindered its spread to other regions and thus it has not been studied, even though its importance 
in the area is remarkable.  As detailed below, both its peculiarities and its theoretical simplicity 
makes analyzing the Pelota betting market an interesting exercise.1  
It follows two peculiarities that differentiate it from other well-known betting systems. Unlike 
pari-mutuel betting systems the odds in a Pelota market are definitively fixed when the bet takes 
place. Bets are arranged by means of middlemen but unlike what happens in bookmaking, for a 
bet to be placed, one bettor bets on one team and another bettor bets on the other team, thus the 
middleman does not bet at all. 
Under our point of view the Pelota betting system is a very attractive system from a theoretical 
analysis perspective, i.e., an individual decision at a given moment is simple and clear. 
Although there is uncertainty about who will win the match, theoretically once the person has 
attached a subjective probability to the chances of an event, say “the reds will win”, the problem 
he faces is simple. He decides which prospect to select from a set of only two different kinds of 
prospect: betting on the reds or betting on the blues. Within a set of prospects his decision is 
very simple: how many identical bets to place. Furthermore, each prospect entails only two 
possible outcomes: either as many wins as there are bets placed (a given amount of money) or 
the same number of losses (another given amount of money).  
 
Here we will take advantage of the simplicity of this system’s decisions while avoiding the main 
drawback when analyzing this market’s data, which is the unknown objective probability. Here 
we implement the betting system but in a world of decision under risk and not uncertainty, i.e. a 
world of two possible states of nature with given objective probabilities.  
 
Thus we implement experimentally decisions similar to those faced by individuals in a Pelota 
betting market but with commonly known objective probabilities. We study behaviour assuming 
the rank dependent expected utility (RDEU) model. We show that the expected utility model is 
a particular case of the RDEU model when the probability weighting function of the worse 

                                                 
1 Another important characteristic of the Pelota betting system is that bets are allowed throughout the 
match, so it can be studied how new information affects people’s decisions. An interesting avenue for 
future work is to analyze decisions not in a given period but as a strategy of behaviour throughout the 
match. 
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outcome is the identity ppq =)( . The attractiveness of the rank dependent expected utility 

model as the theoretical explanation for individual behaviour in this betting market is that it can 
explain the existence of the betting market even among identical bettors.  
 
In the following Section we introduce and formalize the experimental betting system; First we 
study the optimal bets of rank-dependent expected utility (RDEU) maximizers. Second, we 
study the market; we show a necessary condition for the existence of a bet in the market and we 
propose predictions for the market volume of transactions. Finally we select the utility and 
probability weighting function to be estimated. Section 3 explains the details of the 
experimental protocol and the estimation procedure for each of the 2 stages. The results are 
discussed in Section 4, and some general conclusions are presented in Section 5.  
 

2. The Theoretical Model 
 
In this section we formalize the betting mechanism that underlies the Pelota betting market. 
First we obtain individual demand and offer functions of bets assuming bettors are rank 
dependent expected utility maximizers. In a second subsection we study the betting market and, 
after showing that bettors have to be optimistic in order to place a bet, we propose different 
predictions of numbers of transactions in the specific market implemented in the lab. 
 

1.1. Individual optimal decision 
 
We analyze pelota bets under Quiggin’s RDEU model.  
The theoretical framework of choice under uncertainty is the one followed in Quiggin, J. 

(1993). We deal with individual preferences over a set χ  of outcomes and an associated set, , 

of random variables, or prospects, taking values in χ . Elements of χ  are denoted by x, and 

elements of  are denoted by y. In what follows, χ  is assumed to be an interval in +ℜ  

interpreted in terms of income or wealth levels. The outcome space is totally ordered by a 
preference relation, denoted by ì. The associated indifference relation is denoted by ∼. 
Prospects will be represented in the form 

   8, < = 8Hx1, x2, ... xnL; Hp1, p2, ..., pn L<  

where pi is the probability of outcome xi, 1
1

=∑
=

n

i
ip , and the xi are weakly ordered from worst to 

best, so that x1 É… É xn.  

Formally, the cumulative probability of x, denoted F(x), is given by ∑ ≤
=<

xx ir
i

pxyP }{ . 

RDEU is based on a probability weighting function q: [0; 1] T [0; 1] applied, not to the 
probabilities of individual events, but to the cumulative distribution function. The RDEU 
functional is given by 

VH8; <L = ‚
i=1

n

UHxi L hiHL,
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where 

hiHL = q
i

k

jjjjj‚
j=1

i

pj

y

{

zzzzz - q
i

k

jjjjj‚
j=1

i-1
pj

y

{

zzzzz = qHFHxiLL - qHFHxi-1LL
. 

In our specific market, similarly to the betting market in Pelota, we consider two states of 
nature “reds win”, r, and “blues win”, b. Each of the N bettors has an endowment of W e +ℜ . 

Denote by pr  (pb ) the objective probability for event r (b); as ties are not allowed pb = 1 - pr . 
The odds will be represented by (OR, OB), where OR (OB) is the money a bettor risks if he stakes 
one unit on event r (b), i.e., the money he loses if event r (b) does not occur. It may be helpful to 
think of these odds as a price relation at which one can trade "money if state of nature b occurs" 
for “money if the state of nature r occurs".  
Therefore to stake one single bet on r means to select the prospect  

( ) ( ){ }rrBR ppOWOW ,1;, −+− , 

and to stake one single bet on b means to select the prospect 
( ) ( ){ }rrRB ppOWOW −+− 1,;, . 

