TÉSIS DE MÁSTER:

Funcionalización de nanofibras bacterianas para la presentación de péptidos elicitores de la respuesta inmune innata en plantas

Sara Labiano Sevigné
2015-2016

Directora: Cristina Solano Goñi
Codirectora: Jaione Valle Turrillas
AGRADECIMIENTOS

Una vez finalizado este trabajo, me gustaría dar las gracias a toda la gente que lo ha hecho posible, empezando por Iñigo Lasa y Cristina Solano, por la oportunidad de trabajar con ellos a pesar de que parte del trabajo se podía alejar de su campo. Gracias Cristina, por dirigir el trabajo y sobre todo por tu tiempo.

Gracias a Amaia, por enseñarme con paciencia, por ayudarme siempre, por tus consejos, tus advertencias, ¡gracias!

A Ana Zabalza y a Francisco José Muñoz por su disposición a echarnos una mano siempre que lo hemos necesitado.

Por último gracias a todo el laboratorio de biofilms, que en alguna ocasión me han ayudado a solucionar cualquiera de los problemas que iban surgiendo.

Gracias a todos.
ÍNDICE

ÍNDICE DE FIGURAS..4

ÍNDICE DE TABLAS..5

RESUMEN..6

ABSTRACT...7

1.- INTRODUCCIÓN..8

1.1 INMUNIDAD INNATA EN PLANTAS..8

1.2 PÉPTIDOS ELICITORES...10

1.2.1 FLAGELINA..10

1.2.2 FACTOR DE ELONGACIÓN TU (EF-Tu)...11

1.2.3 RESPUESTA ELICITORA ASOCIADA A LA FLAGELINA Y A EF-Tu.............................12

1.3 ESTUDIOS DE RESISTENCIA A PATÓGENOS MEDIANTE EL EMPLEO DE PÉPTIDOS ELICITORES..14

1.4 FIBRAS CURLI..15

1.4.1 CARACTERÍSTICAS...15

1.4.2 COMPONENTES DE LAS FIBRAS CURLI...15

1.4.3 CARACTERIZACIÓN FENOTÍPICA DE LA FORMACIÓN DE FIBRAS.........................18

1.5 NANOFIBRAS FUNCIONALIZADAS..19

2.- OBJETIVO..21

2.1- OBJETIVO GENERAL...21

2.2 OBJETIVOS ESPECÍFICOS..21
3.- MATERIAL Y MÉTODO ...22

3.1- CEPAS BACTERIANAS ..22

3.2- PLÁSMIDOS ..23

3.3- OLIGONUCLEÓTIDOS ...23

3.4- CULTIVO DE BACTERIAS ..23

3.5 ENZIMAS Y AMPLIFICACIÓN DEL ADN ..24

3.6 TRANSFORMACIÓN DE BACTERIAS ...24

3.7 PURIFICACIÓN DE ADN ...25

3.8 ELECTROFORESIS DEL ADN ..25

3.9 CUANTIFICACIÓN DE PROTEÍNAS ..25

3.10 CONSTRUCCIÓN DEL PLÁSMIDO pvs72::csgA_His6_flg22 y pvs72::csgA_His6_elf18 ...25

3.11 PURIFICACIÓN DE FIBRAS ...26

3.11.1 INDUCCIÓN DE LA EXPRESIÓN Y PURIFICACIÓN DE FIBRAS MEDIANTE CROMATOGRAFÍA DE AFINIDAD ...26

3.11.2 INDUCCIÓN DE LA EXPRESIÓN Y PURIFICACIÓN DE FIBRAS MEDIANTE TRATAMIENTO CON SDS ...27

3.11.3 ANÁLISIS DE LAS FIBRAS PURIFICADAS MEDIANTE WESTERN BLOT ...28

3.12 PÉPTIDOS ..28

3.13 CONDICIONES DE LAS PLANTAS ..28

3.14 ENSAYO DE PRODUCCIÓN DE ESPECIES REACTIVAS DE OXÍGENO29

4.- RESULTADOS Y DISCUSIÓN ...30
4.1 CONSTRUCCIÓN DE LOS PLÁSMIDOS pVS72::csgA_6His_flg22 y pVS72::csgA_6His_elf18..30

4.2 ANÁLISIS FENOTÍPICO DE LA PRODUCCIÓN DE FIBRAS.................................35

4.3 PURIFICACIÓN DE FIBRAS DE CSGA FUNCIONALIZADAS CON LOS PÉPTIDOS flg22 y elf18...38

4.3.1 PURIFICACIÓN DE FIBRAS MEDIANTE CROMATOGRAFÍA DE AFINIDAD...38

4.3.2 PURIFICACIÓN DE FIBRAS MEDIANTE TRATAMIENTO CON SDS.....40

4.4 ANÁLISIS DE LA CAPACIDAD ELICITORA DE LA RESPUESTA INMUNE EN PLANTAS DE LAS FIBRAS FUNCIONALIZADAS...............................41

5.- CONCLUSIÓN..47

6.- BIBLIOGRAFÍA..48
ÍNDICE DE FIGURAS

Figura 1. Respuesta inmune de la planta tras la inducción con flagelina. Esquema de PTI y de ETI. (Chinchilla et al., 2007).

Figura 2. Dimerización del receptor FLS2 y BAK1 tras el reconocimiento del péptido flg22 (Boller et al., 2009).

Figura 3. Oligomerización de los operones csgBAC y csgDEFG y estructura de csgA y csgB (Van Gerven et al., 2015).

Figura 4. Esquema de componentes de las fibras curli (Van Gerven et al., 2015).

Figura 5. Programación genética de las fibras curli funcionalizadas (Nguyen et al., 2014).

Figura 6. Fragmento del plásmido pVS72::CsgA_His6 que codifica la proteína CsgA fusionada a una etiqueta de seis histidinas (color violeta) que sirve como molde para la amplificación de ADN.

Figura 7. A) Amplificación del fragmento elf18 (Ndel_csgA_6His_elf18_XbaI) con un tamaño de 560 pb. B) Amplificación del fragmento flg22 (Ndel_csgA_6His_flag22_XbaI) con un tamaño de 572 pb.

Figura 8. Resultado de la PCR de chequeo de transformantes de XL1Blue transformados con el producto de ligación pJET + inserto csgA_His6_elf18 o csgA_His6_flag22.

Figura 9. Productos de la digestión de los plásmidos pVS72, pJET1.2::csgA_His6_elf18 y pJET1.2::csgA_His6_flag22 con las enzimas Ndel y Xbal.

Figura 10. Mapa de las construcciones de los plásmidos finales, pVS72::csgA_His6_flag22 y pVS72::csgA_His6_elf18.

Figura 11. Amplificación del fragmento elf18 (Ndel_csgA_His6_elf18_XbaI) y flag22 (Ndel_csgA_His6_flag22_XbaI) del plásmido pvs72 en XL1B (560 y 572 pb).

Figura 13. Visualización de la producción de fibras amiloides por *Echerichia coli* MG1655 ΔcsgA transformada con diferentes plásmidos.

Figura 14. Análisis por Western Blot de las fibras purificadas mediante cromatografía de afinidad con una resina de níquel: elf18 (csgA_His6_elf18), 18’1 KDa; flg22 (csgA_His6_flg22), 18’3 KDa; His (csgA_His6), 16’1 KDa. ST: sin tratar (agua milliQ); AF: fibras tratadas con ácido fórmico.

Figura 15. Análisis por Western Blot de las nanofibras purificadas mediante tratamiento del sedimento celular con SDS. Muestras de CsgA_His6_flg22 (18’3 KDa) y CsgA_His6_elf18 (18’1 KDa) tratadas con ácido fórmico.

Figura 16. Producción de ROS en discos de *Arabidopsis thaliana* mediante la inducción con los péptidos sintéticos.

Figura 17. Producción de ROS en discos de *Arabidopsis thaliana* con las fibras funcionalizadas.

Figura 18. Fig. 18. Análisis por Western Blot de las nanofibras sonicadas. CsgA_His6_flg22 (18’3 KDa) y CsgA_His6_elf18 (18’1 KDa).

Figura 19. Producción de ROS en discos de *Arabidopsis thaliana* con las fibras funcionalizadas sonicadas.

ÍNDICE DE TABLAS

Tabla 1: Cepas bacterianas utilizadas en este estudio.

Tabla 2: Plásmidos utilizados en este estudio.

Tabla 3: Oligonucleótidos empleados como cebadores en este proyecto.

Tabla 4: Péptidos elicitores sintéticos utilizados en este proyecto.
RESUMEN

Las plantas son organismos sésiles capaces de reconocer estructuras altamente conservadas entre diferentes patógenos, tales como la flagelina o el factor de elongación EF-Tu. Estas estructuras reciben el nombre de patrones moleculares asociados a patógenos y son reconocidos por la planta a través de receptores específicos de reconocimiento de patrones. Dicho reconocimiento da lugar a una respuesta de defensa innata o basal que incluye la producción de especies reactivas de oxígeno y que restringe el crecimiento de los patógenos en las inmediaciones de la zona infectada. La utilización de los péptidos elicitores de la respuesta inmune flg22 y elf18, derivados de la flagelina y del EF-Tu respectivamente, se han propuesto como una estrategia alternativa o complementaria al uso de antimicrobianos y productos fitosanitarios en el campo de las ciencias agrarias, pero su uso con fines terapéuticos se ha visto limitado por el elevado coste de síntesis y su reducida vida media.

