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Abstract

This paper introduces the concept of intuitionistic fuzzy re-
lation. We also study the choice of t-norms and t-conorms
which must be done in order that the composition of intuition-
istic fuzzy relations fulfils the largest number of properties. On
the other hand, we also analyse the intuitionistic fuzzy relations
in a set and their properties. Besides, we also study the prop-
erties of the intuitionistic fuzzy relations in a set and the prop-
erties of the composition with different t-norms and t-conorms.
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1 Introduction

In this paper we will study the intuitionistic fuzzy relations, introduced
by K. Atanassov in ([3]) and subsequently studied by Buhaescu in ([6]).

This paper is divided into two different parts. In the first part we
will give the definition of intuitionistic fuzzy relation and we will study
its main properties. Next, we will analyse the choice of t-norms and
t-conorms which are more convenient in order that, firstly, the intu-
itionistim condition can be fulfilled and, secondly, the composition of



6 P. Burillo & H. Bustince

intuitionistic fuzzy relations can satisfy the biggest possible number of
properties. Afterwards, we will study the intuitionistic fuzzy relations
in a set and we will also analyse the t-norms and t-conorms which
have to be chosen in order that the intuitionistic fuzzy relations satisty
certain properties.

In the second part we will study the effect of Atanassov’s operators
on the properties of the intuitionistic fuzzy relations, that is to say,
the conditions that an intuitionistic fuzzy relation must fulfill in order
that the properties of reflexivity, symmetry, transitivity, etc... are
maintained by means of operators.

2 Preliminaries

In order to define in the intuitionistic fuzzy relations some properties
simial to the ones in the fuzzy relations, we will use the well-known
triangular norms and conorms in [0,1], taking into account that as
non- classical connectives, they do not satisfy the boolean standard
identities.

We will call t-norm in [0,1] to every mapping

T:10,1] x [0,1] — [0, 1]
satisfying the properties
i) Boundary conditions, T'(x,1) = « and T(x,0) = 0 Vx € [0, 1]
ii) Monotony, T'(z,y) < T(z,t)if e <zand y <t
iii) Commutative, T'(x,y) = T(y, z) Va,y € [0,1]
iv) Associative, T'(T(x,y),z) = T(x,T(y,z)) Ya,y,z € [0,1]
Given a t-norm 7', we can consider the mapping

S :0,1] % [0,1] — [0,1]
Sle,y)=1-T(1 —a,1 —y)

this mapping 5, will be called dual t-conorm of T
The more significant examples of t-norms and their associated dual
t-conorms are the following ones:
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i) T(x,y) = Nz,y),5(x,y) = V(z,y),
i) T(z,y) = 2.y,5(z,y) = z+y

The most important properties of t-norms and t-conorms can be
found in ([1], [9], [13], [14]).

Here we present the following Theorem with regard to the distribu-
tive property of t-norms and t-conorms. This Theorem will be used
in different parts of the paper. In this paper, unless it is said in the
opposite way, we will designate the t-norms and t-conorms with the
Greek letters a, 5, A and p.

Let I be a finite family of indices and {a;}ier, {b:}icr number col-
lection of [0, 1]. For every « t-norm or t-conorm and for every A t-norm
or t-conorm

1) a(a; V) 2a(a)Va(b)

K3

are verified.

With this result and wiht the result given by L. W. Fung and
S.K. Ku ([10]) relative to the fact that « is an idempotent t-conorm
(idempotent t-norm) if and only if @« =V (@ = A), we get the:

Theorem 0 Let {a;}ier, {b;}ier be two finite number families of [0,1]
and o, A t-norms or t-conorms not null. Then

i) a(a; V) =a(a) Vo) if and only if o =V

i) A (a; ANb) =X (ai)AN X (b;) if and only if A = A.

7 7

Proof. 1) <= It is enough to remember the associative property of the
t-conorm V.