 
As more than one bet can be staked on each of the two colors we consider two special subsets of 
prospects among which bettor i can choose: ,  Œ  . We denote by SRi e  the prospect 

selected by bettor i when he stakes SR bets on the reds, which is the prospect  
( ) ( ){ }rriBiR ppSROWSROW ,1;, −+− , and 

SBi e  the prospect selected when staking SB bets on the blues, which is the prospect 

( ) ( ){ }rriRiB ppSBOWSBOW −+− 1,;, . 

These prospects can be represented in the following graph where the horizontal axis shows 
consumption if r occurs and the vertical axis shows consumption if b occurs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

W-OR 

OB 

W+OR    è  SB =1

SR =1

S0

  è

è

Final wealth if r

Final wealth if b 

OR

OB

W

W 

OB 

 Betting on blue SR = number of bets on r      
 Betting on red SB = number of bets on b 

   S0 = there are no bets 
 

Graph 1: “Bettor’s consumption set” 
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Then a bettor’s utilities for each of the possible prospects are  
 

( ) ( ) ( ) ( )( ) ( )( )SRtOWUpqSROWUpqSRV BrRr −+−−+−−= 1111 , and 

( ) ( ) ( ) ( )( ) ( )( )SBtOWUpqSBOWUpqSBV RrBr −+−+−= 11 , 

 
From these expressions we obtain the graphical representation of indifference curves (IC) in 
Llorente, L. and J.M. Aizpurua (2006). 
 
A bettor’s optimal decision is given by 

( )
( ) ( )

( ) ( )⎪⎩

⎪
⎨

⎧

≥

≥
=

, if 

 if 
,,,

***

***

**

SRVSBVSB
or

SBVSRVSR
WOOpS BRr

 

where *SR  is obtained by solving the problem 
( ),max

,0

SRV

R
i O

W
SR ⎥

⎦

⎤
⎢
⎣

⎡
∈

 

and *SB  is obtained by solving the problem 
( ).max

,0

SBV

B
i O

WSB ⎥
⎦

⎤
⎢
⎣

⎡
∈

 

 

Thus a bettor decides either to stake on r, ⎥
⎦

⎤
⎢
⎣

⎡
∈

RO
WSR ,0 , or to stake on b, ⎥

⎦

⎤
⎢
⎣

⎡
∈

BO
WSB ,0 , it is not 

possible to bet a negative amount or to bet an amount unaffordable under a bettor’s endowment. 
We avoid the possibility of betting on both colors. The prospect selected when betting 

SBSR = is the same as when not betting at all. In the experiment we do not allow this to 
happen and in the real Pelota market there are commissions, which makes this prospect a sure 
loss of commission. 
 
The first order conditions for an interior solution are 

( )WOOpSR BRr ,,,*  such that  

( )( )
( )

( )
( ) B

R

R

B

r

r

O
O

SROWU
SROWU

pq
pq

=
−
+

−
−−

'
'

1
11 ,  (1) 

IC’s slope2   CS’s slope 
 

and ( )WOOpSB BRr ,,,*  such that  

( )
( )

( )
( ) B

R

R

B

r

r

O
O

SBOWU
SBOWU

pq
pq

=
+
−

− '
'

1
.  (2) 

IC’s slope  CS’s slope 
 

                                                 
2 See Llorente, L. and J.M. Aizpurua (2006), the section “RDEU maximizers’ indifference curves” to see 
the shape of the IC’s under this model. 
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The second order condition tells us that ( ) 0'' <xU  is a sufficient condition for maximization. 

See proof in “Appendix 1: The general optimization problem”.  
We refer to ( )BR OOSR ,*   as either the offer function on r or the demand function on b, and to 

( )BR OOSB ,*  as either the demand function on r or the offer function on b. 

 
1.2. The market 

 
In this subsection we first show the necessary conditions for the existence of bets in the market, 
then we propose predictions for the number of transactions in each period and finally we show 
the maximum possible bets in the market. 
 

1.2.1. Necessary condition for the existence of bets in the market 
 
Proposition 1 Let a Pelota betting market be composed of identical RDEU maximizers with a 
concave utility function on wealth. Then a necessary condition for a bet to take place is that 
bettors should be optimistic as defined in Quiggin, J. (1982), i.e., ( ) ( ) 11 <−+ pqpq  

Proof: 
A necessary condition for the existence of a bet is one bettor betting on reds and another on blues 
but as bettors are equal we need to obtain SRi

* and SBi
* greater than 0 “for the same bettor”. 

Therefore either (i) or (ii) must happen;  
(i) equations (1) and (2) have to be fulfilled, which implies that left-hand sides of the two equations 
have to be equal,  

( )( )
( )

( )
( )

( )
( )

( )
( )SBOWU

SBOWU
pq

pq
SROWU
SROWU

pq
pq

R

B

r

r

R

B

r

r

+
−

−
=

−
+

−
−−

'
'

1'
'

1
11   (3) 

 In addition we assume decreasing marginal utility on wealth, therefore 
 

( )
( )

( )
( )SBOWU

SBOWU
SROWU
SROWU

R

B

R

B

+
−

<
−
+

'
'

'
'  

thus, in order for (3) be true, 
 
1 -qH1 - prL

qH1- pr L
>

qHprL
1 -qHpr L , operating  1- qH1 - pr L > qHprL  which is Quiggin’s definition of 

optimistic. 
(ii) SR* or SB* is a corner solution. If SR* is a corner solution where SR*= W/OR then 

( )WOOpSR BRr ,,,*  such that  ( )( )
( )

( )
( ) B

R

R

B

r

r

O
O

SROWU
SROWU

pq
pq

>
−
+

−
−−

'
'

1
11 ,  (1’)  which implies that   

( )( )
( )

( )
( )

( )
( )

( )
( )SBOWU

SBOWU
pq

pq
SROWU
SROWU

pq
pq

R

B

r

r

R

B

r

r

+
−

−
>

−
+

−
−−

'
'

1'
'

1
11   (3’) 

 
and the proof is similar. 
and if SB*  is a corner solution then   

( )WOOpSB BRr ,,,*  such that ( )
( )

( )
( ) B

R

R

B

r

r

O
O

SBOWU
SBOWU

pq
pq

<
+
−

− '
'

1
. (2’) which implies that   

( )( )
( )

( )
( )

( )
( )

( )
( )SBOWU

SBOWU
pq

pq
SROWU
SROWU

pq
pq

R

B

r

r

R

B

r

r

+
−

−
>

−
+

−
−−

'
'

1'
'

1
11   (3’) 
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and the proof is similar. 