Con el fin de mejorar la estabilidad de los péptidos elicitores, favorecer su interacción con la planta y reducir el coste de producción, en este trabajo de máster, en primer lugar, se ha ingenierizado genéticamente una cepa de E. coli para desarrollar un sistema de presentación de péptidos elicitores basado en la utilización de nanofibras de CsgA fusionadas a flg22 y elf18, con estructura amiloide. Dichas nanofibras son agregados polipeptídicos con una estructura tridimensional extremadamente estable. En segundo lugar, se ha puesto a punto el procedimiento de producción y purificación de las nanofibras funcionalizadas. Por último y para comprobar la capacidad elicitora de las fibras, se ha determinado la producción de especies reactivas de oxígeno por la planta tras su exposición a las fibras CsgA::flg22 y CsgA::elf18. Los resultados han demostrado que dichas fibras no son capaces de inducir la producción de especies reactivas de oxígeno y sugieren que las fibras de CsgA funcionalizadas con péptidos elicitores no constituyen una alternativa al empleo de péptidos sintéticos como inductores de la respuesta inmune de la planta.

Palabras clave: Inmunidad innata, PAMPs, elicitor, flg22, elf18, fibra curli.
ABSTRACT

Plants are sessile organisms that are able to recognize highly conserved structures amongst different pathogens, such as flagellin or the elongation Factor Tu. These structures are called pathogen-associated molecular patterns (PAMPs) and are recognised by the plant through specific pattern recognition receptors (PRRs). This recognition leads to an innate immune defence response that includes the production of reactive oxygen species and that restricts the growth of pathogens around the infected area. The use of flg22 and elf18 immune response-eliciting peptides (derived from flagellin and EF-Tu, respectively) has been proposed as an alternative or complementary strategy to the use of antimicrobial agents and phytosanitary products in the field of agricultural sciences, although their use for therapeutic purposes has been restricted due to their high cost of synthesis and short half-life.

With the aim of improving the peptide stability, enabling plant interaction and reducing cost production, in this Master's thesis, firstly, a strain of E. coli was genetically engineered in order to develop a system to present elicitor peptides, based on the production of CsgA nanofibers fused to flg22 and elf18 peptides, with an amyloid structure. Such nanofibers are polypeptide aggregates with an extremely stable three-dimensional structure. Secondly, a protocol of production and purification of functionalised nanofibers was established. Finally and with the aim of checking the eliciting capacity of the fibres, the production of reactive oxygen species by the plant, following the exposure to CsgA::flg22 and CsgA::elf18 fibres, was determined.

Results showed that such fibers are not capable of inducing the production of reactive oxygen species, and suggest that functionalised CsgA fibers with elicitor peptides are not an alternative to the use of synthetic peptides as inducers of the plant immune response.

Keywords: Innate immunity, PAMPs, elicitor, flg22, elf18, curli fiber.
1 INTRODUCCIÓN

1.1 INMUNIDAD INNATA EN PLANTAS

Las plantas son organismos capaces de reconocer y responder ante diferentes estímulos, como el estrés abiótico o el estrés biótico. El estrés biótico puede estar causado por fitopatógenos que atacan la superficie de la planta y rompen las barreras físicas, como la cutícula o la pared celular, consideradas como la primera línea de defensa (Bigerard et al., 2015).

Los fitopatógenos que han atravesado esta línea de defensa son capaces de desarrollar mecanismos que provocan la apertura de los estomas y además pueden permanecer en el apoplasto, el espacio intercelular en el tejido de la hoja. Una vez que entran en contacto con la célula vegetal, ésta expresa receptores de superficie capaces de reconocer moléculas presentes en los patógenos, que activarán una respuesta post-invasión (Chinchilla et al., 2007). Este sistema, que pertenece a la inmunidad innata, mediante el cual la planta es capaz de reconocer a través de receptores de superficie, denominados Pattern Recognition Receptor (PRRs), patrones moleculares asociados a patógenos, se conoce como Pattern-triggered immunity (PTI). Los patrones moleculares asociados a patógenos (Pathogen associated molecular patterns, PAMPs) también llamados patrones moleculares asociados a microorganismos (Microbes associated molecular patterns, MAMPs) actúan como elicotores, capaces de estimular y provocar una respuesta en la planta. Esta respuesta rápida se caracteriza por la producción de especies reactivas de oxígeno (ROS), especies reactivas de nitrógeno, como el óxido nítrico, deposición de callosa, producción de etileno, activación de la vía MAPKs (mitogen-activated protein kinasa), alteraciones en la membrana plasmática y la inducción de compuestos antimicrobianos (Newman et al., 2013).

En cuanto al estrés oxidativo, inducido por PAMPs, éste se caracteriza por la generación y acumulación transitoria de ROS tales como el peróxido de hidrógeno (H₂O₂), el oxígeno singlete (O₂), el anión superóxido (O₂⁻) y el radical hidroxilo (OH) que también se producen durante el metabolismo basal de la planta (Wrzaczek et al., 2013). El equilibrio entre producción y degradación de estas moléculas determina su
función, es decir, si actúan como señalizadores o generan toxicidad por su gran poder oxidativo. La NADPH oxidasa, peroxidasas de clase III, lipooxigenasas, algunos compartimentos celulares como los cloroplastos, mitocondrias o peroxisomas son importantes productores de ROS (Camejo et al., 2016). Se ha propuesto que las especies ROS funcionan como moléculas antimicrobianas, impidiendo la entrada de los patógenos a través de la pared celular por entrecruzamientos de proteínas que la refuerzan y además como mensajeros secundarios que activan nuevas vías de defensa, como el cierre de los estomas (Wrzaczek et al., 2013).

Los patógenos pueden evitar la PTI a través de proteínas efectoras, que son inyectadas por el sistema de secreción de tipo III (type III secretion system, TTSS) (Chichilla et al., 2007; Newman et al., 2013; Albert et al., 2013). Esto permite que actúe otra vía de defensa, ETI (effector-tiggered immunity), como resultado de la activación de genes de resistencia de la planta. Esta respuesta es muy específica y más rápida y amplificada que la PTI, que en muchos casos culmina en una muerte celular localizada y programada, denominada HR (hypersensitive response) (Fig.1)

![Figura 1. Respuesta inmune de la planta tras la inducción con flagelina. Esquema de la respuesta PTI y ETI (Chinchilla et al., 2007). En la respuesta PTI, la flagelina de la bacteria es reconocida por el receptor FLS2, que genera un flujo de iones, generación de ROS, biosíntesis de etileno, la activación de la vía MAPKs y de los factores de transcripción WRKY. La bacteria es capaz de inyectar proteínas efectoras que inhiben la respuesta PTI, mientras que las plantas pueden contrarrestar este efecto mediante receptores intracelulares. La ETI puede considerarse una potenciación de la respuesta PTI permitiendo una muerte celular rápida y localizada (HR).](image-url)
1.2 PÉPTIDOS ELICITORES

Como se ha comentado anteriormente, las plantas contienen receptores capaces de percibir PAMPs, tales como la quitina de los hongos, el péptidoglicano y el lipopolisacárido bacteriano, la flagelina o el factor de elongación Tu. La característica común entre los PAMPs es que se trata de moléculas muy conservadas entre diferentes patógenos pero ausentes en el huésped, lo cual permite la activación del sistema inmune innato de la planta, PTI, de manera general y no asociada a un patógeno específico. Los PAMPs proteicos más analizados en la literatura son la flagelina bacteriana y el factor de elongación Tu (EF-Tu).

1.2.1 FLAGELINA

La flagelina es la proteína que constituye el filamento del flagelo bacteriano, una estructura helicoidal anclada a la pared celular que juega un papel fundamental en la movilidad de la bacteria. Felix et al. (Felix et al., 1999) identificaron a la flagelina como el principal elicitor bacteriano y demostraron que es reconocida por la planta con alta especificidad y sensibilidad. A partir de entonces, se han llevado a cabo numerosos estudios en Arabidopsis, tomate y otras plantas revelando que el reconocimiento de la flagelina se produce en la mayoría de las especies. Los efectos que se observan en Arabidopsis por el reconocimiento de la flagelina son la deposición de callosa, producción de ROS, inducción de proteínas relacionadas con patogénesis y una fuerte inhibición del crecimiento.

La flagelina de diferentes bacterias muestra homología, a nivel de la secuencia aminoacídica, en la región N-terminal y C-terminal, siendo la parte central más variable, tanto en tamaño como en secuencia. La región N-terminal es la más conservada entre las diferentes especies, concretamente el péptido N-terminal de 22 aminoácidos denominado flg22. Este fragmento proteico es un potente elicitor a concentraciones nanomolares, aunque también péptidos de 15-20 aminoácidos incluidos en esta secuencia han demostrado tener actividad elicitora. La secuencia clásica y más utilizada como péptido es la basada en el flagelo de Pseudomonas aeruginosa, QRLSTGSRINSKDDAAGLQIA, que se corresponde al péptido de 22
aminoácidos flg22 (Felix et al., 1999). Por el contrario, bacterias, pertenecientes a géneros asociados con plantas, tales como Agrobacterium y Rhizobium, muestran diferencias en el dominio N-terminal de la flagelina y no son capaces de activar la respuesta inmune de la planta (Felix et al., 1999).

El reconocimiento de la flagelina se lleva a cabo mediante el receptor FLS2, Flagellin Sensing 2 (Gómez-Gómez et al., 2000) (Fig. 2). Pertenece a la familia RLKs (receptor-like kinases) y está bastante conservado entre las diferentes especies (Boller et al., 2009). Es una proteína con un dominio extracelular rico en leucinas (28 leucinas), un dominio transmembrana y un dominio citoplasmático serina/treonina kinasa. Estas características están presentes en las proteínas codificados por genes de resistencia (Gómez-Gómez et al., 2000).