=) Supposing now that a (a; Vb)) = (o a;) V(a0 b;), we will analyse
all the posibilities for a. Z Z Z

Supposing that « is t-conorm, we will prove that the condition

o (a; Vb)) =a (a;)V a (b;)

K3
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is equal to the idempotency of a. In fact, if the condition is verified
alz,z) =a(zVvV0,0Ve)=a(x,0)Vaz)=cVae=ur,

then « is idempotent.

Reciprocally, if v is idempotent, a(x, z) = @ Vo € [0, 1], then thougt
the monotony of « and of V and taking into account that V is the
smallest in the t-conorms, we have

el )

- () e

and as a result of the property immediately previous to the enunciation
of the Theorem « (a; V b;) >a (a;)V « (b;), the result is

(aZVb) a (a;)V a ().

7 K3

Therefore, the condition i) of this Theorem is got from L. W. Fung
and K. S. Fu’s result.

Let’s suppose now that « is t-norm; the hypothesis
a (a; V b;) =a (a;)V a (b;)
allows us to write
a(z,z)=a(xV0,0Ve)=alz,0)Va0,z)=0v0=0 Vael0I]

1]* and supposing that z < y (respectively y < x),
,y) = 0 (respectively a(x,y) < a(x,x) =0), so

oz(:z;,y) =0 V(l‘,y) € [07 1]27

in opposition to a # 0.
The item ii) of this Theorem is proved following a reasoning anal-

Let (x,y) € [0,
then a(z,y) < of

ogous to the one made in i). O

Now we are going to remember the concept of intuitionistic fuzzy
set and the definition of Atanassov’s operators.



Intuitionistic fuzzy relations. (Part I) 9

Let X # ¢ be a given set. ([2]) An intuitionistic fuzzy set in X is
an expression A given by

A={<z,pa(x),va(x) > | € X} where
pa: X —[0,1]
va: X —[0,1]

with the condition 0 < pa(x) + va(z) <1 Ve € X.

The numbers pa(x) and va(x) denote respectively the degree of
membership and the degree of non-membership of the element = in the
set A. We will denote with IFSs the set of all the intuitionistic fuzzy
sets in X. Obviously, when va(x) = 1 — pa(x) for every x in X, the
set A is a fuzzy set. We will denote with FSs the set of all the fuzzy
sets in X.

We will call ma(x) =1 — pa(x) — va(ax) intuitionistic index of the
element x in the set A.

The following expressions are defined in ([2], [4], [7], [8]) for every
A, B € IFSs

. A< B & pa(z) < pp(x) and va(z) > vp(z) Vo € X
2. AXB & pa(z) < pg(x) and va(z) <vg(z) Vo € X
3. A=Bs A< Band B<A

4. Ao =A{< z,va(x), pa(z) > |z € X}

Theorem 1 ([2], [7], [8]) Let T and S be t-norm and dual t-conorm
in [0,1], then we define the expressions

T(A, B)
S(A, B)

(<@, T(pal), up(2)), S(valz),vp(x)) > |r € X}
(<, 5(pale), pp()), T(valz),vp(z)) > |v € X}

for every A, B €1FSs. Then, it is verified that

a) ([4]) If S =V and T = A, then {IFS, N\,V} is a distributive lat-
tice, which is bounded, not complemented and satisfies Morgan’s
laws.
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b) For any S and T, the commutative, associative and S(A., B.) =
(T(A, B))., T(A., B.) = (S(A, B)). properties are satisfied.

In 1986, K. Atanassov established different ways of changing and
intuitionistic fuzzy set into a fuzzy set and defined the following oper-
ator:

If £ € IFSs(X) then

Dy(E) = {<a,up(z)+p- 7r(),
1 —pp(x) —p-7p(x) > |v € X}

with p € [0,1]. Obviously D,(FE) € FSs.

A study of the propierties of this operator, (we will call it Atana
ssov’s operator), is made in ([2], [7], [8])-

Let E be an intuitionistic fuzzy set and D, the operator given in
the previous definition, then the family of all fuzzy sets associated to £
though the operator D,, will be denoted by {D,(E)},efo- It is clear
that {D,(F)},ec0,1] s a totally ordered family of fuzzy sets.

3 Intuitionistic fuzzy relations

Let XY, Z and U be ordinary finite non-empty sets.