 
The presence of these optimistic RDEU maximizers provides us with a model where an interior 
solution makes it possible for bets to exist.  

 
In the graph above we see that the bettor is indifferent between betting on SB or SR . Therefore 
one bettor is willing to bet on the reds, another bettor on the blues and therefore bets can be 
explained in the market. 
 

1.2.2. Market volume of bets 
 
In Pelota betting markets, given the probabilities ( )rr pp −1,  and the odds ( )BR OO , , a bettor 

decides how much to stake on r, SR , or on b, SB . The realization of this decision depends on 
whether a middleman can find a bettor willing to bet on the other team. The equilibrium price in 
a Pelota betting market is such that the bettor’s utility betting his optimum on the reds must be 
equal to his utility betting the optimum on the blues. Therefore in a “big” market of N identical 
bettors whose utility and probability weighting functions are known, the individual optimal 
number of bets is obtained by applying equations (1) and (2) and the number of transactions and 
the number of bettors betting on each of the two colors can be easily calculated as explained in 
“Appendix 2: Equilibrium in the frontón betting market”.  
 
But in this experiment the market is slightly different. First of all we are not able to run an 
experiment with a large number of bettors, so bettors could realize that they can influence 
market odds. In addition, the underlying probability weighting function is unknown in advance; 
so we are not able to obtain the equilibrium odds. We decided to simplify the market. In a 
particular period the odds (prices) are given but they may or may not be the equilibrium odds. In 
a particular period, given the commonly known probability and the odds, bettors post their 
offers to bet on one color or the other, or on both. They can also accept offers already posted on 
the market by other bettors. Once they decide to bet on one color they cannot bet on the other in 
the same period. In such a market we propose various predictions concerning the number of 
transactions. 
 

              Consumption set when betting on b. 
              Consumption set when betting on r. 

 

B

R

O
O  

X = Consumption if r.

Y 
Consumption if b. 

X = Y

 SR

SB 

Indifference curve of an optimistic 
bettor with decreasing marginal utility. 
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In a period, ( )WOOp BRr ,,,  are given.  From equations (1) and (2) we can calculate 

( )WOOpSR BRr ,,,*  and ( )WOOpSB BRr ,,,* . In the market only an integer number of bets can 

be placed, so from now on *SR  and *SB are rounded.  

Prediction A: We predict that in a market comprising N  identical bettors the number of bets 

realized is { } ⎥⎦
⎤

⎢⎣
⎡=

2
*, *** NSBSRMinS A , where the subindex A refers to  “prediction A” and [ ]⋅  

denotes the integer part of . . 

We can interpret this prediction as ⎥⎦
⎤

⎢⎣
⎡

2
N  pairs of bettors in the market betting the minimum 

between the optimal when betting on the reds and the optimal when betting on the blues. This 

adds up to *
AS bets in the market. 

 

Prediction B: Denote { }** , SBSRMinx = , { }** , SBSRMaxy =  and 
x
yz = . We interpret [ ]z  as 

the number of bettors on one color that bet against a bettor on the other color. These bettors all 
together form what we call a betting group. The number of bettors in a betting group is then 
defined as [ ] { }NzMinnbg ,1+=  where betting groups comprising more than the number of 

bettors in the entire market, N, are not permitted and bettors are not divisible. The number of 

possible groups in a market is given by [ ] [ ]nbg
Nng =  . Therefore we predict that the number of 

transactions in a market is [ ] [ ]ngzxS B *** = . Bettors post their optimal decisions and accept 

the optimal decisions of others. 
 
Prediction C: Given the notation in “prediction B”, we define [ ] [ ]nbgngNr *−=  as the 

number of bettors in prediction B that do not belong to a group. We predict that the total number 

of transactions in the betting market will be [ ] [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡+=
2

**** rxngzxSC
. 

Prediction D: Denote { }** , SBSRMinx = , { }** , SBSRMaxy =  and 
x
yz = . We interpret z as the 

number of bettors on one color that bet against a bettor on the other color. This is what we call a 
betting group. The number of bettors in a betting group is defined as { }NzMinnbg ,1+= , and 

here we could find a non-integer number of bettors. The number of possible groups in a market 

is given by 
nbg
Nng = . We predict that the number of transactions in a market is ngySC ** = . 

In this prediction there can be bettors who post a number of bets lower than their optimal. 
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1.2.3. Maximum number of transactions 

 

Denote by 
RO

WSR =  the maximum number of bets that an individual can place on r and by 

BO
WSB =  the maximum a bettor can place on b. Call { }SBSRMinx ,= , { }SBSRMaxy ,=  and 

x
yz = . We interpret z  as the number of bettors betting the maximum on one color who bet 

against a bettor who bets the maximum on the other color. This is what we call a betting group 
where bettors bet the maximum. The number of bettors in this betting group is defined as 

{ }NzMinnbg ,1+= , and here we could find a non-integer number of bettors: half a bettor can be 

interpreted as a bettor who bets half the amount he can afford from his endowment. The number 

of possible groups in a market is given by 
nbg
Nng = . Then the maximum number of 

transactions in a market composed by N bettors is [ ]ngyS *= . 