1.2.2 FACTOR DE ELONGACIÓN TU (EF-Tu)

En la biosíntesis de proteínas, durante la traducción de la secuencia de mRNA a aminoácidos, el ribosoma se asocia a diferentes factores de elongación. El más abundante es el factor de elongacion EF-Tu. Su función es dirigir al RNAt al sitio de unión en el ribosoma (excepto al RNAt iniciador). Este factor, citoplasmático, fue descrito como un potente elicitor del sistema inmune en plantas en 2004 por Kunze et al. (Kunze et al., 2004), quienes descubrieron que en mutantes que habían perdido la capacidad de producir flagelina (Escherichia coli flic-), otra proteína era capaz de actuar como elicitor. El factor de elongación EF-Tu es una proteína muy abundante y conservada. Excepto en pequeñas regiones, las secuencias de diferentes bacterias comparten más del 90% de identidad (Kunze et al., 2004). Como en el caso de la flagelina, la región N-terminal es la que presenta la actividad elicitora y se pueden encontrar dos péptidos con capacidad de estimular el sistema inmune innato de las plantas, denominados elf18 y elf26. El péptido de 18 a.a. de Escherichia coli, SKEKFERTKPHNVGTIG se ha utilizado en varios estudios para analizar la capacidad elicitora y su mecanismo de acción. Así, Zipfel et tal. (Zipfel et al., 2006), identificaron el receptor del EF-Tu, que es similar a FLS2 ya que pertenece a la familia de los RLKs, pero presenta 21 leucinas en vez de 28 en el dominio extracelular. Este receptor
recibe el nombre de EFR, *Ef-Tu receptor*, y se encuentra en la membrana plasmática de las células vegetales. Como se ha mencionado antes, el factor EF-Tu es una proteína citoplasmática pero también ha sido detectada en el secretoma de algunas bacterias como *Xanthomonas campestris*, *Pseudomonas fluorescens* o *Erwwinia chrysanthemi* (Zipfel et al., 2006). La percepción de este factor y la respuesta inmune que se produce sólo se observa en plantas de la familia *Brassicaceae*.

1.2.3 RESPUESTA ELICITORA ASOCIADA A LA FLAGELINA Y A EF-Tu

En la evolución, se considera que la respuesta basada en PAMPs de PTI es más estable en el tiempo y entre especies que la ETI, generada como resultado de la evolución de la planta frente a las nuevas estrategias invasivas de los patógenos (Bigeard et al., 2015). La percepción de los péptidos elicitores induce una respuesta rápida, en unos segundos. En estudios previos (Zipfel et al., 2006; Chinchilla et al., 2007; Boller et al., 2009; Bigeard et al., 2015) se ha descrito que las vías de señalización que desencadenan la flagelina y el EF-Tu son muy similares. Primero se produce una interacción entre el receptor FLS2 o EFR y BAK1 (BRI1 associated receptor kinase 1), inicialmente separados (Fig. 2), pero asociados después de la interacción del receptor con el péptido elicitor. Tras la dimerización, se producen una serie de auto y trans-fosforilaciones. Las proteínas citoplasmáticas BIK1 (*Botrytis-induced kinase 1*) y PBLs (*PBA1-like*), asociadas inicialmente con FLS2 y EFR, se fosforilan y se liberan al citoplasma, desencadenando una serie de respuestas que se explican a continuación (Bigeard et al., 2015):

- **RESPUESTA MUY TEMPRANA (1-5 minutos)**
 - Flujo de iones: Se produce la alcalinización del medio de crecimiento debido a cambios en el flujo de iones. Se abren los canales de H^+ y Ca^{2+}, lo que produce
un aumento de estos iones en el interior de la célula. Además, se exportan iones como el K⁺, Cl⁻ o el nitrato, permitiendo la despolarización de la membrana. El aumento de Ca²⁺ puede servir como segundo mensajero para promover la apertura de otros canales o para la activación de proteínas kinasas dependientes de calcio.

- Estrés oxidativo: Se producen especies reactivas de oxígeno, que tienen diferentes funciones. Pueden actuar directamente como moléculas antimicrobianas, impidiendo la entrada de patógenos o como mensajeros secundarios.

- Activación de MAPKs: Se activa la vía de las MAPKs. MPK3 y MPK6 fosforiladas actúan sobre los factores de transcripción WRKY, que van a activar la transcripción de genes de defensa de la planta. Además, se produce la fosforilación de otras proteínas como la RbohD (Respiratory burst oxidase homologue D) y la NADPH.

- RESPUESTA TEMPRANA (5-30 minutos)
 - Biosíntesis de etileno: Se produce un incremento de la síntesis de la hormona etileno, por el incremento en la actividad de la enzima ACC (1-aminocyclopropane-1-carboxylate) que puede ser detectada a los 10 minutos de exposición al péptido elicitor.
 - Endocitosis del receptor: A los 10-20 minutos se produce la endocitosis del receptor FLS2 o EFR en vesículas.
 - Activación de genes: Se produce la activación de más de 1000 genes en los 30 primeros minutos y la represión de unos 200. Además, se produce un aumento de síntesis de los receptores FLS2 y EFR.

- RESPUESTA TARDÍA (Horas-Días)
 - Deposición de callosa: Se produce más o menos a las 16 horas.
• Inhibición del crecimiento: Se ha visto que tanto con el péptido flg22 como con elf26, se produce una inhibición del crecimiento y se activa la inducción de miRNA que regulan negativamente la respuesta frente a auxinas.

1.3 ESTUDIOS DE RESISTENCIA A PATÓGENOS MEDIANTE EL EMPLEO DE PÉPTIDOS ELICITORES

Los fitopatógenos son capaces de producir grandes pérdidas económicas en algunos cultivos. Por eso es importante estudiar y entender como algunas plantas pueden resistir al ataque de estos microorganismos y poder aplicar esas características a cultivos susceptibles. Para llevar a cabo estos estudios, algunos autores han utilizado elicitores, como el péptido flg22, potenciando así la respuesta inmune de la planta. En 2015, Shi et al. (Shi et al., 2015) trabajaron con la respuesta PTI producida por el péptido flg22 de Xanthomonas citri spp. citri (Xflg22) en diferentes especies de cítricos y observaron que la expresión de ciertos genes relacionados con la defensa de la planta se inducía en las plantas resistentes, mientras que en las susceptibles esta expresión no se veía aumentada. Es decir, correlacionaron la expresión de genes de defensa con la resistencia que la planta presentaba. Estos autores sugirieron que la respuesta defectiva de las plantas sensibles se podría deber a un mal reconocimiento del péptido por parte del receptor FLS2 o a interrupciones en la cascada de señalización que Xflg22 desencadena. En esta línea, en 2016 Shi et al. (Shi et al., 2016) analizaron las secuencias de aminoácidos del receptor de la flagelina FLS2 de distintas especies y observaron que las diferencias en la secuencia del receptor estaban relacionadas con la resistencia que la planta presentaba.

En otro estudio, Van Aubel et al. (Van Aubel et al., 2016) demostraron que un elicitor formado por oligómeros de quitosano y pectina era capaz de inducir una respuesta inmune en plantas de tomate y en último término potenciar la resistencia de la planta a la enfermedad causada por Leveillula taurica (oidio).
1.4 FIBRAS CURLI

1.4.1 CARACTERÍSTICAS

Las fibras curli son fibras biológicas producidas de forma natural por diferentes especies bacterianas, como *Escherichia coli* o *Salmonella*, y que le sirven a la bacteria para adherirse a diferentes superficies. Estas fibras tienen estructura amiloide, caracterizada por la presencia de láminas β cruzada, perpendiculares al eje de la fibra. Debido a esta estructura, las fibras curli son insolubles, resistentes a la degradación por proteasas y a la desnaturalización por detergentes como SDS (sodium dodecyl sulphate). La producción de fibras ocurre en la fase estacionaria y a temperaturas inferiores a 30 °C (Evans et al., 2013).

Tal y como se explica a continuación, las fibras curli son filamentos heteropoliméricos formados por las subunidades CsgA y CsgB. Para poder despolimerizar las fibras a subunidades individuales, éstas se deben someter a tratamientos con ácido fórmico o hexafluoroisopropanol. Si estas fibras despolimerizadas se conservan a temperaturas bajas se reduce su tasa de polimerización.

1.4.2 COMPONENTES DE LAS FIBRAS CURLI

Las fibras curli son procesadas por una vía de secreción conocida como mecanismo de nucleación-precipitación, o sistema de secreción tipo VIII. Los genes *csg* (curli-specific genes) codifican 7 proteínas implicadas en la síntesis de las fibras y están organizados en dos operones *csgBAC* y *csgDEFG* (Fig.3).
El operón csgBAC codifica la subunidad mayor y menor que componen las fibras (CsgA y CsgB) y además también codifica CsgC, una proteína periplámica.

CsgA es la subunidad mayor, de 13,1 KDa que forma la estructura de las fibras. Esta proteína está compuesta por un péptido señal, que será eliminado después de que la proteína sea exportada al exterior; un extremo N-terminal de 22 aminoácidos que se requiere para la secreción, y un extremo C-terminal amiloide. La parte central de la proteína se compone de cinco unidades de repetición que contiene alguna variación entre ellas: R1, R2, R3, R4 y R5 (Fig. 3 y 4). Cada repetición contiene Ser-X5-Gln-X-Gly-X-Gly-Asn-X-Ala-X3-Gln y forma una estructura de lámina-β/giro/lámina-β. La disposición de las unidades repetidas, alinean residuos de Gln y Asn que estabilizan el plegamiento amiloide.

