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Abstract

The  conventional DFT-oriented nonparametric
interpolation methods, based on time windowing and the
DTFT envelope curve resampling (zero padding, Chirp-z
[1], frequency scale distortion [2], etc.), can improve the
spectrum  computational  resolution. Two  methods
proposed herein involve some modification of the
frequency domain representation and apparently improve
the spectrum physical resolution.

Introduction

Peak discrimination is a topic of great importance
within spedrum signal processng. Very often, the spedral
information provided by the DFT simply is not enough to
obtain all the details about the spedrum (number of peaks,
peak bandwidth, pe& centra frequency etc.). The reason
for thisliesin a lack of either physical or computational
frequency resolution. The physical frequency resolution, or
the Peak Discrimination Limit (PDL), refers to the
minimum resolvable frequency separation between two
sinusoidal signal components close in frequency and is
diredly related to the mainlobe bandwidth of the time-
domain window spedrum [3,4]. On the other hand,
computational resolution can smoath the graphicd
representation of the DFT spedrum and resolve posshle
ambiguities, due to the picket-fence effed, but it is limited
by the physical resolution.

The objedive of this work is to improve the PDL by
intervening in the frequency domain and changing the
properties of the corresponding interpolated DFT
spedrum, rather than applying a particular time window to
the input sequence That is, we intent to change the form
of the Discrete Time Fourier Transform (DTFT) envelope
curve, without atering significantly the physical redity. It
could be seen as applying a "frequency window" to the
input sequence N-point DFT spedrum, by interpolating it
at only N points in two different ways. However, an
interpretation in terms of time window is also posshle.

Scaled interpolated DFT spectrum (SIDFT).

An N-point DFT spedrum interpolated at N points
(padding N zeros to the N-point input sequence is
equivalent to resampling the DTFT envelope arve with
the resolution Tk/N, k = 0, 1, ..., 2N-1. A single signal
component given by

x(ny=e'®  Q =(k+3)Q,, Q, :2—|\’IT, s0fo,1].

will have aspedrum peak, characterized by the magnitude
interplay among the frequency samples X(k), X(k+1/2) and
X(k+1). Fig. 1(a) shows that a spedrum peak interpretation
of x(n), asafunction of J, is given by a colledion of sincs
separated by TUN.

By scaling X(k+1/2) by a factor a = 0.65, the peak
interpretation is obviously modified but its general
characteristicis preserved in the foll owing sense;

Xk +] <{|X(k), ax(k+1/2)} , 0<5<05

1)
IX (k)| <{ax(k+1/2), |X(k+1|}, 05<5 <1

which is diown on Fig.1(b). Such a spedrum we all the
interpolated scaled spedrum SIDFT(k) and it is given as a
superpositi on of two 2N-point spedra:

OX(k/2) , k even
Xorr (K) =14, k odd
SDFT(k) = + , 2
[0 , k even

Xnr (= 0y -1/2)  k odd

k=0 1, .., 2N - 1. Ther corresponding continuos-
frequency domain representations will be:



Xoer(Q) = X(QP(Q) and X, (Q) = aX(Q)PEQ _%E

where Q is a continuos digital frequency, X(Q) is the
original sequence DTFT spedrum and P(Q) is a frequency
domain impulsetrain,

P@Q) =5 e ™. 3

By using the IDTFT we obtain the expressons for their
time domain representationsrespedively:

21
Yot (N) =5 ; x(n—mN)
_1 g 4
Xinrr (M) —Ea;( D™x(n—mN) 4
Expressons (4) can be seen asaperiodic extension of the

input sequence multiplied by a window shown on the
Fig.2.
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Fig. 1 Singe spectrum peak interpretation
a) plane DFT b) SDIFT

It can be seen from (4) that if a = 1, the SDFT time
window is the same as the 2N-point DFT interpolation
window (the origina sequence padded by N zeros). The

window wgper has smaller equivalent noise bandwidth
than the interpolation redanguar window:

2N-1

Z) \N;DFT (n)
ENBWSDFT =N ﬁ

H 4 WS!DFT(n)H

=1

=0.7113

®)
ENBWRECT
This means that the mainlobe bandwidth for wgper Will be
narrower than that of the redangular window.
Consequently, the PDL will reduce by means of (2),
which can be observed in the sedion of experimental
results.
It can be seen that the PDL improves principaly for &
O [0, 0.5]. In order to achieve the same oljective for the
entire interval o O [0, 1] the following modification of the
SIDFT(K) is proposed:
mX(k/2) , k even
Xorr ()= K odd
SDFTY(K) = + ,  (6)
X 00 = 5 Ko
(k-1/2) , k odd

k=0,1, .., 2N - 1. Hence theresulting PDL for 6 [0, 1]
isgiven as

PDL = f (&) = min{PDL for SDFT, PDL for SDFT@}  (7)

The mputational cost is dmilar to that of the
conventionaly interpolated DFT spedrum and can be
implemented in a Smple manner, sincethe scaling factor is
a congtant.
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Fig. 2. Interpolation time domain window wgper for the
SIDFT spectrum for a=0.65and N = 100