 
1.3. The utility and probability weighting function 

 
In this experiment we try to explain the volume of bets by applying the model of equal RDEU 
bettors. In a given period of a betting market the variables ),,( BRr OOp  are commonly known. 

In order to predict the volume of bets we would like to know the optimal decision of each 
bettor. Assuming bettors are RDEU maximizers the optimum amount bet is the amount that 
fulfils equation (1) or (2). We see in these equations that the optimal amount of bets depends on 
both the utility and the probability weighting functions. Therefore, if we know the utility 
function and the probability weighting function we will be able to predict the volume of bets. At 
this point we decided to divide the experiment into two stages. The data from the first stage 
were used to estimate the utility and probability weighting functions and in the second stage the 
betting market was implemented to check whether we could predict volume of bets with the 
RDEU model.  
Therefore we ran a first stage in the experiment where, given ),,( BRr OOp , subjects were 

asked how much they wanted to bet and we were forced to accept the bet on the other side. We 
estimated the optimal decision of bettors assuming both a utility and a probability weighting 
functional form. Once we had the parameters that best fit the data in the first stage, in the second 
stage we used the utility and probability weighting function obtained to predict the number of 
transactions in the market.  
 

1.3.1. The utility function 

We estimated the parameter of the power utility function 
⎪⎩

⎪
⎨
⎧

<−

≥
=

0 if 
0 if 

)(
ax

ax
xu

a

a

 that allows for 

decreasing marginal utility whenever 1<a , see proof in Appendix 3: The estimated utility 
function. The attractiveness of this utility function is that it has only one parameter but it allows 
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for plenty of different attitudes towards risk. We want to allow for the greatest possible 
variability in risk aversion but with as fre parameters as possible . That is why we estimate this 
utility function. The utility function for different a values follows. 

 

 

We calculate the Arrow-Pratt coefficient of risk aversion  1
)('
)('')(

x
a

xu
xuxr −

=−=  or, rewriting, 

 
0 if 

1

0 if 1

)(

⎪
⎪
⎩

⎪⎪
⎨

⎧

<
+

≥
−

=
a

x
a

a
x

a

xr . Therefore negative a allows for more risk-averse attitudes than allowing 

only positive values of the parameter a.  
 

1.3.2. The probability weighting function 
 

We estimate the probability weighting function ( )
( )γγ

γ

δ
δ

pp
ppq
−+

=
1

 studied in Lattimore, 

P.K., J. K. Baker, and A. D. Witte. (1992). This has been estimated in empirical papers such as 
Gonzalez, R. and G. Wu (1999). For the median data they obtain d = 0.77 and g = 0.44.3 We 
chose this functional form because it allows us to study optimism (whenever 1<δ ) separately 
from the widespread behaviour of overestimating low probabilities while underestimating high 
ones ( 1<γ ). See Gonzalez, R. and G. Wu (1999) page 139 for an explanation of these two 

parameters.  
 

                                                 
3 These data are obtained for the power utility function on wealth, u(x) = xa, with a = 0.49. 
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3. The design of the experiment and its protocol 
 
In general economic theory relies on the assumption that individuals are risk averse, i.e., the 
utility function on wealth has decreasing marginal utility. When trying to explain betting games 
of zero sum between individuals with decreasing marginal utility on wealth the expected utility 
theory has little success.4 We have shown above that theoretically we can explain the existence 
of transactions in pelota betting markets when there are optimistic RDEU maximizer bettors. 
Moreover, if we know )(xu  and  )( pq  we can predict, for each vector ),,,( WOOp BRr , the 

amount transacted in the market. We have two main objectives: first of all to test whether the 
RDEU model with decreasing marginal utility on wealth fits the experimental data better than 
the expected utility model (EU). Secondly we want to study the equilibrium amount of 
transactions and to check whether the theoretical prediction is close enough to the real number 
of transactions. In order to achieve our objectives we divided our experiment into two stages. In  
the first stage we assumed subjects were RDEU maximizers with a utility function of the form 

⎪⎩

⎪
⎨
⎧

<−

≥
=

0 if 
0 if 

)(
ax

ax
xu

a

a

 and a probability weighting function ( )
( )γγ

γ

δ
δ

pp
ppq
−+

=
1

. Our objective 

was to estimate the parameters a, d and g, in order to obtain the demand and offer functions on a 
given event, which determine the market equilibrium. In the second stage we implemented a 
betting market where, given the vector ),,,( WOOp BRr , subjects either demanded or offered 

bets on an event. We study whether the amount of bets fits the theoretical prediction. Below we 
explain in detail each the design of the experiment for each stage. 
  

1.1. Stage 1: Estimating bettor’s demand and offer function on event r 
 
80 students at the Universidad Pública de Navarra participated in the computerized experiment, 
using the z-Tree software package (Fischbacher 1999, Zurich Toolbox for Ready-made 
Economic Experiments). In the first stage subjects took 36 independent decisions on the amount 
to bet on a given color r. In each period all subjects were given the same endowment W = 
10.000 points that could be used to bet on r. The commonly known probability for event r was 
shown as the chances of extracting a ball of color r from a box containing eight balls of two 
different colors r and b. The odds were shown as the money won on a bet if the ball randomly 
selected was r and the money lost on a bet if the ball was not r. In order to be sure that subjects 
knew exactly how much money they could obtain with their decision, they were able to check, 
for each possible decision, the total amount of points they would obtain depending on the color 
of the ball extracted. Unlike stage 2, here we were forced to accept the amount bet on the other 
color. Thus, in each period of this stage, given the vector ),,,( WOOp BRr , subjects were asked 

to choose the amount demanded on event r, ⎥
⎦

⎤
⎢
⎣

⎡
∈

R
i O

SR 000.10,0 . 