CsgB es la subunidad menor, que sirve como punto de nucleación. Las subunidades de CsgA se ensamblan a partir de CsgB en una proporción de 20:1 aproximadamente. En la biogénesis de las fibras, la subunidad CsgB queda anclada a la membrana y será el punto de nucleación para CsgA. Las subunidades de CsgA se autoensamblan hasta formar las fibras. La estructura de CsgB es similar a la de CsgA (Fig. 3), contiene un péptido señal, una secuencia N-terminal de 23 aminoácidos y un extremo C-terminal. En la parte central se encuentran cinco unidades de repetición;

Figura 3. Organización de los operones csgBAC y csgDEFG y estructura de CsgA y CsgB (Van Gerven et al., 2015). La secuencia señal N-terminal (SEC, en rojo) se elimina después de que la fibra sea exportada al periplasma. Las subunidades maduras están formadas por una secuencia N-terminal (N22 en CsgA y N23 en CsgB) seguida de una región con pseudo-repeticiones (R1 a R5) que forma el núcleo de la fibra curli amiloide.
R1-R4 son similares a las de CsgA, sin embargo, R5 es diferente. Mutaciones en R4 o R5 hacen que CsgB no pueda asociarse a la superficie celular. Los mutantes en csgB exportan las subunidades de CsgA al medio y si en las proximidades hay bacterias que tienen intacto CsgB, estas subunidades libres de CsgA pueden ser ensambladas en esa bacteria próxima (Evans et al., 2013).

CsgC es una proteína periplásica rica en láminas β, que impide la polimerización de CsgA en el interior celular, manteniendo las unidades de CsgA en una conformación amorfa (Evans et al., 2015; Van Gerven et al., 2015). Además, se ha propuesto que juega un papel fundamental en la secreción de las subunidades y en mantener el poro abierto (Fig. 4).

- El operón csgDEFG codifica proteínas accesorias y de secreción y su regulación es una de las más complejas:

 CsgD es el principal regulador transcripcional de la expresión de los genes csg, actuando positivamente sobre el operón csgBAC e induciendo la transcripción de los componentes estructurales de las fibras. CsgD tiene un dominio hélice-giro-hélice en la parte C-terminal, característico de los factores de transcripción, que le permite unirse al ADN. La actividad de esta proteína, está a su vez regulada por numerosos factores, tales como fosforilación, sistemas de dos componentes (ENvZ/OmpR, CpxA/CpxR) que inducen la expresión de csgD, o pequeños RNAs (OmrA, OmrB) (Zhou et al., 2013).

 CsgE es un factor esencial para la secreción de las fibras curli. Interacciona con CsgA actuando como adaptador y orientando la subunidad hacia el poro, CsgG (Fig. 4).

 CsgF, forma parte del aparato de secreción y queda expuesto en la superficie celular. Sin la presencia de CsgF, las subunidades de CsgA se exportan al exterior de manera libre, de este modo se sugiere que la proteína forma un factor de acoplamiento entre la secreción de CsgG y la polimerización extracelular en fibras curli, acompañando a la subunidad CsgB en la nucleación (Fig. 4).

 CsgG es una lipoproteína que forma el poro para la secreción de CsgA, CsgB y CsgF. El poro tiene unas medidas de 120 Å de diámetro y 85 Å de profundidad. Forma
un canal de difusión abierto. Para la secreción de la subunidad mayor y menor se requiere la presencia de la proteína CsgE. Una vez sintetizadas CsgA y CsgB, se exportan a la superficie celular a través de CsgG como péptidos solubles no estructurados (Fig. 4).

Fig. 4. Esquema de componentes de las fibras curli (Van Gerven et al., 2015). Las subunidades de CsgA (A) entran en el periplasma a través de la proteína SecYEG, donde pueden progresar hacia la superficie celular vía CsgG (G) o pueden ser degradadas. CsgC (C) evita la polimerización prematura de CsgA en el periplasma. CsgE (E) actúa como factor de secreción para el canal CsgG. Una vez secretada, la formación de fibras y la elongación tienen como punto de anclaje CsgB (B), que depende de CsgF (F).

1.4.3 CARACTERIZACIÓN FENOTÍPICA DE LA FORMACIÓN DE FIBRAS

La visualización in vivo de la formación de las fibras puede realizarse mediante microscopio electrónico de transmisión o mediante el cultivo de la bacteria en un medio de cultivo con rojo Congo o Tioflavina, colorantes que se unen a polímeros ricos en láminas β, como las fibras curli u otros amiloides. También se puede utilizar la técnica de Western Blot a partir de fibras tratadas o no con ácido fórmico para analizar la presencia y la integridad de las fibras curli, y para distinguir entre diferentes estados de polimerización.
1.5 NANOFIBRAS FUNCIONALIZADAS

Las fibras curli, formadas por los monómeros CsgA y CsgB, son muy robustas, resistentes a detergentes como el SDS y, además, la bacteria las produce en gran número de manera constitutiva, propiedades que hacen que sean una buena plataforma para la producción de biomateriales.

Sivanathan et al. (Sivanathan et al., en 2013) describieron un protocolo para generar agregados extracelulares amiloides mediante un sistema de exportación bacteriano. Este sistema consta de tres componentes: una cepa de E. coli con una mutación en csgA y csgB; un plásmido que permite la sobreexpresión de CsgG de forma inducible y un segundo plásmido compatible que permite la síntesis inducida de una proteína con características amiloides fusionadas a la secuencia señal de CsgA (CsgAss).

Más tarde, Nguyen et al., en 2014 (Nguyen et al., en 2014) describieron una estrategia para la fusión de dominios peptídicos a CsgA, dando lugar a proteínas CsgA ingenierizadas que se secretan y se autoensamblan en forma de fibras amiloides y que retienen las funciones de los péptidos fusionados (Fig. 5). De esta manera, las fibras funcionalizadas adquieren propiedades artificiales que dependerán de los péptidos fusionados a CsgA. En este estudio se determinó que el extremo C-terminal fusionado a un linker largo es el sitio óptimo para la fusión del péptido a CsgA. Además, se analizó la fusión de distintos péptidos a CsgA, pudiéndose concluir que las fusiones con péptidos pequeños son toleradas por la maquinaria de exportación y pueden generar la estructura amiloide. Los péptidos de mayor tamaño, con largas secuencias o con estructura inherente pueden no ser secretados de manera eficiente a través de CsgG.
Figura 5. Programación genética de las fibras curli funcionalizadas (Nguyen et al., 2014). Bacterias de *E. coli* mutantes en csgA (ΔcsgA) se transforman con un plásmido que contiene el gen csgA (naranja) y la secuencia que codifica un péptido funcional (verde). La proteína se secreta y forma nanofibras amiloides con una nueva función.
2 OBJETIVOS

2.1 OBJETIVO GENERAL

Teniendo en cuenta todo lo anterior, en este trabajo fin de máster se pretende desarrollar un sistema de presentación de péptidos elicites basado en la utilización de nanofibras funcionalizadas con estructura amiloide, que permita reducir el coste de síntesis y mejorar la estabilidad y concentración de los péptidos para facilitar la interacción con la planta.

2.2 OBJETIVOS ESPECÍFICOS

1. Ingenierizar genéticamente una cepa de *E.coli* para que produzca fibras de CsgA fusionadas a una etiqueta de seis histidinas y al péptido elicitor fgl22 o elf18 con características amiloides.

2. Puesta a punto de un protocolo de expresión, producción y purificación de fibras de CsgA funcionalizadas.

3. Determinar la capacidad elicitora de respuesta inmune de las fibras de CsgA funcionalizadas mediante un ensayo sencillo y reproducible.
3 MATERIALES Y MÉTODOS

3.1 CEPAS BACTERIANAS

Las cepas bacterianas utilizadas en este proyecto se describen en la tabla 1:

<table>
<thead>
<tr>
<th>Cepa</th>
<th>Características relevantes</th>
<th>Fuente o referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli XL1B</td>
<td>E. coli XL1 Blue, cepa para clonaje</td>
<td>Stratagene</td>
</tr>
<tr>
<td>E. coli VS39</td>
<td>E. coli ΔfimB-fim E632::ISI ΔcsgBAC::kanR pVS76 (expresa csgG bajo promotor inducible por IPTG)</td>
<td>Sivanathan et al., 2013</td>
</tr>
<tr>
<td>E. coli VS39+pVS72::csgA_Hs6</td>
<td>VS39 pVS72 que contiene el gen csgA fusionado a secuencia codificante de 6 His, clonado a Ndel-Xbal, Amp Clo′</td>
<td>Lab. Biofilms Microbianos</td>
</tr>
<tr>
<td>E. coli VS39+pVS72::csgA_Hs6_flg22</td>
<td>VS39 pVS72 que contiene el gen csgA fusionado a secuencia codificante de 6 His y a la secuencia que codifica el péptido flg22, clonado a Ndel-Xbal, Amp Clo′</td>
<td>Este estudio</td>
</tr>
<tr>
<td>E. coli VS39+pVS72::csgA_Hs6_elf18</td>
<td>VS39 pVS72 que contiene el gen csgA fusionado a secuencia codificante de 6 His y a la secuencia que codifica el péptido elf18, clonado a Ndel-Xbal, Amp Clo′</td>
<td>Este estudio</td>
</tr>
<tr>
<td>E. coli K12 MG1655 ΔcsgA</td>
<td>MG1655 mutante en csgA (delecionados los a.a. 8 al 147 de CsgA)</td>
<td>Lab. Biofilms Microbianos</td>
</tr>
<tr>
<td>E. coli K12 MG1655 ΔcsgA + pVS72::csgA_Hs6_flg22</td>
<td>MG1655 ΔcsgA + pVS72 que contiene el gen csgA fusionado a secuencia codificante de 6 His y a la secuencia que codifica el péptido flg22</td>
<td>Este estudio</td>
</tr>
<tr>
<td>E. coli K12 MG1655 ΔcsgA + pVS72::csgA_Hs6_elf18</td>
<td>MG1655 ΔcsgA + pVS72 que contiene el gen csgA fusionado a secuencia codificante de 6 His y a la secuencia que codifica el péptido elf18</td>
<td>Este estudio</td>
</tr>
</tbody>
</table>
3.2 PLÁSMIDOS

