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Abstract

Many recent works have investigated the problem of extending a preference over a
set of alternatives to its power set, in an attempt to provide a formal representation
of the notion of freedom of choice. In general, results are limited to the finite case,
which excludes, for instance, the case of economic environments. This paper deals
with the possibility of extending those results to the context where the basic set
of alternatives is the n-dimensional Euclidean space. We present an extension of
the leximax criterion described by Bossert, Pattanaik and Xu (1994) to this more
general framework.
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1 Introduction

The aim of this work is to investigate the possibility of extending a preference
over a (possibly infinite) set of alternatives to its power set. The motivation
for that extension fits into the freedom of choice framework. According to this
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approach, the level of well-being enjoyed by an individual is determined by
the utility achieved from a given set of alternatives (instrumental value) plus
the degree of freedom provided by that opportunity set (intrinsic value).

There have been many relevant works in this field in recent times, starting
with the very notion of freedom of choice discussed in Hicks (1959), Buchanan
(1986), Dasgupta (1986) and Sen (1988, 1991a, 1991b). The slightly different,
though closely related, notion of preference for flexibility first appears in Koop-
mans (1964) and Kreps (1979) and is developed axiomatically in Arlegi and
Nieto (2001).

In Bossert, Pattanaik and Xu (1994) several rules for comparing subsets of
alternatives (opportunities) of a given set are defined and axiomatically char-
acterized; one of these rules is known as the leximax rule. According to this
rule, any two sets of alternatives are compared by first looking at the best
alternative in each set; if the comparison is not decisive, then the rule consid-
ers the second-best alternative, and so the procedure continues until there are
no more alternatives to be compared in either or both of the sets. In the first
case, the set with more alternatives is declared to be better; in the second one,
the two sets are indifferent.

Unfortunately, the leximax rule, as established in Bossert, Pattanaik and Xu
(1994), is defined only when the universe of alternatives is finite. This domain
restriction leaves no room for general environments, in which: a) the universe
of alternatives is the positive orthant of the n-fold cartesian product, and b)
individual preferences over this set can be represented by a utility function.
In this domain, none of the different rules presented in Bossert, Pattanaik
and Xu (1994) -even the leximax rule- applies. On the other hand, in the
classical consumer theory, comparisons between budget sets are made on the
sole basis of the indirect utility, which ignores any kind of freedom of choice
considerations.

This paper attempts to fill this gap by extending the notion of freedom of
choice to the case in which the basic set of alternatives is separable and possibly
infinite. In a way, this work follows in the footsteps of Pattanaik and Xu (2000),
who study different rankings of compact (and therefore possibly infinite) sets
in terms of freedom of choice, based on the “size” of the sets or, alternatively,
on the “size of the undominated surface” of the sets. We focus on the leximax
rule, and extend it to the case where sets may be infinite, but not necessarily
compact. We first establish some independent axioms (some of which match
the spirit of those in Bossert, Pattanaik and Xu (1994)), which we apply to
the infinite case. We propose a definition of the leximax criterion extended to
such a case, and prove a characterization theorem in this environment.

The structure of the paper is as follows: Section 2 presents the notation and
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definitions. Section 3 contains the axioms and some relevant facts deduced
from them. In Section 4 we establish the main result and prove the indepen-
dence of the axioms. Section 5 contains some comments and remarks. The
paper concludes with Section 6 (Appendix), where we present the proof of
fulfillment of the axioms by the defined criterion.

2 Notation and definitions

N and R denote, respectively, the set of all natural numbers and the set of all
real numbers, respectively, and Rn is the n-fold cartesian product of R. Let
X ⊂ Rn be a nonempty set of alternatives. In order to ensure that the axioms
used in the characterization are independent, X is assumed to contain at least
three elements.

Let R be a complete, reflexive, transitive ordering on X, that can be rep-
resented by a utility function. The indifference relation associated to R is
denoted by I, while the strict preference relation is denoted by P .

The set of all subsets of X, including the empty set, is denoted by 2X , and ¬
denotes the logical negation.

Let � be a transitive and asymmetric binary relation defined on 2X . We
write A � B to indicate that set A is strictly preferred to set B. We define
the associated weak preference and indifference relations in the usual way:
∀A, B ∈ 2X , A � B iff ¬(B � A), and A ∼ B iff A � B and B � A. Note
that the negative transitivity of � is not assumed. Thus, in this framework,
where alternatives may be more complex, the assumptions on � display the
reduction in the decision maker’s capability to rank objects.

We assume A � ∅, for all A ⊂ X, A 6= ∅.

We investigate possible preferences over sets of alternatives consistent with
a given preference structure defined on the basic alternatives. The formal
meaning of consistency will be given by the axioms contained in the next
section.

3 The axioms

We impose certain properties on the relation between the preference structure
on X and the ordering over 2X . The properties are as follows.
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Dominance (D)

Let A, B ⊂ X. If, for all b ∈ B, there exists a ∈ A such that aPb, then A � B.