                                                 
4 One bet in our betting market is a zero sum game. In real life there are Pelota betting markets even more 
difficult to explain with expected utility theory because if there is a bet the sum of the expected value of 
both bettors is less than zero. In real Pelota betting markets there is a middleman who takes 16% of the 
amount the winner obtains in a bet as commission, so the sum of bettors’ expected value is 

( )( )rRrB pOpO −+− 116.0 . 
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The parametrization established was  { }8
7,8

5,8
4,8

3,8
1∈rp ,5 and either 100=RO  and 

{ }100,90,80,70,60,50,40,30,20,15,12,10,7,5∈BO  or vice versa.  

The stage lasted approximately thirteen minutes. The ending time for each period was 30 
seconds but the period did not finish until all subjects had entered their decision. Subjects were 
informed that three of the 36 periods would be randomly selected at the end of the experiment. 
Then the uncertainty for each period was solved independently, event r was selected with the 
previously fixed probability in the period, and subjects received the points related to their 
decision in all the periods selected. 
The estimating procedure follows. Remember we assume subjects are RDEU maximizers with 

⎪⎩

⎪
⎨
⎧

<−

≥
=

0 if 
0 if 

)(
ax

ax
xu

a

a

 and ( )
( )γγ

γ

δ
δ

pp
ppq
−+

=
1

. In order to estimate the parameters a, d and g, 

we run a non-linear regression using the Levenberg-Marquardt method with the software SPSS 
v.11.5.1 for Windows. We specified a non-linear model where each subject's decisions on the 
amount demanded on r were predicted by the theoretical optimal decision 
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when 1<a , and 

( )( )

( )( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

+
≤−−

+
>−−

=
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Ra
r
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Ra
r

R
i
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O

pq

OO
O

pq
O
W

SR
1

1

*

11 if0

11 if
 (4 b) 

when 1≥a  (we allow for risk-taking behaviour).  
The first arrow in equation (4a) is the interior solution obtained in equation (1) on page 5 , the 
second arrow is the corner solution where a negative amount cannot be bet on a color and the 
third arrow is the corner solution where the full amount affordable under the endowment 

                                                 
5 All the probabilities were multiplies of one-eighth to avoid any misperception of the probabilities as in 
Hey, J.D. and C. Orme (1994). 
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RO
W is bet. Now we explain the first row in equation (4 b); when 1>a  the IC’s are concave, 

therefore the optimal solution is either not to bet at all or to bet all one’s wealth, 
RO

W . We 

compare the utility of not betting with the utility of betting all one’s wealth and the latter is 

lower than the former whenever ( )( )
BR

Ra
r OO

O
pq

+
>−−

1
11 .   

Proof. We have assumed 0 if )( ≥= axxu a , therefore when  1≥a  the utility function is 

assumed to be axxu =)( . The utility of not betting is the utility of obtaining W with certainty, 

which is aW . The utility of betting the maximum possible on r, 
RO

WSR = , is 

( ) ( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−+−

R
Brr O

WOWupqupq 1101 ;   ( )( )
a

R
Br O

WOWpq ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−− 11 . 

Therefore not betting is preferred to betting the maximum possible when  

( )( )
a

R
Br

a

O
WOWpqW ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−−≥ 11 , rearranging ( )( )

BR

Ra
r OO

Opq
+

≥−−
1

11 . 

The proof is similar for the inequality in the second row of equation (4 b). In the case 1=a  
bettors’ IC’s are linear and therefore either they decide to bet all that is allowed with their 
wealth or they decide to not bet at all.  
In the especial case of equal utility of betting all or nothing, we take the convention of assuming 
zero bets. 
 

1.2. Stage 2: The betting market 
 
Once the 80 subjects had made their decisions in stage 1, they participated in stage 2, in partner 
groups of 10 subjects each, where we replicated the betting system found in Pelota games. The 
experiment was computerized using z-Tree software. In each period the mechanism followed 
was similar to a double auction where subjects post their bids and offers, so there were no 
middlemen. The biggest difference from a double auction is that in our market subjects bid and 
offer not the price but the amount to be transacted. Once a subject has posted a bid or an offer, 
any other can accept it and it is precisely then that a transaction is realized. Subjects in this stage 
bet against one another. In each period subjects were allowed to either demand or offer any 
amount on r (or b), within their endowments. They were not allowed to buy and sell in the same 
period, i.e. given a period they could either demand any amount on r (or b) or offer any amount 
on r (or b) but once they had bought (sold) a bet on r (or b) they could only buy (sell) in that 
period. Three markets were run with different parametrizations. The probabilities for event r 

were 
⎭
⎬
⎫

⎩
⎨
⎧

8
7,

8
5,

8
4  for markets { }3,2,1  respectively. In each market subjects played different 

periods6, in which their endowments and the odds for event r were fixed (Wi = 10.000 points, OR 
= 100 points). The odds on OB in the first period of a market were approximately 30 per cent 

                                                 
6 4 in market 1, 8 in market 2 and 6 in market 3. 
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above the odds under which the expected value of a bet on r is zero. The odds decreased with 
each period to approximately 30 per cent below the odds of zero expected value.  
At the end of the experiment three periods were randomly selected from the 18 played in all the 
markets (one period per market). The random device correspondent for each period was realized 
and subjects obtained, for each period, the endowment plus (minus) the amount earned (lost) 
due to their decisions. 
Each period lasted an average of one and a half minutes, then stage two lasted 27 minutes. 
 