Los plásmidos empleados en este Trabajo de Fin de Máster se presentan en la tabla 2:

Tabla 2: Plásmidos utilizados en este estudio

<table>
<thead>
<tr>
<th>Plásmido</th>
<th>Características relevantes</th>
<th>Fuente o referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>pJET 1.2</td>
<td>Vector comercial de clonaje amp<sup>+</sup>, eco 47IR (el gen letal eco 47IR permite selección positiva de mutantes transformantes)</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>pVS72</td>
<td>Vector pExport que contiene un promotor inducible por arabinosa que controla la expresión de una proteína con características amiloides fusionada a la secuencia señal de CsgA. Resistente a ampicilina.</td>
<td>Sivanathan et al., 2013</td>
</tr>
<tr>
<td>pVS76</td>
<td>Vector que dirige la síntesis de la proteína CsgG bajo un promotor inducible por IPTG. Presenta el gen cat, que le otorga resistencia a cloranfenicol.</td>
<td>Sivanathan et al., 2013</td>
</tr>
</tbody>
</table>

3.3 OLIGONUCLEÓTIDOS

Los oligonucleótidos utilizados en este estudio se describen en la tabla 3. Fueron diseñados utilizando la secuencia de los plásmidos y de los péptidos y proporcionados por Stab Vida.

Tabla 3: Oligonucleótidos empleados como cebadores en este proyecto.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Secuencia</th>
<th>Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>flg22 Rv</td>
<td>5′-ggc tct aga cta ggc gat ctg cag gcc ggc ggc gtc gtc ctt ggc gct gtt gat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ggc cga acc ggt gga cag acg ctg atg gtg atg gtg atg gt -3'</td>
<td>59</td>
</tr>
<tr>
<td>elf18 Rv</td>
<td>5′-ggc tct aga cta ggc gatagt acc aac gtt aac gtg cgg ttt tgt acg ttc aaa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ttt ttc ttt aga atg gtg atg atg atg atg gt -3'</td>
<td>65</td>
</tr>
<tr>
<td>pvs72 Ndel csgA His Fw</td>
<td>5′-atg gag gaa ttc atA TGA aac ttt taa aag tag cag caa tgg cag c-3'</td>
<td>65</td>
</tr>
</tbody>
</table>

3.4 CULTIVO DE BACTERIAS

Para el cultivo líquido de las cepas de *E. coli* se utilizó medio Luria-Bertani (LB) suplementado, en caso de ser necesario, con los antibióticos ampicilina 100 μg/mL (Sigma(St. Louis, Usa)) o cloranfenicol 20 μg/mL (Sigma(St. Louis, Usa)) y con el
inductor IPTG 0.5 mM (Bioline). Para el cultivo en medio sólido se añadió un agente gelificante (agar 15 g/L; VWR).

Para el análisis de la producción de las fibras funcionalizadas se utilizaron los medios Rojo Congo (Rojo Congo 40 mg/L, Triptona 10 g/L, Extracto de levadura 5 g/L, NaOH 1N 1 ml/L y agar (VWR) 15 g/L) y LB sin sal (Triptona 10 g/L, Extracto de levadura 5 g/L, NaOH 1N 500 µL/L y agar (VWR) 15 g/L) suplementados con los antibióticos ampicilina 100 µg/mL (Sigma(St. Louis, Usa)) y cloranfenicol 20 µg/mL (Sigma(St. Louis, Usa)) y con los inductores IPTG 0.5 mM (Bioline) y arabinosa 0.2% (Sigma(St. Louis, Usa)).

3.5 ENZIMAS Y AMPLIFICACIÓN DEL ADN

Para la amplificación y secuenciación del ADN se empleó la técnica de PCR (reacción en cadena de la polimerasa) con dos enzimas diferentes. Para las PCR de chequeo se utilizó la Taq polimerasa, más propensa a cometer errores. Para la secuenciación y el clonaje, se utilizó la enzima Phusion polymerase, que presenta una alta fidelidad, proporcionada por Thermo Scientific.

Para la digestión del ADN se emplearon dos enzimas de restricción, Ndel y XbaI, suministradas por la casa comercial Thermo Scientific.

Para la ligación de los fragmentos de ADN al plásmido de clonaje, se utilizó la enzima T4 ligasa de Thermo Scientific. La reacción se lleva a cabo durante 30 minutos a temperatura ambiente (RT).

3.6 TRANSFORMACIÓN DE BACTERIAS

Las células electro-competentes se prepararon según el protocolo de Wu et al. (Wu e al, 2010).

El método utilizado para la transformación bacteriana fue la electroporación (electroporador de Bio-Rad a 25µF, 200Ω, 1.25KV). Una vez producido el shock eléctrico las bacterias se incubaron en caldo LB durante una hora a 37°C. Tras este
periodo, los transformantes se seleccionaron mediante la siembra en medio LB agar suplementado con los antibióticos correspondientes.

3.7 PURIFICACIÓN DE ADN

- Plásmidos: se utilizó el kit comercial de purificación de ADN plasmídico NucleoSpin® Plasmid (MACHELEY-NAGEL).

- Fragmentos de ADN de la amplificación por PCR o digestiones enzimáticas desde el gel de agarosa: se siguió el protocolo descrito en el kit utilizado, Ultraclean 15 DNA Purification kit (MOBIO Laboratorios, Inc.).

3.8 ELECTROFORESIS DE ADN

Se utilizaron geles de agarosa horizontales de bajo punto de fusión a una concentración de 1% de tampón TAE (Tris acetato 40mM, EDTA 1mM, pH 8.0) a un voltaje constante entre 80-120V para la separación de los fragmentos de ADN y se tiñeron con bromuro de etidio.

Las bandas de ADN se visualizaron con un transiluminador de luz ultravioleta (Chemi Doc de Bio-Rad).

3.9 CUANTIFICACIÓN DE PROTEÍNAS

Para la cuantificación de proteínas se utilizó el método Bradford. En una placa ELISA de 96 pocillos, primero se realizó la recta patrón, utilizando concentraciones crecientes de la proteína BSA (de 0 a 35 µg) por duplicado. Después se prepararon las muestras, se añadió el reactivo de color comercial Protein Assay (Bio-Rad) y se realizó una lectura colorimétrica a una longitud de onda de 595nm.

3.10 CONSTRUCCIÓN DEL PLÁSMIDO pvs72::csgA_His6_flg22 y pvs72::csgA_His6_elf18

A partir del plásmido pvs72::csgA_His6 se amplificó mediante PCR (utilizando la enzima Phusion polymerase) el fragmento de ADN que contiene csgA::His6::péptido
utilizando los cebadores pvs72 Ndel csgA His6 Fw y flg22 Rv para el péptido flg22 y pvs72 Ndel csgA His6 Fw y elf18 Rv para el péptido elf18. Estos fragmentos purificados, se insertaron en el plásmido pJET 1.2, que fue electroporado a células XL1-Blue. Las bacterias transformantes se chequearon mediante PCR con la enzima Taq polimerasa utilizando los cebadores anteriores. Los plásmidos se aislaron de los transformantes positivos.

Utilizando los plásmidos aislados se amplificó el fragmento que contiene csgA::His6::péptido utilizando los cebadores pvs72 Ndel csgA His6 Fw y flg22 Rv para el péptido flg22 y pvs72 Ndel csgA His6 Fw y elf18 Rv para el péptido elf18. Se digirió el plásmido pvs72 con las enzimas Ndel y Xbal y se ligó el inserto mediante la enzima ligasa. Después se analizaron los transformantes mediante PCR con los mismos cebadores. De los transformantes positivos se extrajo el plásmido que se electroporó en E. coli VS39 para la producción de las fibras amiloides y en E. coli MG1655 para comprobar el fenotipo asociado a la producción de fibras.

3.11 PURIFICACIÓN DE FIBRAS

3.11.1 INDUCCIÓN DE LA EXPRESIÓN Y PURIFICACIÓN DE FIBRAS MEDIANTE CROMATOGRAFÍA DE AFINIDAD

La expresión de las fibras se indujo mediante el cultivo de E. coli VS39 conteniendo los plásmidos pVS72::csgA_His6, pVS72::csgA_His6_flg22 o pVS72::csgA_His6_elf18, en LB suplementado con IPTG y antibióticos (Amp, Clo) hasta alcanzar una D.O.600nm de 0,2 y la adición posterior de arabinosa (0,2%). El cultivo se incubó durante 4 horas a 37º C, en agitación, y se centrífugó a 3000xg durante 10 min a 4ºC. 10 ml sobrenadante obtenido se recogió para la posterior purificación de las fibras.