Definition 1 We will call intuitionistic fuzzy relation to every intu-
itinoistic fuzzy subset of X x Y, that is, to every expression R given
by

R=A{<(2,y), pr(z,y), vr(z,y)|lx € X,y € Y}

where

pr: X xY —=][0,1]
vp: X xY —[0,1]

satisfy the condition 0 < pg(x,y) + ve(x,y) < 1 for every (v,y) €
X xY.

We will denote with IFR(X x Y) the set of all the intuitionistic
fuzzy subsets in X x Y.

Concerning this definition it is worth pointing out the following
aspect:
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L. If pp(z,y) # 0, then vg(z,y) # 1

2. This definition of intuitinionistc fuzzy relation includes, as a par-
ticular case, binary relations and fuzzy relations.

3. In a way similar to the intuitionistic binary fuzzy relations, the n-

arias intuitionistic fuzzy relations can be consiedered as elements
of the set [0, 1]X*~*Z,

Definition 2 Given a binary intuitionistic fuzzy relation between X
and Y we can define R™' between Y and X by means of

HR—1 (y,l') = ﬂR(xvy)v VRp—1 (y,l’) = Z/R(l',y), V(l’,y) cXxY

to which we will call inverse relation of R.

4 Operations with relations

4.1 Immediate properties

Let R and P be two intuitionistic fuzzy relations between X and Y,
for every (x,y) € X X Y we can define

a) R< P& up(z,y) < pple,y) and va(e,y) >
b) R=< P& uplt,y) < pp(e,y) and vp(e,y) < ve(e, y).
c) RV P ={<(x,y),pr(x,y)V pp(z,y),vr(z,
d) RAP ={<(,y),pr(x,y) A pp(z,y),ve(z,y) Vvp(r,y) >}
e) R.={<(2,y),vr(z,y), pr(z,y) > [z € X,y € Y'}.
Theorem 2 Let R, P,Q be three elements of IFR (X xY)
i) R<P= R'<pt
ii) (RVP)' =RV P!
iii) (RAP)" =R AP
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w) (R"YHY™'=R
v) RA(PVQ)=(RAP)V(RAQ)y RV(PAQ)=(RVP)N(RVQ)
vi) RVP>R RVP>P, RAP<R, RAP<P

vii) If R>P yR>Q, then R> PV Q.
IfR<PyR<ZQ, then RS PAQ.

Proof.

i) If R < P, then pp-1(y,x) = pr(z,y) < pp(e,y) = pp-a(y, z) for
every (z,y) of X x Y, analogously

vr-1(y,2) = vr(z,y) > vp(z,y) = vp-1(y, x)
for every (a,y) in X x Y.
i)

trvey-1 (Y, ) = prvpy(T,y) = pr(e,y) vV pp(e,y) =
= pp-1(y,2) V pp-1(y,x) = pr-ryp-1(y, ).

The proof for v(ryp)-1(y, ) = vr-1vp-1(y, x) is done in a similar
way.

v) We will use the fact that the operators V and A satisfy the dis-
tributive property when they are applied to elements of [0,1]

RA(PvQ) (2, Y) pr(@,y) AMpp(z,y) Vo pg(e,y)}
{ILLR(:E7 y) A ILLP(:E7 y)}\/

{ILLR(:E7 y) N ILLQ(:E7 y)
NR/\P(%?J) \ NR/\Q(%

,U(R/\P)V(R/\Q)(xv y)

<< |

y)

The proof is analogous to the previous one, in the case of
VR/\(PVQ)(xa y) = V(R/\P)v(R/\Q)(SI?a y).