Linear combination DFT spectrum
interpolation



We have seen in the previous <sdion that by
resampling the DTFT curve at 2N points (conventional
interpolation) and scaling properly in magnitude, the
DTFT curve is apparently modified but the peak
characteristic is preserved for al o (1). Here we intent to
emulate this result by combining linearly the adjacent
samples of the plane N-point DFT spedrum for 6 O [0, 1],
rather then resampling the DTFT curve, that is,

X(k+1/2) = CX(k) +C,X (k +1) = ©)
= [CXa (k) + C, X (k + D]+ J[C,X, (K) +C,X, (k +1)],

where

X, (K) = Im{X (k)}
X, (k +1) = Im{X (k + 1)},

X (k) = RX(K)}
X (k+1) = Re{X (k +1)}

k=01, ..,N-1andC;, C, = Const.

By making use of the least square approximation method,
we intent to find the optimum value for C; and C,. From
(8) it is necessary to adjust the real and imaginary parts
separately, so that their coherent sum match, as close as
posshle, the [X(k+1/2)| curve given in Fig.1(b). There ae
two ways to define the approximation function, since
interchanging the red and imaginary parts doesn't modify
the magnitude representation.

i)
Jo(C.C,) = T {Xp(k+1/2) - C, X o (k) — C,Xp (K + 1)}’
f(CC) = 3 {Xe(k+1/2) () (k+1} ©

J,(C.,C,)= Z{xl (k+1/2)-C, X, (K) —C,X, (k +D}*

0<o<1

From (9) we oktain C, = C, and consequently C(Jg) =
0.33, C(J) =-1.13.

ii) Using the same scheme but defining now the cost
functions as

Jo(CL,Cy) = Z{XR<k+1/2)—clxmk)—czxmkﬂ)}z

0<9<1

(10)
J,(C.Cy) = Z{X.(k+1/2)—clxR(k)—csz(kﬂ)}z

0<0<1
gives C, = - C,, which implies C(Jg) = 0.50, C(J)) =- 0.46

Choosing the method ii) for being more mherent and
bearing in mind the onsraint

|X(k+1/2) 2|X(k+1/2)| for 5 =05,

it isfinaly obtained C = 0.51. Note that the negative value
for C(J)) will not change the resulting magnitude spedrum.
The peak interpretation acocording to the linea
combination method is compared to the SDFT in Fig.3.
We stress that the linear combination method can be
explained in terms of linea vedor space as the @ncepts

of the DFT spedrum and arthogonal vedor decompasition
are highly related by virtue of inner product [5,6].
Consequently, any kind o the DFT spedrum interpolation
can be seen as a projection decomposition of a signal
vector over the N vedors of the interpolation basisinserted
in the N-dimensional orthogonal DFT basis[7,8].

Therefore, the following relations between the
particular projedions and their corresponding interpolation
vectors can be establi shed:

[X(K+1/2)| « X(k+1/2)=ge/tv/an
|)A((k +1/ 2)| o X (k+1/2) = @I%kn _ giQ(k+Dn

(11

Obvioudy, those vectors do not coincide in vedor space
orientation. Nevertheless according to (11), it is posshble
to treat X (k+1/2) asif it lied in the plane defined by the
vectors X(k) and X(k+1), orthogonal to each of the planes
of the N-dimensional DFT vedor space This property
implies that all vedors of the DFT basis, with exception of
X(K) and X(k+1), wil| have zero projection onto X (k+1/2).
This leads to the mncept of frequency scaling, similar to
the SIDFT. Like (7), it isnecessary to repeat the dgorithm
in the foll owing sense:

X(K) = 051X (k-1/2) - X (k +1/2)]. (11)
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Fig. 3. A single pesk interpretation:
dotted line - SIDFT spectrum;
continuous line - linear combination spectrum

Experimental results

A signal formed by two components close in frequency
was treaed, that is,

X(n) = Ae'™" + A" Q,-Q,<Q,.

Only the two largest frequency samples are being applied
the SSDFT method in order to avoid dtering the dynamic
of therest of the spedrum. The PDL isinvestigated for 600
[0, 0.5], having a magnitude difference AA as a parameter,
in the foll owing way:



AAZ'QZ
) PDL

O O O »
O O L L

k k+1/2 k+1

(frequency)

From Fig.4 it can be seen that the SSDFT is more dfedive
when the magnitude difference is smaller. For larger
magnitude difference the discrimination process is
corrupted by the "short term" leakage dfect.
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Fig. 4. The Peak discrimination limit for:
conventional interpolation - dotted line
SIDFTinterpolation - solid line

Conclusions

Two methods for nonparametric spedrum peak
discrimination are presented. They are based on the
apparent reduction of the crresponding frequency window
mainlobe bandwidth by scaling/combining the largest
spedrum samples. The equivalent time domain window in
the @se of the IDFT is also pesented. Findly, a
comparison of different methods, including the
conventiona interpolation, isgiven in agraphicd form.
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