Para la purificación de las fibras, se utilizó una resina de níquel (HIS-Select® Nickel Affinity Gel, P611, SIGMA). Los iones de níquel de la columna son capaces de unir con alta afinidad proteínas que tengan una etiqueta de histidinas. Debido a que la resina comercial está disuelta en etanol, primero se lavó con 500 µl de H2O y se centrífugó a
400xg durante 3 minutos. Después se realizaron dos lavados sucesivos, con 300 µl de H₂O centrifugando a 400xg durante 3 minutos. La resina se equilibró mediante la adición de 500 µl de KPI buffer (28′9 mM KH₂PO₄; 21′1 mM K₂HPO₄), centrifugando a 400xg durante tres minutos antes de guardarla en hielo hasta su uso. A los 10 ml de sobrenadante del cultivo se le añadieron 75 µl de resina y la mezcla se incubó a 4°C en agitación durante toda la noche para que la etiqueta de seis histidinas presente en las fibras se uniese a la resina de níquel. Tras una centrifugación a 400xg durante 3 minutos, se retiró el sobrenadante. Se añadieron 5 mL de medio LB para resuspender la resina y se agitó la mezcla durante 5 minutos a temperatura ambiente. Después se realizaron dos centrifugaciones en las mismas condiciones (400xg, 3 minutos) y se desechó el sobrenadante. Por último, la resina se resuspendió en 150µl del buffer de elución (buffer KPI + imidazol 250mM) y se incubó durante 15 minutos a 4°C. Tras una última centrifugación a 400g durante 3 minutos, se recogió el sobrenadante conteniendo las fibras.

3.11.2 INDUCCIÓN DE LA EXPRESIÓN Y PURIFICACIÓN DE FIBRAS MEDIANTE TRATAMIENTO CON SDS

Las cepas de *E. coli* se cultivaron en 2 matraces con 100 ml de medio LB suplementado con ampicilina 100 µg/ml, cloranfenicol 25 µg/ml e IPTG 1mM, hasta una D.O.₆₀₀nm de 0,2. La formación de fibras se indujo mediante la adición de arabinosa 0,2% y el cultivo se incubó durante 24 horas a 28°C en agitación. Tras una centrifugación a 24.000g, 20°C durante 30 minutos se recogió el sedimento celular y se resuspendió en 15 ml de Tris buffer (Tris HCl 50mM, NaCl 100mM, HCl). Después se añadió una mezcla de enzimas (RNasa 0,1 mg/ml, DNasa 0,1 mg/ml, lisisima 1mg/ml, MgCl₂ 1mM y Triton X-100 0,1%) y se incubó dicha suspensión durante 1 hora a 37°C. A continuación se emplearon 3 ciclos de frío (-80°C, 2 horas)/calor (37°C, 30 min en el termobloque), se ajustaron las muestras a 1% de SDS y se hirvieron durante 20 minutos a 96°C. Las muestras se centrifugaron a 1700rpm, 20°C durante 30 minutos, y el tratamiento con SDS se repitió dos veces. Para recoger las fibras, las muestras se centrifugaron 3 veces en las condiciones anteriores, resuspendiendo el pellet en Tris buffer. Las fibras se guardaron a 4°C para evitar una posterior agregación.
3.11.3 ANÁLISIS DE LAS FIBRAS PURIFICADAS MEDIANTE WESTERN BLOT

Para poder analizar las fibras mediante Western Blot, éstas se trataron con ácido fórmico el cual despolimeriza las fibras en monómeros. Para ello, 100 µl de muestra se secaron en un concentrador de vacío (Speed Vacuum), y se añadió 50 µl de ácido (Sigma (St. Louis, USA), 95% de pureza). Las muestras se volvieron a secar y se resuspendieron en 50 µl de sample buffer (2 ml Tris (1M, pH 6,8); 4,6 ml glicerol; 1,6 ml SDS 10%; 0,4 ml azul de bromophenol 0,5%; 0,4 ml β-mercaptoetanol). Tras 5 minutos de incubación a 100°C, las muestras se cargaron en un gel de acrilamida (15% gel de separación, 5% gel de concentración). Posteriormente, las proteínas se transfirieron a una membrana de nitrocelulosa Amersham (GE Healthcare) mediante el uso del aparato Trans-Blot Turbo (Biorad). El revelado de la membrana se realizó utilizando un anticuerpo anti-Histidinas conjugado con la enzima peroxidasa (dilución 1:20.000; Sigma (St. Louis, USA)). Por último, se registró la reacción quimioluminiscente (Chemiluminescent Substrate Thermo Scientific).

3.12 PÉPTIDOS

Los péptidos sintéticos (GenScript) que se utilizaron en este estudio se presentan en la tabla 4:

Tabla 4. Péptidos elicitores sintéticos utilizados en el proyecto.

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>SECUENCIA</th>
<th>PROCEDENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>flg22</td>
<td>QRLSTGSRINSKDDAAGLQIA</td>
<td>GenScript CNº SC1208</td>
</tr>
<tr>
<td>elf18</td>
<td>SKEKFERTKPHNVGTIG</td>
<td>GenScript CNº RP19986</td>
</tr>
</tbody>
</table>

3.13 CONDICIONES DE CULTIVO DE LAS PLANTAS

Las semillas de Arabidopsis thaliana se esterilizaron y germinaron en placas de medio MS (Murashige y Skoog) con agar durante una semana con un fotoperiódo de 16 horas de luz a unos 22-23°C y 8 horas en oscuridad a 18°C. Después de una semana
se transplantaron a una mezcla de sustrato universal y vermiculita en una proporción 3:1 y se mantuvieron en cámara en las mismas condiciones.

3.14 ENSAYO DE PRODUCCIÓN DE ESPECIES REACTIVAS DE OXÍGENO

Se utilizó el protocolo desarrollado por Bisceglia et al.,2015 (Bisceglia et al., 2015). Se recolectaron hojas de plantas de Arabidopsis thaliana de 4-5 semanas y se cortaron dos discos de cada hoja (12 hojas en total por tratamiento), dejando el nervio en la mitad. Los discos se colocaron en placas Petri con agua, que se cambió cada media hora durante un periodo de dos horas en oscuridad, para eliminar metabolitos secundarios. Después los discos se introdujeron en una placa de 96 pocillos (PERKIN ELMER/WALLAC ISOPLATE 1450-581) conteniendo 200 µl de agua y se dejaron en incubación durante la noche, en oscuridad y en las mismas condiciones que durante el crecimiento de las plantas. El agua se retiró y se añadieron 200 µl de la solución Luminol + Peroxidasa (Sigma-Aldrich) y 50 µl (0.5-2.5µM) del péptido a analizar. Las placas se introdujeron en un lector de microplaca Multi-Detection Microplate Reader Synergy para su lectura (Biotek).
4.- RESULTADOS Y DISCUSIÓN

4.1. CONSTRUCCIÓN DE LOS PLÁSMIDOS pVS72::csgA_6His_flg22 y pVS72::csgA_6His_elf18

El objetivo de este trabajo consiste en funcionalizar nanofibras amiloides para la presentación de péptidos elicitores. Para ello, primero se realizaron construcciones en el plásmido pVS72 con el objetivo de expresar CsgA fusionada a una etiqueta de 6 histidinas y además al péptido elicitor de interés. La presencia de la etiqueta de seis histidinas permitirá una posterior detección de las fibras mediante Western Blot y además una purificación mediante una resina de afinidad.

A partir del plásmido pVS72::csgA_His6, previamente construido en el Laboratorio de Biofilms Microbianos, se amplificó la secuencia que codifica CsgA_His6_flg22 o CsgA_His6_elf18 mediante el uso de un oligonucleótido común (pVS72 NdeI csgA His Fw), que contiene una secuencia reconocida por la enzima NdeI e híbrida en el extremo N-terminal de csgA, y un oligonucleótido que contiene una secuencia reconocida por la enzima XbaI e incluye la secuencia codificante de bien flg22 o elf18 y una secuencia que híbrida en el extremo carboxi terminal de csgA His6 (Fig. 6). El resultado de la amplificación (Fig. 7) es una banda de 560 (NdeI_CsgA_His6_elf18_XbaI) o 572 (NdeI_CsgA_His6_flg22_XbaI) pares de bases correspondiente al fragmento de la secuencia csgA fusionada a 6 histidinas y la secuencia que codifica el péptido elicitor (elf18 o flg22, respectivamente).
Después de purificar los fragmentos de ADN correspondientes mediante el kit Ultraclean 15 DNA Purification, se realizó una ligación de éstos en el plásmido pJET 1.2, un plásmido de alto número de copias que confiere resistencia a ampicilina, utilizando la enzima ADN ligasa. El resultado de la ligación se electroporó en las bacterias XL1 Blue y éstas se sembraron en una placa de agar LB con ampicilina, para seleccionar aquellas bacterias que han incorporado el plásmido. Se seleccionaron 8 colonias resistentes a ampicilina para realizar un chequeo mediante PCR con los fragmentos CsgA_His6_flg22 y CsgA_His6_elf18 resultantes de la amplificación se muestran en rojo.

Fig. 6. Fragmento del plásmido pVS72::CsgA_His6 que codifica la proteína CsgA fusionada a una etiqueta de seis histidinas (color violeta) que sirve como molde para la amplificación de ADN. El cebador pVS72_Ndel_CsgA_His_Fw se indica en color verde. El cebador flg22_Rv, que introduce la secuencia que codifica el péptido flg22, y el cebador elf18_Rv, que introduce la secuencia que codifica el péptido elf18 se indican en color amarillo y azul oscuro respectivamente. Los fragmentos CsgA_His6_flg22 y CsgA_His6_elf18 resultantes de la amplificación se muestran en rojo.

Fig. 7. A) Amplificación del fragmento elf18 (Ndel_csgA_6His_elf18_XbaI) con un tamaño de 560 pb. B) Amplificación del fragmento flg22 (Ndel_csgA_6His_flg22_XbaI) con un tamaño de 572 pb.