Independence (In)

For all A, B ⊂ X, for all x, y ∈ X, such that xIy, x 6∈ A, and y 6∈ B, then

A � B ⇐⇒ A ∪ {x} � B ∪ {y}.

Robustness (Rb)

For all A, B, C ⊂ X, such that C ∩ (A ∪ B) = ∅ and verifying that ∀a ∈ A,
∀b ∈ B and ∀c ∈ C, aPc and bRc, then

A � B =⇒ A � B ∪ C

Indifference (I)

Let A, B ⊂ X. If there exist two one-to-one functions α : N → A and β : N →
B such that for all k ∈ N, α(k)Iβ(k), α(k)Ra for all a ∈ A\{α(1), . . . , α(k−1)}
and β(k)Rb for all β ∈ B \ {β(1), . . . , β(k − 1)}, then A ∼ B.

Interpretation of the axioms

(D) guarantees that, for any pair of sets A and B, such that for all b ∈ B
there exists an a ∈ A verifying aRb, then A is weakly preferred to B.

(In) embodies the same spirit as the Independence axiom used by Pattanaik
and Xu (1990), but in a weaker form. It states that when two indifferent alter-
natives are added to, or dropped from sets A, B, then the order of preference
of the sets will not be reversed. When y = x, then the axiom becomes very
similar to one used by Pattanaik and Xu (1990), or Bossert, Pattanaik and
Xu (1994).

(Rb) ensures that when a set whose alternatives are worse than any of the
alternatives in A∪B is added to the worst set, B, then the ordering between
A and B will not change. This is very similar to the “Robustness of Strict
Preference” axiom used by Bossert, Pattanaik and Xu (1994) extended to the
case in which we add not a single alternative but a set of alternatives. Ac-
cording to their motivation, (Rb) ensures that a lack of indirect utility cannot
be compensated by increasing the cardinality of the opportunity set, in the

4



sense that this strict preference cannot be undone by adding less attractive
alternatives to a set B that is already less desirable than a set A. It should be
noted that, when trying to consider at once the indirect utility provided by a
set and the freedom of choice measured as the number of its alternatives, con-
flicts between the two values inevitably arise. These conflicts can be resolved
by various alternative axioms. In the freedom of choice literature (Rb) is seen
simply as a plausible formula to solve them. Further possibilities can be found
in Bossert, Pattanaik and Xu (1994).

Axiom (I) is new, and extends the rule to an infinite context. This axiom
states that if both sets A and B contain an infinite number of good enough
alternatives , which are pairwise indifferent, then A and B must be considered
as being indifferent, whatever the remaining alternatives of the sets may be.

In other words, take A, B ⊂ X. Let A′ and B′ be two “best” infinite subsets of
A and B respectively, whose alternatives are indifferent pairwise, then A ∼ B.
The intuition behind this axiom is that, whenever the comparison between
A′ and B′ is not decisive, then A and B should be declared indifferent. If all
the alternatives in A′ are indifferent to those in B′, then it is unnecessary to
proceed any further, because if there are infinite indifferences at the highest
level, that is enough to make the primitive sets A and B indifferent also.

Axiom (D) guarantees that if b ∈ X is such that bPa for all a in a certain
set A, then {b} � A. The combination of axioms (Rb) and (In) leads to the
following results.

Lemma 1 Let A ⊂ X, b ∈ X. If for all a ∈ A, bPa, then {b} � A.

Proof of lemma 1: Since {b} � ∅, then, by (Rb), {b} � A. 2

Lemma 2 Let A, B ⊂ X, A finite.
If A ⊂ B, A 6= B, then B � A.

Proof of lemma 2: Since B\A � ∅, then, by (In), B � A. 2

As a direct consequence of lemma 1 and (In), we obtain the following property,
termed extension (E) in the related literature: for all x, y ∈ X, xRy ⇐⇒ {x} �
{y}. This axiom, which is very much a standard in the field, simply states that
the preference over alternatives is extended to singletons. This is reasonable
when the quality of the alternatives matters, which is not the case in some
approaches, where it is only the number of alternatives that matters in the
comparison of opportunity sets. Thus, Pattanaik and Xu (1990) studied a case
in which the freedom of choice attached to a set of opportunities is measured
simply by the number of alternatives. These authors assume that there will be
no distinction between sets of alternatives, such as singletons, which offer no
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freedom of choice at all. They then establish that for all x, y ∈ X, {x} ∼ {y}.
In this paper it is assumed that the number, as well as the quality of the
alternatives, is taken into account when comparing opportunity sets.

4 A characterization result

We can now propose an ordering of opportunity sets that satisfies the above
axioms, and which is the only one that fulfills such a list of required properties.
We call it the leximax ordering on 2X and it will be denoted by �L. Both the
name leximax, and the notation �L, have appeared previously in Bossert,
Pattanaik and Xu (1994), but unlike them, we use “leximax” and �L to refer
to an ordering on 2X , where X can be infinite.