1.3. Payment 
 
The total amount obtained in the experiment was the amount obtained in stage 1 plus that 
obtained in stage 2. Both payments were decided after all subjects’ decision periods had 
finished. The participants were all students on a Microeconomics course and instead of money 
they were paid with extra points in their grades. The ECU7 exchange rate was 60,000 points = 1 
point added to their grade in a subject. Therefore a student that decided not to bet at all would 
have 10,000 ECU multiplied by 6 periods which adds up to 60,000 points, i.e., 1 point to be 
added to their final grade in Microeconomics, where 10 is the best grade. 
 
We decided to pay via final grades in Microeconomics to induce risk aversion. In experiments 
with payoffs, low payments seem to induce risk neutrality. Nevertheless we aim to analyze the 
experimental data assuming that the endowment is the wealth level. This makes sense when 
paying with final grade points because the point we give subjects to bet is the only point they 
have (they have not yet sat their final exam). In order to check if we were right we ran exactly 
the same experiment but paying with cash. We found that when subjects are paid with money 
instead of final grade points they are less averse: more bets are placed. In the section “Identical 
RDEU bettors: estimated parameters”, (p. 15), we show the estimated parameters. We obtain a 
significantly lower a value in the experiment paid with grade points than the one with money, 
which indicates a higher risk aversion (higher Arrow-Pratt aversion coefficient). 
 

1.4. Questionnaire 
 
Subjects were asked about their comprehension of the experiment’s rules and about the strategy 
they followed to decide how much to bet in a period. In general they had no problems in 
understanding the game and expressed willingness to participate in other experiments. 
 

1.5. Instructions 
 
Two different instruction forms were given to subjects, one at the beginning of each stage. At 
the end of stage 1’s instructions, they had to complete a test to check their understanding. They 
had plenty of time for this. They also had four practice periods in stage 1 and two in stage 2. 
The practice periods could not be selected as paid periods. 
 

                                                 
7 Experimental currency unit. 
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4. Results 
 

1.1. EU does not explain individual behaviour when selecting prospects  
 
Although we have shown theoretically that bets between equal individuals -when they are EU 
maximizers with decreasing marginal utility on wealth- are not possible, we want to give the EU 
model a chance, so we study  behaviour individually in stage 1. Remember that in this first stage 
individuals decide how much to bet on a colour and we are forced to bet on the other color. 
Therefore we can study each individual’s optimal betting decision and analyze attitudes toward 
risk individually. Allowing risk-taking behaviour it might happen that a number of risk-takers 
allow for the existence of bets when different individuals interact in a market. Therefore we 
studied individual attitudes towards risk of the bettors assuming that they were EU maximizers. 
The expected utility model is the special case of the RDEU model where 1== γδ , if this is the 

case the probability weighting function is ( ) ppq = . Therefore we estimated parameter a 

independently for each of the 80 subjects making 1== γδ  and we found that a estimated was 

lower than 1 in 77 out of 80 people (there was only one risk neutral bettor, individual 34 with a 
= 1, and 2 risk takers, individual 4 with a = 1.5 and individual 21 with a = 1.8).  
 
Therefore the data show us that if subjects are assumed to be expected utility maximizers, they 
are risk averse. Thus we can conclude that the expected utility theory is unsuccessful in 
explaining the existence of bets in Pelota markets even allowing for individually different risk 
attitudes. 
 

1.2. Identical RDEU bettors: estimated parameters  
 
Having shown that there is no way for EU to explain the betting market, even allowing bettors 
to be different and with different risk-attitudes, we go on to study bettors’ behavior under the 
RDEU model. Assuming all individuals are equal we estimate the utility function 

⎪⎩

⎪
⎨
⎧

<−

≥
=

0 if 
0 if 

)(
ax

ax
xu

a

a

 and the probability weighting function ( )
( )γγ

γ

δ
δ

pp
ppq
−+

=
1

  

 
and we obtain, with an R square = 0.262, that 79.0 and 26.0 ;48.0 ==−= γδa . Each of the 

parameters obtained is lower than 1 with a 95% degree of confidence. Therefore we have found 
that the marginal utility of wealth is decreasing ( 1<a ), bettors are optimistic ( 1<δ ) and 
bettors overestimate the worst outcome chances to win when the probability is low and 
underestimate it when it is high ( 1<γ ).  

Here we show the utility and probability weighting functions obtained. 
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Once parameters are estimated we can obtain the demand function on b, ( )BOSB* , and the offer 

function on b, ( )BOSR*  for the different markets as shown in the graphs below. 
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1.3. Paying with grade points induces risk aversion  

 
When we pay subjects with money we obtain that, with an R square = 0.30248, 

84.0 and 32.0 ;12.0 ==−= γδa . The confidence intervals for the parameters in both 

experiments are shown below: 

 
We conclude that parameter a differs significantly (at the 95% degree of confidence) from one 
treatment to the other.  
We run the Lower-Tailed Mann Whitney Test for independent samples as a non-parametric test 
to check whether there is a significant difference in the optimum bet between an experiment 
with monetary reward and one with a grade point reward For each experiment we have a sample 
of 36 mean decisions on betting, one for each period in stage 1. We run the Mann Whitney test 
to compare the distribution functions corresponding to optimal decisions on betting in each 
experiment. The null hypothesis is that the optimal bets are equal in the two experiments, while 
the alternative hypothesis is that optimal bets under grade point rewards are lower than the 
optimal bets under monetary rewards.  

 
We can conclude that paying with grade points induces risk aversion. 
 

1.4. Predictions  
 
First we calculate the predicted volume of bets in each period of stage 2 (Table: Predicted 
volume of bets) and then we compare them with the actual number of transactions. 
The following table shows the different predictions of volume of transactions in each period of 
stage 2 assuming that all bettors are identical, with the utility and probability weighting function 
obtained in stage 1.  