Después de purificar los fragmentos de ADN correspondientes mediante el kit Ultraclean 15 DNA Purification, se realizó una ligación de éstos en el plásmido pJET 1.2, un plásmido de alto número de copias que confiere resistencia a ampicilina, utilizando la enzima ADN ligasa. El resultado de la ligación se electroporó en las bacterias XL1 Blue y éstas se sembraron en una placa de agar LB con ampicilina, para seleccionar aquellas bacterias que han incorporado el plásmido. Se seleccionaron 8 colonias resistentes a ampicilina para realizar un chequeo mediante PCR con los
oligonucleótidos pVS72 NdeI csgA His6 Fw y flg22 Rv para el péptido flg22 y pVS72 NdeI csgA His6 Fw y elf18 Rv para el EF-Tu (Fig. 8). Todas las colonias analizadas habían incorporado el plásmido correspondiente y contenían la secuencia csgA_His6_elf18 o csgA_His6_flg22.

De una de las colonias positivas identificadas mediante PCR (nº1 elf18 y nº1 flg22) se extrajeron los plásmidos pJET 1.2 correspondientes con el kit comercial Nucleo Spin®Plasmid y estos se secuenciaron (Stab Vida). Una vez se confirmó que contenían la secuencia esperada, se digirieron con las enzimas NdeI y XbaI. También se digirió el plásmido pvs72 con las mismas enzimas. Los productos de digestión se corrieron en un gel de agarosa (Fig. 9).
Los fragmentos correspondientes a CsgA_His_flg22 y CsgA_His_elf18 digeridos se purificaron (Ultraclean 15 DNA Purification kit) y se procedió a la ligación de estos fragmentos en el plásmido pVS72. El plásmido final (Fig. 10) pVS72 con las secuencias CsgA_His_flg22 y CsgA_His_elf18 se electroporó en la cepa XL1 Blue y ésta se cultivó en placas LB con ampicilina. Por último, se seleccionaron colonias resistentes a ampicilina, que de nuevo se comprobaron mediante una PCR (Fig. 11) utilizando los mismos cebadores que en casos anteriores.

Después de comprobar que las construcciones eran correctas, los plásmidos finales pVS72::csgA_His_elf18 y pVS72::csgA_His_flg22 se purificaron con el kit NucleoSpin® Plasmid.
Fig. 10. Mapa de las construcciones de los plásmidos finales, pVS72::csgA_His6_flg22 y pVS72::csgA_His6_elf18
4.2. ANÁLISIS FENOTÍPICO DE LA PRODUCCIÓN DE FIBRAS

Los plásmidos pVS72::csgA_His_elf18 y pVS72::csgA_His_flg22 se electroporaron en primer lugar en la cepa *Escherichia coli* VS39 (Fig. 12), la cual es un mutante en el operón csgBAC y además contiene el plásmido pVS76, que permite la expresión de la proteína CsgG bajo un promotor inducible por IPTG y contiene el gen *cat* bajo un promotor constitutivo que confiere resistencia a cloranfenicol. Se ha demostrado anteriormente que esta cepa es apropiada para la producción de fibras extracelulares amiloides ya que, aunque la biogénesis de fibras curli necesita generalmente de una serie de proteínas accesorias Csg, la sobreproducción de CsgG que se produce en esta bacteria permite una secreción eficiente de CsgA (Sivanathan et al., 2012).
La cepa VS39 conteniendo el plásmido pVS76 que permite la expresión de CsgG a través de un promotor inducible por IPTG. A esta cepa se le electropora el plásmido pVS72, que permite la expresión de csgA fusionada al péptido de interés mediante un promotor inducible por arabinosa.

La cepa VS39 conteniendo el plásmido pVS72::csgA_His6_elf18 o pVS72::csgA_His6_flg22 se sembró en placas de medio LB con el colorante Rojo Congo con el objetivo de poder observar un fenotipo correspondiente a la producción de fibras, ya que las fibras de tipo amiloide unen el colorante rojo congo (Champan et al., 2002). Para el análisis se utilizaron placas de LB Rojo Congo suplementadas con cloranfenicol y ampicilina para mantener la selección antibiótica de los plásmidos pVS76 y pVS72 (estas placas sirvieron como control negativo de la producción de fibras), y por otra parte placas de LB Rojo Congo suplementadas con cloranfenicol y ampicilina y además con IPTG y arabinosa, con el objetivo de inducir la expresión de CsgG y la expresión de las fibras de CsgA funcionalizadas. Contrario a lo previsto, el análisis visual de las placas no permitió distinguir claramente a las cepas productoras de fibras.

Como estrategia alternativa, se decidió electroporar los plásmidos pVS72::csgA_His6_elf18 y pVS72::csgA_His6_flg22 en una cepa de Escherichia coli MG1655 mutante en csgA, que contiene el resto de los genes csg que codifican las
proteínas accesorias necesarias para la producción de fibras curli. Además, se utilizaron como controles la cepa salvaje MG1655 y el propio mutante MG1655 ΔcsgA transformados con un plásmido vacío que confiere resistencia a ampicilina (pCN40), para poder ser sembradas en placas conteniendo ampicilina. También se incluyeron en el ensayo las cepas MG1655 ΔcsgA pVS72::csgA y MG1655 ΔcsgA pVS72::csgA_His6 como controles positivos de formación de fibras de CsgA mediante el plásmido pVS72. Las cepas se sembraron en las placas mencionadas anteriormente, pero sin cloranfenicol, ya que MG1655 no contiene el plásmido pVS76. Los resultados mostraron que tal y como se esperaba, las colonias de la cepa MG1655 pCN40 presentaron un color rojizo en agar rojo congo debido a la producción natural de fibras tipo curli (Colonia nº 1. Fig. 13). El mutante en el gen csgA derivado de dicha cepa (MG1655 ΔcsgA pCN40) presentó un color blanco debido a la ausencia de fibras curli (Colonia nº 2. Fig. 13). Por otra parte, la cepa MG1655 ΔcsgA transformada tanto con el plásmido pVS72::csgA como pVS72::csgA_His6 (Colonias nº 3 y 6 respectivamente. Fig.13) presentaron una coloración blanca en agar Rojo Congo mientras que mostraron una coloración rojiza cuando dicho agar fue suplementado con arabinosa, confirmando así que el plásmido pVS72::csgA_His6 permite la producción de fibras tipo curli funcionales. Las cepas mutantes transformadas con los plásmidos pVS72 que expresan nanofibras funcionalizadas CsgA_His6_elf18 y CsgA_His6_flg22 (colonias Nº 4 y 5. Fig. 13) no mostraron coloración rojiza en Rojo Congo pero sí lo hicieron al inducir la expresión de las fibras mediante arabinosa, indicando que son capaces de producir fibras amiloides funcionales.
Los resultados obtenidos están en relación con un trabajo anterior de Nguyen et al. (Nguyen et al., 2014) en el que se describe que péptidos pequeños, como los utilizados en este proyecto (18 y 22 a.a) son exportados correctamente al ser fusionados a CsgA, mientras que péptidos más grandes no se exportan de manera eficaz. En nuestro caso, hemos demostrado a nivel fenotípico que las bacterias transformadas con los plásmidos que expresan CsgA fusionada a la secuencia de péptidos elicitores, elf18 o flg22, son capaces de exportar fibras funcionales.

4.3 PURIFICACIÓN DE FIBRAS DE CsgA FUNCIONALIZADAS CON LOS PÉPTIDOS flg22 Y elf18

4.3.1 PURIFICACIÓN DE FIBRAS MEDIANTE CROMATOGRAFÍA DE AFINIDAD

Una vez que se comprobó que los plásmidos pVS72::csgA_His6_elf18 y pVS72::csgA_His6_flg22 dan lugar a la expresión de fibras de CsgA funcionalizadas con características amiloides, se procedió a poner a punto un protocolo de expresión,
producción y purificación de las fibras, utilizando la cepa *E. coli* VS39 transformada con dichos plásmidos, y utilizando como control la misma cepa *E. coli* VS39 transformada con el plásmido pVS72::csgA_His_6, que produce fibras de CsgA con una etiqueta de seis histidinas y sin funcionalizar con ningún péptido.

En primer lugar, se indujo la expresión de las fibras mediante el cultivo de las cepas en un matraz de 100 ml de LB suplementado con IPTG y antibióticos (Amp, Clo) hasta alcanzar una D.O.\(_{600nm}\) de 0,2 y la adición posterior de arabinosa (0,2%). El cultivo se incubó durante 4 horas a 32º C, en agitación, y se centrífugó a 3000xg durante 10 min a 4ºC. El sobrenadante obtenido se recogió para la posterior purificación de las fibras.