In order to define the criterion �L, a piece of additional notation will be useful.
Let u : X → [0, 1] be such that for all x, y ∈ X, u(x) ≥ u(y) iff xRy, that is,
u is a utility function.

Let A ⊂ X; we use u(A) to denote the set {u(a) : a ∈ A}, which implies
u(∅) = ∅. Since u(A) is a bounded set, there exists sup u(A). If there exists
a ∈ A such that u(a) = sup u(A), this a will be denoted by a1. In this case, we
consider the bounded set u(A\{a1}), then there exists sup u(A\{a1}); again,
if there exists a ∈ A \ {a1} such that u(a) = sup u(A \ {a1}), this a will be
denoted by a2, and so on. It is possible, for instance, for there to exist more
than one a ∈ A such that u(a) = sup u(A), in this event one of them must be
chosen to be denoted by a1. This choice does not affect the procedure of the
criterion.

Definition

Given a (possibly infinite) set X , the leximax ordering on 2X is defined as
follows:

• ∀A 6= ∅, A �L ∅ ∼L ∅
• ∀A, B 6= ∅ we consider the following three possibilities:

1) a1 exists but not b1.

1.1 If a1Px, for all x ∈ B, then A �L B.
1.2 If there exists x ∈ B such that xPa1, then B �L A.

2) Neither a1 nor b1 exists.

2.1 If sup u(A) > sup u(B), then A �L B.
2.2 If sup u(B) > sup u(A), then B �L A.
2.3 If sup u(A) = sup u(B) then A ∼L B.
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3) Both a1 and b1 exist.
3.1 If a1Pb1, then A �L B.
3.2 If b1Pa1, then B �L A.
3.3 If a1Ib1, it could be that:

3.3.a A = {a1} and B = {b1}. In which case A ∼L B.
3.3.b A = {a1} and B 6= {b1}. In which case B �L A. Analogously,

if A 6= {a1} and B = {b1} we declare A �L B.
3.3.c A 6= {a1} and B 6= {b1}. In this case we consider the sets

A \ {a1} and B \ {b1}. If A \ {a1} and B \ {b1} are in one of the cases above
(from 1 to 3.3.b), then we conclude A �L B iff A \ {a1} �L B \ {b1}. If not,
we repeat the procedure as often as is necessary to find k ∈ N such that
aiIbi, i = 1, . . . , k, and A \ {a1, . . . , ak}, B \ {b1, . . . , bk} are in one of the
cases 1 to 3.3.b, concluding A �L B if A \ {a1, . . . , ak} �L B \ {b1, . . . , bk}.

The only case in which this algorithm does not come to an end is when,
for all k ∈ N, there exist ak ∈ A, bk ∈ B such that, akIbk. In which case, we
declare A ∼L B.

With respect to this new definition, the following remarks are in order:

(1) For the sake of simplicity, the numbering used above to describe the
different possibilities of the definition will be maintained in the proofs of
the results.

(2) Let A be a set of alternatives such that there exist a1, a2, . . . , ako but not
ako+1, and let us identify A with the sequence U(A) = {u(a1), u(a2), . . . ,
, u(ako), sup u(A\{a1, . . . ako}), 0, . . . }. Note, then, that in order to relate
a pair of sets, A and B, we are in fact lexicographically comparing U(A)
and U(B), with a restriction in a very particular case: if there exist ak

and bk, for k = 1, . . . ko such that akIbk; there exists ako+1; there does not
exist bko+1; and u(ako+1) = sup u(B \{b1, . . . , bko}), then A �L B, instead
of checking the subsequent elements of both U(A) and U(B). Thus, the
leximax ordering we propose gives priority to the value of the maximal of
U(A) against the supremum, when the latter does not belong to the set.

(3) The above definition is invariant with respect to any utility representa-
tion. The utility representation is used only in case 2) of the definition,
but all its subcases 2.1, 2.2 and 2.3 could be rewritten in terms of the
underlying preferences.

(4) The leximax rule is indeed an ordering. Its definition establishes the com-
pleteness of the ordering. In order to prove the reflexivity of the binary
relation, we consider three cases for any given set A:
(a) There exist a1, . . . , ako−1 but not ako , with ko ∈ N. From 3.3, to

compare A with itself, we must consider sup u(A \ {a1, . . . , ako−1})
and sup u(A\{a1, . . . , ako−1}). Then, by 2.3 in the definition, A ∼L A.

(b) There exist ak ∈ A, for all k ∈ N, thus by 3.3 in the definition
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A ∼L A.
(c) A is a finite set. Thus, by 3.3, A ∼L A.

�L is also transitive: assume A, B and C, such that A �L B and B �L C.
Then eight cases are considered:
(a) a1, b1 and c1 do not exist. Then, sup u(A) ≥ sup u(B) ≥ sup u(C)

and, by 2.2 and 2.3, A �L C.
(b) There exists a1 but neither b1 nor c1 exists. Then, a1Pb, for any b ∈ B

and sup u(B) ≥ sup u(C). Therefore a1Pc, for all c ∈ C. Thus, by
1.1, A �L C.