Table: Estimated parameters 

Monetary reward    
 a d g 

Estimate -0,12 0,32 0,84 
95% Confidence interval [-0,259, 0,122] [0,271, 0,374] [0,782, 0,90] 

    
Grade points reward    

 a d g 
Estimate -0,48 0,26 0,79 

95% Confidence interval [-0,702, -0,268] [0,206, 0,321] [0,722, 0,866] 

 
Ranks 

  Experiment N 
Mean 
Rank 

Sum of 
Ranks 

Average Grade point 36 32,42 1167
  money 36 70,58 1461
  Total 72   

 
 

Test Statistics(b) 
  Average 
Mann-Whitney U 501,00
Wilcoxon W 1167,00
Z -1,656
Asymp. Sig. (2-tailed) 1,000
Exact Sig. [(1-tailed Sig.)] 0,049

b  Grouping Variable: average 
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In all periods 100=RO  and 000.10=W , so given ),( Br Op  and applying equations (1) and 

(2), (pp. 5-5), we calculate **  and SBSR , which are shown in columns 4 and 5. Once these 
individuals’ optimal bet amounts on r and b are obtained, predictions of transactions can be 
obtained with the equations in “Market volume of bets” (p. 7).  
In the following graph we compare predictions with the actual number of transactions. on the 
horizontal axis we have each period, we denote by i_j period j in market i, and on the vertical 
axis we have the number of transactions. There are different series plotted on the graph: the 
dotted line is the mean number of transactions for the eight independent groups. The thicker line 
is the maximum number of transactions in the market. It is obtained as explained in “Maximum 
number of transactions” (p. 9). The other four series correspond to the different predictions 
defined in “Market volume of bets” (p.7). We see that in markets 1 and 2 the predictions are 
close to the actual transactions while in market 3 a decrease in volume of bets is predicted as OB 
is lower, but in the experiment the number of bets is not so sensitive to changes in odds. Notice 
that here the OB is very low and the variation from one period to another is also low. 
 

Table: Predicted volume of bets. 

Market 1: pr = 0,5       

 OR OB SR* SB* Prediction A Prediction B Prediction C Prediction D 
Period 1 100 100 43 43 215 215 215 215 
Period 2  90 41 49 205 205 205 223 
Period 3  80 39 57 195 195 195 232 
Period 4  70 36 67 180 180 180 234 

Market 2: pr = 0,625      

 OR OB SR* SB* Prediction A Prediction B Prediction C Prediction D 
Period 1 100 100 53 31 155 155 155 196 
Period 2  90 52 36 180 180 180 213 
Period 3  80 50 43 215 215 215 231 
Period 4  70 48 52 240 240 240 250 
Period 5  60 45 64 225 225 225 264 
Period 6  50 41 80 205 205 205 272 
Period 7  40 35 104 175 210 210 262 
Period 8  30 26 143 130 130 182 220 

Market 3: pr = 0,875      

 OR OB SR* SB* Prediction A Prediction B Prediction C Prediction D 
Period 1 100 25 58 80 290 290 290 336 
Period 2  20 53 106 265 318 318 353 
Period 3  15 45 147 225 270 315 345 
Period 4  12 38 186 190 304 304 316 
Period 5  10 30 224 150 210 240 265 
Period 6  7 13 314 65 117 117 125 
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To show at first sight the accuracy of the predictions compared to the actual number of 
transactions, the following graph plots the same data, this time expressed as a percentage of the 
maximum possible number of bets in the period.  
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We emphasize that prediction A is accurate in markets 1 and 2. In these markets it differs from 
actual decisions by at most 10% of the maximum possible bets in the period. But in market 3 as 
OB, is lower, the prediction shifts away from the actual volume of bets. It seems that when the 
odds are very low, { }7,5∈BO , the model loses prediction power. Prediction A is not a good 

prediction when the odds are so extreme because ** SBSR << , so predicting that a bettor on b 
will accept bets from one, and only one, bettor on r, is not accurate. Predictions B and C seem to 
predict better than A. But still in the last period, where 5=BO , there is a gap between 

predictions and actual volume of bets. Prediction D is in general above the actual volume of 
transactions. This could be due to the assumption of more rationality in the sense that bettors 
post offers or bids different from their optimum in order to obtain more utility. 
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In what follows we analyze the difference between the actual and predicted volumes of bets. 
First of all, in the following table, we describe this variable showing its mean and standard 
deviation. Explicitly, this variable is obtained as the mean volume of bets of all 8 groups (as  a 
percentage of the maximum possible volume of bets) minus the predicted volume of bets (also 
as a percentage of the maximum possible bets). 

 
We emphasize that prediction B is the closest to the actual volume of bets, with a mean 
difference of 0.18% and the lowest standard deviation at 8.24%. It seems to be the best 
prediction. But to check whether there was a significant difference between prediction and 
actual volume of bets we ran four non-parametric tests (Wilcoxon Matched-Pairs Signed Rank 
tests), one for each prediction. The null hypothesis is that the median difference between actual 
and predicted volume of bets is zero. We find that we cannot reject the null hypothesis of equal 
median of bets for predictions A, B and C. However we find that the median volume of bets 
predicted with Prediction D is higher than the actual volume of bets. The test results follow. 

   
We conclude that prediction B based on equal RDEU maximizers is a good predictor of the 
mean volume of bets in a Pelota betting system. 
 

5. Summary and conclusion 
 
We conclude that the expected utility theory is unsuccessful in explaining the existence of bets 
in Pelota markets even allowing for different individuals with different risk attitudes. Moreover, 
under equal RDEU maximizers we obtain accurate prediction of the volume of bets transacted 

Table: Actual volume of bets minus prediction. 