The rest of the items are proved in a way similar to the previous
ones. (|
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We can generalize the operatins between binary intuitionistic fuzzy
relations R, Q) € IFR (X x V), using the well-known triangular t-norms
and t-conorms in [0,1]. For a triangular t-norm T and its dual t-conorm
S, we get

T(RvQ) = {<(
S(RvQ) = {<(

(
(

Y

A
S Y),

) KR
)7 (NR

e e
=
O
TN S

)5 5(
)T

z,Yy T z,Y VR(xv
T,y x T,y vr(z,

4.2 Composition of IFR

Basing ourselves on the composition of binary fuzzy relations in [0,1]
we can give the following definition:

Definition 3 Let «, 3, A, p be t-norms or t-conorms not necessarily

dual two-two, R €IFR(X xY) and P € IFR (Y x Z). We will call
composed relation P jéﬁ R e IFR (X X Z) to the one defined by
P

Ol7ﬁ
P /\C,)p R= {< (x72)71up‘16/3R(x7Z)7Z/PaéﬁR(x7Z) > |$ € X?'Z € Z}

A p A p
where
e (@22) = o (Flun(e,v). prly. )]}
A,p
v (52) = M plvre.),ve(y. )]}
A,p
whenever

0< /LpaéﬁR(:Jc,z) Ve (x,z)(x,2) <1 V(z,z) € X x Z.

Ap Ap

R

The choice of the t-norms and t-conorms «, 3, A, p in the previous
definition, is evidently conditioned by the fulfilment of

0< /LpaéﬁR(:Jc,z) + VpaéﬁR(x7Z) <1 V(z,z) € X x Z.

A p A p

In this direction:
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Proposition 1 In the conditions of the Definition 3, if \* and p* are
respectively the dual forms of A and p and o < X*, 3 < p*, then

0< /LpaéﬁR(:Jc,z) + VpaéﬁR(x7Z) <1 V(z,2z) € X x Z.

Ap A,p

Proof. We know that

pr(z,y) <1 —wr(z,y)  V(r,y) e X xY
pp(y,z) S1—wvply,z)  V(y,z) €Y X Z

taking as hypothesis a < A* and 8 < p*, we have

ﬂ[:uR(xvy)v:uP(va)] < p*[l - VR(‘rvy)vl - VP(yv'Z)]

a {Blun(e,y), pply,2)]} < A {p" [l —va(e,y),1 —vply, )]} =
= 1= A {1=p"[l = wa(x,y),1 = vp(y, 2)]}
= 1= N palen). v )

therefore

a {Blur(e,y), pey, )3+ Mplvr(e,y) ve(y 2)l} < 1. O

Although we will see afterwards that the richest cases in properties
correspond to the choiceof @« =V, § = A, A = A, p =V and in this case
the Proposition 1 is obviously verified, next theorem gives a necessary
condition and it is sufficient for the verification of the restriction of the
intuitionism, even with 4 and p whichsoever.

Theorem 3 For each (v,z) € X X Z, a =V, A = A,  and p any
t-norms or t-conorms, not necessarily dual, we have

0< /LpaéﬁR(x,z) + VpaéﬁR(x7Z) <levVyeY 3Ty such that

Ap A,p

ﬂ[ﬂp(x,y),pg(y,z)] < p*[l - ,up(l’,y/),l - Z/R(y/7z)].
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IA

Proof. =) ILLPag@R(x7Z) + VpaéﬁR(x7Z) < 1 then /LpaéﬁR(:Jc,z)
Ap A p A p
<1- l/PaéﬁR(x7 z) therefore

Ap

\V{Blur(z,y), ne(y, 2} < 1= Nlplvr(a,y),ve(y, 2)]} =
= {1 —plvr(z,y),vp(y,2)]} =
= V{1 = vr(z,y),1 — vp(y,2)]}

therefore y' € Y exists such that for every y

ﬂ[:uR(xvy)v:uP(va)] < p*[l - VR(xvy/)vl - l/p(y/7z)].

<) Vy €Y, dy’ € Y such that

ﬂ[:uR(xvy)v:uP(va)] < p*[l - VR(xvy/)vl - l/p(y/7z)]7

then
\/{5 pr(@,y), pp(y, 2)]} < VAL = vr(z,y), 1 —vely, )]}
—1—/\{1—9[1—1/1%( y),L—vp(y,2)]} =
—1—/\{P [vr(z,y), ve(y, )]},

therefore

\VABler(x,y), nely, )1} + Nelve(z, v), ve(y, 2)]} <1,

that is to say

0 S ,upaéﬁR(xvz) —I' VpaéﬁR(xvz) S 1 (|

A p Ap
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Theorem 4 For each R €[FR(X xY), P €lFR(Y x Z) and o, B, \, p

any t-norms or t-conorms

-1
(P y R) _ gy p

Ap A

is fulfilled.