(c) There exists b1 but neither a1 nor c1 exists. This means that there
exists ā ∈ A, such that āP b1 and b1Pc, for any c ∈ C. Then

sup u(A) ≥ u(ā) > u(b1) ≥ u(c), for all c ∈ C,

therefore, sup u(A) > sup u(C), and, by 2.2, A �L C.
(d) Neither a1 nor b1 exists, but c1 does. We infer that sup u(A) ≥

sup u(B) and also the existence of b̄ ∈ B, such that b̄P c1. Thus,
there exists ā ∈ A verifying āRb̄. By the transitivity of P , āP c1, and
A �L C is held.

(e) Both a1 and b1 exist but c1 does not . We have a1Rb1 and b1Pc for
all c ∈ C, then a1Pc for all c ∈ C, therefore A �L C.

(f) Both a1 and c1 exist, but b1 does not. For all b ∈ B, a1Pb is obtained
and, also the existence of b̄ ∈ B, such that b̄P c1. Therefore a1Pc1

and we have A �L C.
(g) a1 does not exist , but b1 and c1 do. It follows that there exists ā ∈ A

such that āP b1 and again b1Rc1 is verified. Taking this into account,
we have āP c1, therefore A �L C.

(h) There exist a1, b1 and c1. In this case a1Rb1Rc1. We distinguish two
subcases.
(i) If a1Pb1 or b1Pc1, clearly A �L C.
(ii) If a1Ib1Ic1, we repeat the above process with a2, b2 and c2 in

place of a1, b1 and c1, to obtain A �L C. In the event of ak ∼ ck

for all k ∈ N, A ∼L C is held. Finally, if A, B or C are finite, it
is easy to show that A �L C.

The leximax ordering, such as defined in Bossert, Pattanaik and Xu (1994) for
finite sets, (we will call it the “finite-leximax” in order to distinguish between
the two versions) combines both the intrinsic and the instrumental value of
freedom of choice. Indeed that was the authors’ main motivation for proposing
such a rule. In other words, their proposal accommodates not only the role
of preferences, but also the number of alternatives. On the one hand, the
role played by the preferences is hightened by the fact that the finite-leximax
coincides with the Indirect Utility Criterion whenever there are no ties between
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the two respective best alternatives for a pair of sets. However, the “number-
of-alternatives-factor” resides in the fact that, in the event of a tie, instead
of declaring both sets indifferent (as the Indirect Utility Criterion would) the
rule considers further alternatives. Roughly speaking, the finite-leximax can
be understood as a successive replication of the Indirect Utility Criterion until
ties between best elements disappear, a replication in which we successively
eliminate alternatives as long as they are tied. Therefore, the finite-leximax
rule only declares two sets to be indifferent when, after all possible replications,
ties cannot be broken.

The extension of the finite-leximax proposed for infinite sets maintains all
these features. In the infinite case, however, the idea of a tie between maximal
elements is more complex. We therefore identify two possible tie situations:
a) as in the finite case, if in a pair of sets both best elements coincide and
belong to the set, or b) a pair of sets have no best element but their respective
suprema coincide. Having established what we mean by a “tie”, the extension
we propose retains the essence of the finite version. Likewise, whenever there
are no ties Indirect Utility has priority. On the other hand, whenever a tie
arises, as in the finite-leximax, we eliminate the tied elements and reapply the
Indirect Utility Criterion. Our extension of the leximax, like the finite-leximax,
declares two sets to be indifferent only after successive iterations have failed
to break successive ties. But in our context there are again two circumstances
in which it is impossible to break the tie: 1) when both sets are finite, and all
the elements are indifferent two by two, or 2) when both sets are infinite and
successive application of the algorithm implies applying it infinite times.

Note also that our extended leximax ignores the worst alternatives in an infi-
nite set A where there exists ko ∈ N such that there exist a1, . . . , ako but not
ako+1. We think that, given the availability of an infinite number of alternatives
“close to ako+1”, less desirable alternatives lose their relevance.

The leximax rule satisfies (D), (In) (Rb) and (I). The main result of our work
is the proof that this is the only rule that satisfies these axioms.

Lemma 3 The leximax rule defined �L satisfies Dominance.

Lemma 4 The leximax rule �L satisfies Independence.

Lemma 5 The leximax rule �L satisfies Robustness.

Lemma 6 The leximax rule �L satisfies Indifference.

(Proofs of Lemmata 3 to 6 are provided in the Appendix)

Theorem 7 Let � be an ordering on 2X .
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� satisfies (D), (In), (Rb) and (I) if and only if �=�L.

Proof of Theorem 7

For notational convenience, throughout the proofs given in the paper, for any
pair of sets A, B we assume that the first step of the rule (whether or not a1

and b1 exist) is the decisive one. Note that, if there exists a finite number of
pairs of initial elements that are indifferent two by two, and subsequently this
situation is not repeated, then the reasoning is not affected by eliminating the
initial pairwise indifferent elements.