Al ser la cromatografía de afinidad un método rápido y sencillo de purificación y teniendo en cuenta que las proteínas producidas contienen una etiqueta de seis histidinas en su extremo carboxi terminal, ésta se utilizó para purificar las fibras en pequeña cantidad y comprobar que las bacterias las producían de forma correcta. La purificación de las fibras a partir del sobrenadante obtenido anteriormente se realizó utilizando una resina comercial de níquel tal y como se describe en la sección de materiales y métodos. 100µl del material eluido de la resina, supuestamente conteniendo las fibras CsgA_His_6, CsgA_His_6_elf18 o CsgA_His_6_flg22, se secaron utilizando una centrífuga Speed Vacuum. Este proceso se realizó por duplicado para cada muestra. A uno de los duplicados se añadió 50 µl de agua milliQ mientras que al otro duplicado se le añadió 50 µl de ácido fórmico con el objetivo de despolimerizar las fibras y poder analizar la presencia de monómeros mediante western-blot. Las muestras se volvieron a secar y se resuspendieron en 50 µl de tampón de muestra. El posterior análisis mediante western blot demostró la presencia de fibras de tipo amiloide en los sobrenadantes de los tres cultivos utilizados (Fig.14), ya que por una parte, en las muestras tratadas con agua no se detectó ninguna señal, lo cual es indicativo de la posible presencia de fibras amiloides que al estar tan polimerizadas no pueden entrar en el gel de acrilamida, y por otra, en las muestras tratadas con ácido fórmico se detectó una banda del tamaño correspondiente a los monómeros de las fibras de CsgA_His_6, CsgA_His_6_elf18 o CsgA_His_6_flg22.
4.3.2 PURIFICACIÓN DE FIBRAS MEDIANTE TRATAMIENTO CON SDS

Una vez puesto a punto un protocolo de producción de fibras amiloides y habiendo demostrado que las condiciones de expresión utilizadas son óptimas para dicha producción, se escaló la producción de fibras utilizando un mayor volumen de medio de cultivo y se utilizó un método de purificación que no conllevase la utilización de resinas de afinidad a gran escala. El método de purificación utilizado se describió por Nielsen (Nielsen, 2010) y se basa en la utilización del detergente SDS para separar las fibras amiloides, altamente resistentes a la acción de detergentes, del resto de componentes celulares. Las fibras purificadas mediante el protocolo descrito en la sección de materiales y métodos se analizaron mediante western blot de la misma manera que en el apartado anterior. Los resultados mostraron la presencia de monómeros de fibras CsgA_His$_6$-elf18 y CsgA_His$_6$-flg22 en las muestras tratadas con ácido fórmico (Fig. 15), indicando que el protocolo de expresión y purificación a gran escala de fibras amiloides es reproducible. Sin embargo, cabe destacar que durante la realización de este trabajo, se tuvo que repetir el experimento de purificación varias veces.
veces, ya que en algunas ocasiones el análisis de las muestras finales daba lugar a un resultado negativo, es decir mostraba una ausencia de fibras en las muestras finales. Esto indica que el protocolo de purificación es válido pero difícil de implementar para lograr obtener resultados homogéneos.

Por último, se realizó una cuantificación de las fibras purificadas mediante el método de Bradford, obteniéndose una concentración final de fibras CsgA_flg22 de 0.134 μg/μl y de fibras CsgA_elf18 de 1.36 μg/μl.

4.4 ANÁLISIS DE LA CAPACIDAD ELICITORA DE LA RESPUESTA INMUNE EN PLANTAS DE LAS FIBRAS FUNCIONALIZADAS

Para analizar la capacidad elicitora de las fibras funcionalizadas se eligió Arabidopsis thaliana, organismo en el que el sistema de percepción de la flagelina bacteriana ha sido ampliamente estudiado (Boller et al., 2009, Newman et al., 2013, Smith et al., 2014, Bisceglia et al., 2015). En Arabidopsis thaliana, una de las respuestas inmunes tempranas inducidas después de la percepción de un elicitor es la producción
de especies reactivas de oxígeno (ROS), incluyendo H$_2$O$_2$, que alertan a la planta de la entrada de patógenos. Con el objetivo de analizar si las fibras de CsgA funcionalizadas con los péptidos flg22 y elf18 poseen una capacidad elicitora del sistema inmune similar a los péptidos sintéticos, utilizamos un ensayo de análisis de producción de ROS ya descrito (Gómez-Gómez L. et al., 1999; Smith J. et al., 2014; Bisceglia N., et al., 2015). En este ensayo, discos de hoja de Arabidopsis se tratan con los diferentes elicitores y posteriormente se evalúa la producción de H$_2$O$_2$ mediante el uso de una solución de luminol-peroxidasa. La peroxidasa en presencia de H$_2$O$_2$ oxida al luminol produciéndose luminiscencia que puede ser detectada por un luminómetro. Los niveles y duración de la luminiscencia son proporcionales a la cantidad de H$_2$O$_2$ producida por las hojas. La respuesta inmune y por tanto la producción de ROS, puede ser variable tanto entre experimentos como entre distintas plantas, pero el incremento de las especies reactivas de oxígeno es claro y significativo.

En primer lugar, se puso a punto el ensayo utilizando sólo los péptidos sintéticos flg22 y elf18 (GenScript) para así poder comprobar si los resultados eran similares a los publicados anteriormente (Gómez-Gómez L. et al. 1999; Zipfel C. et al., 2006; Smith J. et al., 2014; Bisceglia N. et al., 2015). La producción de ROS mostrada en estos estudios presenta un pico de producción de H$_2$O$_2$ entre los 7-14 minutos posterior a la inducción con el péptido y retorna a niveles basales entre los 30-35 minutos post inducción. Nuestros resultados (Fig. 16) se asemejaron a los ya publicados, observándose un pico que empezó a hacerse visible a los 2 minutos post inducción, que aumentó hasta los 7-9 minutos y volvió a niveles basales a los 23-25 minutos. En este ensayo, se observó que una concentración de 0,5 µM del péptido flg22 era capaz de inducir una mayor producción de H$_2$O$_2$, 7000 RLUs (Relative light units) que el factor de elongación Tu (5500 RLUs). Estos resultados difieren de los observados por Bisceglia et al. (Bisceglia et al., 2015) en los que se observa una producción mayor de H$_2$O$_2$ en las plantas tratadas con el péptido elf18 con respecto a las tratadas con flg22.
Tras comprobar que la técnica del luminol/peroxidasa es óptima y reproducible para el estudio de la respuesta inmune en discos de Arabidopsis, se procedió a realizar el análisis de la respuesta ROS en hojas estimuladas con las fibras CsgA funcionalizadas con los péptidos flg22 y elf18. Como controles positivos se utilizaron los péptidos sintéticos utilizados en el apartado anterior, para asegurarnos de que el ensayo se estaba realizando correctamente. En este ensayo, se utilizó una concentración del péptido flg22 de 0,5 μM, elf18 de 1 μM y 2’5 μM de las fibras funcionalizadas, con el objetivo de intentar potenciar la respuesta inmune con una concentración máxima de fibras. Se observó que las hojas inducidas con el péptido sintético flg22 dieron lugar a la producción de ROS esperada, mientras que las hojas inducidas con fibras de CsgA funcionalizadas con flg22 no dieron lugar a producción de H₂O₂, presentando una curva similar a las hojas sin inducir (control negativo- H₂O₂) (Fig. 17A). Las hojas inducidas con el péptido sintético elf18 dieron lugar a una producción de ROS más tardía de lo esperado, presentando un pico máximo a los 14-23 minutos, mientras que las hojas inducidas con fibras de CsgA funcionalizadas con elf18 tampoco dieron lugar a producción de H₂O₂ (Fig. 17B).
La ausencia de respuesta a las fibras funcionalizadas podría ser debida a que las fibras curli son muy agregativas, incluso a 4°C (Sivanathan et al., 2013), de tal manera que el péptido podría estar no disponible para el reconocimiento por los receptores FLS2 y EFR de la planta. Con el objetivo de intentar que el péptido flg22 o elf18 estuviese disponible para su correspondiente receptor, las nanofibras funcionalizadas se sonicaron con el fin de desagregarlas. Zhou et al. (Zhou et al., 2013)
describieron que la sonicación de fibras de tipo curli mediante pulsos largos da lugar a la rotura de las mismas. Por lo tanto, las fibras purificadas se sometieron a 4 pulsos de 30 segundos a potencia 4 y se realizó un Western Blot para confirmar la presencia de monómeros (Fig. 18).

Después de obtener los monómeros, se volvió a realizar el ensayo luminol/peroxidasa en las mismas condiciones que el ensayo anterior, utilizando flg22 (0.5 μM) y elf18 (1 μM) sintéticos como controles positivos, H₂O como control negativo, y 2,5 μM de cada una de las fibras funcionalizadas sonicadas. Tras cuantificar la producción de H₂O₂ (Fig. 19) se observó que las hojas tratadas con las fibras fusionadas a los péptidos flg22 y elf18 sonicadas tampoco mostraron producción de ROS.

Estos resultados podrían ser debidos a que a pesar de la sonicación, los péptidos siguen sin estar disponibles para ser reconocidos por el receptor o a que las fibras producidas en este estudio presentan unos péptidos disponibles para el receptor pero con una conformación que no es reconocida por el mismo.
Fig. 19. Producción de ROS en discos de Arabidopsis thaliana con las fibras funcionalizadas sonicadas. La producción de H$_2$O$_2$ se cuantificó después del tratamiento con A) H$_2$O (control negativo), flg22 0,5 μM (control positivo) y csgA_His$_6$_flg22 sonicada 2,5 μM. Promedio de resultados ± ES; B) H$_2$O (control negativo), elf18 1 μM (control positivo) y csgA_His$_6$_elf18 sonicada 2,5 μM. Promedio de resultados ± ES.
5.- CONCLUSIONES

1. Se han construido dos plásmidos que permiten la expresión del gen csgA fusionado a una etiqueta de seis histidinas y a la secuencia que codifica el péptido elicitor flg22 o elf18.

2. Se ha comprobado que la expresión de fibras CsgA fusionadas a los péptidos flg22 y elf18 da lugar a fibras de tipo amiloide funcionales que pueden ser purificadas mediante tratamiento con el detergente SDS.

3. La exposición de discos de hojas de Arabidopsis a las fibras CsgA funcionalizadas con los péptidos flg22 y elf18 no da lugar a la producción de peróxido de hidrógeno, lo cual sugiere que dichas fibras no podrían ser utilizadas para estimular una respuesta inmune que fuese eficaz frente a infecciones bacterianas.
6.- BIBLIOGRAFÍA

Felix G, Duran JD, Volko S, Boller T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal. 1999 May;18(3):265–76.

Nielsen R. Identification, purification and characterisation of bacterial amyloid [Departament of Biotechnology, Chemistry and Environmental Engineering AALBORG UNIVERSITY]: [publisher unknown]; 2010.