 
Mean 

(18 periods) 
Standard 
deviation 

Mean volume of bets* - Prediction A* 2,34% 9,66% 
Mean volume of bets* - Prediction B* -0,18% 8,24% 
Mean volume of bets* - Prediction C* -1,05% 8,42% 
Mean volume of bets* - Prediction D* -5,83% 9,23% 

*Variables as percentages of the maximum volume of bets   

Test Statistics(c)
 

 

Prediction A – 
8 groups’ mean  

 

PPredictionB - 
P8 groups 

mean 

PPredictionC - 
P8 groups 

mean 

PPredictionD - 
P8 groups 

mean 
Z -,457(a) -,762(b) -1,415(b) -2,635(b) 

Asymp. Sig. (2-tailed) ,647 ,446 ,157 ,008 
a  Based on positive ranks. 
b  Based on negative ranks. 
c  Wilcoxon Signed Ranks Test 
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in the market. The estimated utility and probability weighting function are ( ) 48.0

1
x

xu −=  and 

( )
( ) 79.079.0

79.0

126.0
26.0

pp
ppq

−+
=  .  

We also find that paying with grade points in an experiment induces risk aversion. 
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Appendix 
 

Appendix 1: The general optimization problem 
 
Bettor i’s optimal decision is given by 
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Thus bettor i decides either to stake on r, ⎥
⎦
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WSR ,0 , or to stake on b, ⎥
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B
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RDEU for each of the considered prospects is 
( ) ( ) ( ) ( )( ) ( )iBriRri SROWUpqSROWUpqSRV +−−+−−= 111 , and 

( ) ( ) ( ) ( )( ) ( )iRriBiri SBOWUpqSBOWUpqSBV +−+−= 1 . 

Solving first order condition for the optimization, 
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Second order condition for a maximization establishes that the following is true 
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δ
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conditions are satisfied when 0)('' <xU , i.e., when bettors’ utility function is concave.  
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Appendix 2: Equilibrium in the frontón betting market 
 
We have already found that it is possible to find bets between identical RDEU maximizers when 
they are optimistic bettors with decreasing marginal utility on wealth. Now, we want to study 
which the behaviour will be in the market when there are N of such bettors each one with a 
wealth W. We will assume there are a large enough number of bettors (NT∞). Thus in a period, 
where pr is constant, each individual is informed about the odds fixed by the market and decides 
the amount to bet that maximizes his RDEU functional.  
In a “competitive” market with given prices like this one, a necessary condition for the market 
to be in equilibrium is that bettor’s utility betting his optimum on the reds must be equal to his 
utility betting the optimum on the blues.  

 If this is not the case, without loss of generality imagine the RDEU of betting Sr
* is greater than 

the RDEU of betting Sb
*, then all bettors prefer to bet on r, thus there is a pressure for increase OR, 

i.e., the money risked by the bettor who bets on r. 
 
When utility obtained by bettors betting on the reds equals the utility of bettors betting on the 
blues, the number of bettors betting on reds and the number of bettor betting on blues will 
depend on which one is the optimal amount betted when betting on blues, Sb

*, and the optimal 
amount betted when betting on reds, Sr

*.  
 
Call nr (nb) the number of bettors betting on r (b). Notice that the number of bettors betting on 
reds plus the ones betting on blues must be equal to the total number of bettors  

nr +nb = N ,  (1) 
It is worthy to remember that in this betting system, in order to arrange a bet, there must be one 
bettor betting or one color and another betting on the other color, i.e., there have to be the same 
number of bets on reds than on blues. As the number of bets on one color will be the number of 
bettors on this color multiplied by each bettor’s optimal number of bets on this color, we 
automatically have that the following must be fulfilled, 

nr Sr
* = nb Sb

*
.  (2) 

From equations (1) and (2) we obtain  
 

ni =
Sj

*

Sr
* + Sb

*
 N

, where i,j e {r, b} and i ≠ j . 8 

                                                 
8 If (1) and (2) are true; from (1) nr = N - nb , substituting in (2) HN - nbL Sr

* = nb  Sb
* ; N Sr

* - nb Sr
* = nb  Sb

*
; 

N Sr
* = nb HSb

* + Sr
*L ; 

N Sr
*

HSb
* +Sr

*L
= nb

. Replacing this in (1) we have 
nr = N -

N Sr
*

HSb
* + Sr

* L
= N

i
k
jj1 -

Sr
*

HSb
* +Sr

*L
y
{
zz = N 

Sb
*

HSb
* +Sr

*L .                
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Number of bettors in one color will be directly proportional to the optimal bets on the other color. 
When the optimal amount to bet on r is higher than the optimal amount to bet on b, Sr

* > Sb
* , we 

need more bettors on b in order  balance the number of bets or r with number of bets on b. 
 
Of course, in case the optimal amount of bets on r equals the optimal amount of bets on b, Sr

* = 
Sb

*, there will be the same number of bettor on each color. 
 
 

 Appendix 3: The estimated utility function 

We estimated the following utility function 
⎪⎩

⎪
⎨
⎧

<−

≥
=

0 if 
0 if 

)(
ax

ax
xu

a

a

 

We study this family of utility functions separately. First we study the case 0≥a : 
axxu =)( ; 1)(' −= aaxxu ; ( ) 21)('' −−= axaaxu . We see that 0)('' <xu  whenever 10 << a . 

The second part can be written as 0 if 1)( >−= a
x

xu a . Deriving  

121
2

1

)(' −−−−
−

=== aaa
a

a

axax
x

axxu  ; ( ) 21)('' −−−−= axaaxu . We see that 0)('' <xu  always. 
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Appendix 4: Instructions 
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Appendix 5: Screens. 
Screen: Stage 1; Period 1; Screen 1. 
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Screen: Stage 2; Market 2; Period 1; Screen 1. 
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Screen: Stage 2; Market 2; Period 1; Screen2. 
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Screen: Payment. 
 

 
 
 