As has been proved by lemmas 3, 4, 5 and 6, �L satisfies (D), (In), (Rb) and
(I). Therefore we have only to prove the sufficient part of the theorem: if � is
an ordering on 2X verifying (D), (In), (Rb) and (I), then �=�L.

Given that for all nonempty set A ∈ 2X , A �L ∅ ∼L ∅ directly follows from
the assumptions on �, we shall concentrate on the case in which A, B 6= ∅.

We will start by supposing that A ∼L B and then prove that A ∼ B. There
are two possible cases:

Case 2.3 Neither a1 nor b1 exists, and sup u(A) = sup u(B). Then, for any
b ∈ B, there exists a ∈ A such that aPb and, by (D), we have that A � B.
By analogy, for every a ∈ A, there exists b ∈ B such that bPa, and again by
(D), we arrive at B � A. From both relations we have A ∼ B.

Case 3.3 If A = {a1}, B = {b1}, by (In), A ∼ B. If A 6= {a1}, B 6= {b1} there
are two possibilities: Either both A and B are finite or neither A nor B is
finite. In the first case, by (In) A ∼ B. In the second case, by (I) A ∼ B

We now suppose that A �L B and we prove that this implies A � B. The
possible cases are:
Case 1.1 There exists a1 ∈ A, there does not exist b1 ∈ B, and a1Px, for all
x ∈ B. By lemma 1 {a1} � B. If A 6= {a1}, by lemma 2 we obtain A � {a1}.
In any case, A � {a1}, thus A � B.

Case 1.2 There does not exist a1 ∈ A, there exists b1 ∈ B and there exists
a ∈ A such that aPb1. By lemma 1 {a} � B. By lemma 2, A � {a}, then
A � B.

Case 2.1 There do not exist a1 ∈ A, b1 ∈ B and sup u(A) > sup u(B). Then
there exists a ∈ A such that aPb for all b ∈ B and then, by lemma 1, we have
{a} � B, and by lemma 2 A � B.

10



Case 3.1 There exist a1 ∈ A, b1 ∈ B and a1Pb1. If A 6= {a1}, by lemma 2,
A � {a1}. In any case, A � {a1}. On the other hand, by lemma 1, we have
{a1} � B, then A � B.

Case 3.3 There exist a1 ∈ A, b1 ∈ B such that a1Ib1, A 6= {a1} and B = {b1}.
Since {a1} ⊂ A, there exists a2 6= a1 such that a2 ∈ A. Also, since {a2} � ∅, by
(In) {a1, a2} � {b1}. If A = {a1, a2} we are done. If {a1, a2} ⊂ A, by Lemma
2 A � {a1, a2}, and by transitivity A � B. 2

Remark: Notice that in the proof, we did not directly appeal to axioms (Rb)
and (In). The reason is that, together, they imply lemmas 1 and 2, which are
repeatedly used in the proof. Therefore an alternative presentation of Theorem
7 could be formulated by dropping axioms (Rb) and (In), and replacing them
with lemmas 1 and 2.

The next result proves the independence of the axioms used in Theorem 7.

Theorem 8 Axioms (D), (In), (Rb) and (I) are independent.

Proof of Theorem 8

(1) Consider X = R where all alternatives are indifferent. Let A ⊂ R, and
let u(A) = ]A if A is a finite subset, u(A) = ℵo if A is a infinite countable
subset and u(A) = ℵ1 if A is a uncountable subset. The preference relation
on 2X defined by u satisfies (D), (In) and (Rb) but not (I).

(2) Consider a finite set X with at least three elements where a preference
relation R is defined. Let A, B ⊂ X, we define A � B iff a1Rb1, with
a1 and b1 the best alternatives on A and B respectively. This preference
relation on 2X satisfies (D), (I) and (Rb) but not (In).

(3) Consider a finite set X with at least three elements where a preference
relation R is defined. The lexicographic maximin relation defined on 2X

(see Pattanaik and Peleg (1990)) satisfies (In), (I) and (Rb) but not (D).
(4) Consider X = {x, y, z} where xPyPz. We define on 2X the linear pref-

erence relation {x, y, z} � {x, y} � {x, z} � {y, z} ∼ {x} � {y} �
{z} � ∅. This preference relation on 2X satisfies (In), (I) and (D) but not
(Rb). 2

5 Discussion and conclusions

(1) Note that we do not assume transitivity of the indifference, which in our
context might be too restrictive. Since ∼L is transitive, the transitivity
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of ∼ is a consequence of the axioms and the assumptions of asymmetry
and transitivity of �.

(2) The result presented in the theorem can be seen as an extension of the
leximax rule defined by Bossert, Pattanaik and Xu (1994) to a general
domain where the universal set of alternatives is the euclidean space, and
the decision maker’s preferences over this domain are representable on the
real line. Although the leximax procedure is usually defined for the finite
case, this article presents an extension to suit the continuous case. In
this extension we use the fact that the sets to be compared are bounded,
and thus have suprema. The comparison of sets applies the lexicographic
procedure to a finite list of (possibly infinite) bounded sets.

(3) The results are equally valid if we consider the domain of preferences and
axioms to be any arbitrary collection of subsets of X satisfying certain
conditions. In particular, let χ denote any family of subsets of X satisfying
the following:
(a) All singletons of X belong to χ.
(b) χ is comprehensive: If A ∈ χ, then, for all B ⊂ A, B ∈ χ.
(c) χ is closed by the union: For all A, B ∈ χ, A ∪B ∈ χ.
The three properties above ensure the axioms to be well-defined and
the proofs to go through. Therefore, our characterization still holds for
meaningful specifications of χ such as the family of all finite subsets of
X. 1

(4) As said before, the leximax criterion characterized in the previous sections
reproduces the leximax rule defined for finite sets in Bossert, Pattanaik
and Xu (1994). Therefore, the set axioms used by Bossert, Pattanaik
and Xu (1994) should be equivalent to the those used in our work when
restricted to a finite domain. Such equivalence, however, can be proved
only after some minor rearrangements. The reason is that, even in a finite
framework, there are slight differences between the two models: Bossert,
Pattanaik and Xu (1994) start, for the sake of simplicity, from a linear
ordering R over X (complete, transitive and antisymmetric), while our
primitive relation R is assumed to be an ordering (complete, transitive
and reflexive). A second difference is the treatment of the empty set,
which is outside the domain in Bossert, Pattanaik and Xu’s case. If we
considered our R to be a linear ordering on X, and if we extended Bossert,
Pattanaik and Xu’s domain to include the empty set as the worst set,
then the equivalence between the two referred groups of axioms can be
proved in the finite case. The proof is available from the authors upon
request.

1 The family of compact sets, which is also meaningful in economic contexts, is
not comprehensive. Comprehensiveness is only required for the proof of Lemma 2.
Therefore, any of the results in the article could be proved for the family of compact
sets with axioms (D), (In), (Rb) and (I) plus the property stated by Lemma 2, which,
for this particular case, is independent of the previous four.
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(5) Note that, in many cases, the leximax rule characterized in this paper
serves to show the intrinsic value of freedom of choice, while the standard
indirect utility rule does not. For example, let A be a classical budget
set, with a1 as its best alternative according to relation R (see figure 1).
Following the standard criterion of consumer theory, A ∼ {a1}, while
according to the leximax rule, A � {a1}.

(6) Ballester, de Miguel and Nieto (2004) have defined and characterized
the extension of the classical Indirect Utility Criterion to a similar do-
main of infinite environments. One of the key axioms used in this result
(Useless Freedom of Choice) states that, for all x, y ∈ X, xPy implies
{x, y} ∼ {x}. This axiom is violated by the leximax rule. On the other
hand, the leximax also violates one of the key axioms of Pattanaik and
Xu’s Cardinalistic Criterion, namely, Indifference Between No-Choice Sit-
uations, which requires {x} ∼ {y}, for all x, y ∈ X.

The above reflects the fact that the leximax criterion is supposed to
represent a compromise between those extreme positions and shares some
(but not all) of their features. Since the aim is to achieve a compromise,
properties that lean heavily towards one of the values (intrinsic or instru-
mental) must be rejected.

(7) Pattanaik and Xu (2000) propose different criteria for comparing compact
sets in terms of freedom of choice. Their criteria are based on the size of
the sets, measured by their volume (or area in the case of budget sets).
For example, let A, B be two budget sets such that B ⊂ A and their best
alternatives coincide, a1 = b1 (see figure 2). According to Pattanaik and
Xu’s approach, since A’s area is bigger than B’s, A should be declared
better than B.

However, according to the leximax rule, in the situation depicted in
figure 2, A ∼L B. Note that this seems to contradict the idea of freedom
of choice, as set A is bigger than set B. However, it can also be interpreted
from another point of view that maintains the spirit of freedom of choice.
In fact the reasons for A being indifferent to B are, first, that there
are the same number of alternatives in A as in B, and, second, that
these alternatives are equally desirable, that is, for each alternative in
A, different from a1, there is at least one alternative in B that is just as
desirable, and vice-versa.

The example above illustrates the different treatment given here to the
notion of freedom of choice with respect to Pattanaik and Xu (2000). As
we have already pointed out, Pattanaik and Xu’s approach is based on
the size of the set, measured by its area in the case of budget sets, while
our treatment has more to do with the number of alternatives the set
contains. In the finite case the number of alternatives provides a proper
measure of the size of the set, so the above mentioned distinction becomes
vacuous. However, when considering infinite sets, this distinction acquires
full relevance: A set A might be bigger in area than another set B (as in
figure 2), while having the same (infinite) number of alternatives.
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6 Appendix

Proof of lemma 3

Suppose that for all b ∈ B, there exists a ∈ A such that aPb; we have to prove
that A �L B. The possibilities, which depend on the existence of suprema,
are as follows:

1) a1 exists but b1 does not. Then a1Pb for all b ∈ B, and, by using 1.1 we
have A �L B.

1’) b1 exists but a1 does not. The hypothesis guarantees that there exists a ∈ A
such that aPb1, then, by 1.2, A �L B.

2) Neither a1 nor b1 exists. The hypothesis implies sup u(A) ≥ sup u(B) and,
by 2.1 and 2.3, we obtain A �L B.

3) Both a1 and b1 exist. Then necessarily a1Pb1, and case 3.1 implies that
A �L B 2

Proof of lemma 4

Let x, y ∈ X such that xIy, x /∈ A and y /∈ B. We will prove that A �L

B ⇐⇒ A ∪ {x} �L B ∪ {y}.

“ =⇒ ” The assumption A �L B could occur in six different cases.

Case 1.1 a1 exists but b1 does not, and a1Pb, for all b ∈ B. It could be that:
a) xRa1. In this situation there exist ā1 = x and b̄1 = y, such that

u(ā1) = sup u(A ∪ {x}) = u(b̄1) = sup u(B ∪ {y}).

Taking into account 3.3, in order to compare A ∪ {x} and B ∪ {y}, we only
need to compare A and B, therefore A ∪ {x} �L B ∪ {y}.

b) a1Px. Under these conditions u(a1) = sup u(A ∪ {x}). Moreover, a1Px,
xIy and a1Pb, for all b ∈ B, then a1Pb, for all b ∈ B ∪ {y}, and by 1.1,
A ∪ {x} �L B ∪ {y}.

Case 1.2 b1 exists but a1 does not, and there exists ao ∈ A such that aoPb1.
If xRa, for all a ∈ A the reasoning is the same as for case 1.1.-a), if ¬(xRa),
there exists a′ ∈ A such that a′Px and, in addition, the supremum is not
reached in A ∪ {x}. Thus, denoting by b̄1 = maxR{y, b1}, if ā = maxR{a, a′},
then u(b̄1) = sup u(B ∪ {y}) and āP b̄1, and, by 1.2, A ∪ {x} �L B ∪ {y}.
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Case 2.1 Neither a1 nor b1 exists, and sup u(A) > sup u(B). Note that sup u(A∪
{x}) = max{sup u(A), u(x)}, therefore, if u(x) ≥ sup u(A), by using 3.3 the
alternatives x and y must be removed from the sets we intend to compare,
thus, by 2.1, A ∪ {x} �L B ∪ {y}.

On the other hand, if sup u(A) > u(x), the supremum is not reached in A∪{x}
and sup u(A∪{x}) = sup u(A). In the additional event that u(x) ≥ sup u(B),
the supremum is reached in B ∪ {y} (at y) but sup u(A ∪ {x}) > u(x) =
u(y) = sup u(B ∪ {y}), and, by 1.2, A ∪ {x} �L B ∪ {y}. Otherwise, if
u(x) < sup u(B), the supremum is not reached either in A∪{x} or in B∪{y}
and sup u(A∪{x}) = sup u(A) > sup u(B) = sup B∪{y}, which by 2.1 implies
that A ∪ {x} �L B ∪ {y}.

Case 2.3 Neither a1 nor b1 exists, and sup u(A) = sup u(B). If u(x) ≥ sup u(A),
x and y must be removed from A∪{x} and B ∪{y}, respectively and, by 2.3,
A ∪ {x} ∼L B ∪ {y} is obtained. Otherwise, if u(x) < sup u(A), then

sup u(A ∪ {x}) = sup u(A) = sup u(B) = sup u(B ∪ {y}),

thus A ∪ {x} ∼L B ∪ {y}.

Case 3.1 There exist a1 and b1 with a1Pb1. In the additional event that xRa1,
by 3.3, we must drop x and y and compare sets A and B, thus A ∪ {x} �L

B ∪ {y} is obtained. Otherwise, if a1Px, the supremum of u(A ∪ {x}) and
u(B ∪ {y}) is reached at a1 and b̄1 = sup{y, b1} respectively. In both cases
a1P b̄1 and 3.1 guarantees A ∪ {x} �L B ∪ {y}.

Case 3.3 There exist a1 and b1 with a1Ib1. If there exist ak ∈ A and bk ∈ B,
and akIbk, for all k ∈ N, there could be:

a) xPak, for all k ∈ N. Noting that ao = x and bo = y, and by using 3.3 with
the sequences {ak} and {bk}, k ∈ N ∪ {0}, A ∪ {x} ∼L B ∪ {y} is obtained.

b) There exists ko ∈ N such that ako−1RxRako . Using 3.3 with the sequences
{a1, . . . , ako−1, x, ako , . . .} and {b1, . . . , bko−1, y, bko , . . .}, A∪{x} ∼L B ∪{y} is
also verified.

c) akPx, for all k ∈ N. A ∪ {x} ∼L B ∪ {y} is again obtained, by using 3.3
with the original sequences {ak} and {bk}.

If B = {b1}, there could be

xRa1: Noting again that ao = x and bo = y, by using 3.3, we claim that
A ∪ {x} ∼L B ∪ {y}.

or a1Px: Then, by 3.3, A ∪ {x} ∼L B ∪ {y}.
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“ ⇐= ” Throughout this part of the proof we denote the best elements in
A ∪ {x} and B ∪ {y} by a1 and b1 respectively. The assumption A ∪ {x} �L

B ∪ {y} could occur in five cases.

Case 1.1 a1 exists, the supremum is not reached in B ∪ {y}, and a1Pb, for all
b ∈ B ∪ {y}. Then, since xIy, a1 6= x. Thus u(a1) = sup u(A) and a1Pb, for
all b ∈ B. By 1.1, A �L B.

Case 1.2 b1 exists but a1 does not, and there exists a ∈ A ∪ {x} such that
aPb1. Note that x = a would imply that xPb1Ry, therefore a 6= x. Thus, if
the supremum is reached in B (at element b̄1), aPb1P b̄1, and then A �L B.
Otherwise, if the supremum is not reached in B, then aPb1 = yRb, for all
b ∈ B. In this situation, the supremum is not reached in either A or B, and
there exists a ∈ A verifying that aPb for all b ∈ B. Then sup u(A) > sup u(B)
and, by 2.1, A �L B.

Case 2 The supremum is not reached in either A∪{x} or B∪{y}, and sup u(A∪
{x}) ≥ sup u(B ∪ {y}). Consequently the supremum is not reached in either
A or B, sup u(A ∪ {x}) = sup u(A) and sup u(B ∪ {y}) = sup u(B). Then
A �L B.

Case 3.1 Both a1, b1 exist, and a1Pb1. It is verified that x 6= a1, then u(a1) =
sup u(A) and a1Pb for all b ∈ B. In the event that the supremum is reached
at b̄1 in B, we have a1P b̄1 and, by 3.1, A �L B. Otherwise, if the supremum
is not reached in B, we have a1Pb for all b ∈ B and, by 1.1, A �L B.

Case 3.3 If there exist ak ∈ A ∪ {x} and bk ∈ B ∪ {y}, for all k ∈ N, and
akIbk. If ak 6= x and bk 6= y for all k ∈ R, then, by using 3.3, with the same
sequences, A �L B is obtained. If there exists k1 ∈ N such that ak1 = x, we
have yIx = ak1Ibk1Rbk, for all k ≥ k1. In the additional event that there exists
k2 6= k1 such that ak1 = x and bk2 = y, we remove the element k1 from both
sequences and change the element k2 from the bk-sequence for bk1 to obtain a
new pair of sequences of elements of A and B. Then, under the conditions of
3.3, A �L B. Otherwise, if bk 6= y, for all k ∈ N, we only remove element k1

from both sequences to obtain a pair of sequences on A and B respectively
under the conditions of case 3.3, then A �L B is obtained too.

If A and/or B are finite sets, by similar steps it can be established that A �L

B. 2

Proof of lemma 5 Let A, B, C ⊂ X, such that C∩(A∪B) = ∅ and verifying
that ∀a ∈ A, ∀b ∈ B and ∀c ∈ C, aPc and bRc. Suppose that A �L B, there
are five possibilities:

Case 1.1 a1 exists but b1 does not, and a1Pb for all b ∈ B. Since bRc ∀b ∈ B
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and ∀c ∈ C, the supremum in B ∪ C is not reached. Moreover, a1Pc for all
c ∈ C, then a1Px, for all x ∈ B ∪ C, then by 1.1, A �L B ∪ C.

Case 1.2 b1 exists, a1 does not, and there exists a ∈ A such that aPb1. In
addition we have b1Rc, for all c ∈ C, then the supremum of B ∪ C is reached
at b1, and by 1.2, A �L B ∪ C.

Case 2.1 Neither a1 nor b1 exists, and sup u(A) > sup u(B). In this case the
supremum of B∪C is again not reached and, in addition, sup u(B) = sup u(B∪
C). Thus, by 2.1, A �L B ∪ C.

Case 3.1 There exist a1 and b1 verifying that a1Pb1. Clearly, the supremum of
B ∪ C is reached at b1, then, by 3.1, A �L B ∪ C.

Case 3.3 There exist a1 and b1, verifying that a1Ib1, A 6= {a1} and B = {b1}.
We must compare A\{a1} and C. Since aPc, for all a ∈ A and c ∈ C, A �L C
is held, whether a2 and c1 exist or not. Then A �L B ∪ C. 2

Proof of lemma 6 Let A, B ⊂ X, and let {ak} ⊂ A and {bk} ⊂ B be
sequences verifying the conditions of the Indifference axiom, in view of case
3.3, we have A ∼L B. 2
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