Proof.
M(Pa ﬁR)_l(z,x) = ”(P%ﬁR) (2,2) =a {Blur(z,y), prly, )} =
= o (Bl (v 2) oo (2]

= a{flpp-1(z,9), nr-1(y, 2)]

, ).

=

}
}

paegpa 2

A p

Following the same reasoning, it is proved that

A,p

Z/<P0465R) -1 (Z7x) = Z/R—laéﬁp—l (Z7$) V(Z7$) (= Z X X

A,p

Theorem 5 In the conditions of the Definition 3,

i) If P, < P, then P, jof R<P, jof R, for every R € IFR
ii) If Ry < Ry then P jof R <P jof Ry, for cvery P € IFR
ii) If P, < S, then P, jof R=<P, jof R, for every R € IFR
iv) If Ry < Ry then P :Yof Ry < Py :Yof R, for every P € IFR

v) Let R, P be in IFR (X x X), If P < R then P jc’fp < Rj&f R.
P

3P

are verified.
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Proof.
i) Py < Py then pup (y,2) < pp,(y,2) and vp (y,2) > vp,(y, 2)

g ©02) = o ABlunle,y) pe(y, 2)]} <
’p < o {Blunla.y)nn (. N} = 1 o (222).
Vo2 = Aol n A <

< M plvn(r ) ve, (2} = v, g (7).

A p

v) P < R then though the item i) P & p <R °” P then though

A Ap
the item i) P’ P < RS R.
Ap Ap
It is done in a similar way for the rest of the items. O

Going on with the properties of the composition of binary intu-
itionistic fuzzy relations, we are now going to study the distributivity.

Theorem 6 For any «, 3, A and p t-norms or t-conorms, R, P € IFR
(Yx Z)and Q € IFR (X xY)
(RVP)'S Q= (RS QV(PEQ)
P

o}
A P Ap

holds.

Proof.

Starting from the points vi) and vii) of the theorem 1, we get

a7ﬁ a7ﬁ
Z = 55 05 =
RVP 2P (RVP)S Q=P8 Q
7p ?
a7ﬁ
K Q). O

= (RVP)3 Q> (RS Qv (P
Ap A P
The previous theorem determines the sign of the inequality for the
distributive property of the composition respecting the union. Next
theorem will give us a necessary and sufficient condition for the fulfil-
ment of the equality.
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Theorem 7 Let R, P be two elements of IFR(Y x Z), Q) € IFR (X X

Y), a and X not null t-norms and t-conorms. Then

(RVP) :Yéﬁ Q=(R :Yéﬁ Q)V (P :Yéﬁ Q) if and only if a =V and X = A.
e » e

Proof. =)

ﬂ(RvP)iéiQ(x’Z) = Q {Blug(e,y), ur(y,2) V uply,2)]} =

= a{Plpe(e,y),nrly, 2) V Blua(,y), np(y, 2)]} =

because of the hypothesis of the theorem the result is
=a {Bluel@,y), urly, )3V o {Blug(x, y), pr(y, )]}

Let {ay }yev, {by}yey be two any finite family of numbers belonging
to the interval [0,1].
a) If B is t-norm, we define (for z, z fixed and for every y)

polz,y) = 1
pr(y,z) = a,
NP(?J,Z) = by7
then it is known that
6[#Q(x7y)7ﬂR(yvz)] = 4y
6[#@(1;73/)7#5(?/72)] = by‘

Besides, as (RV P) :Yéﬁ Q= (R :Yéﬁ Q)V (P :Yéﬁ @) it is verified for
P P P
every R, P and () by means of hypothesis, we have

a (a; V b;) =a (a:)V o (b))

and this condition, verified for every {a, },ev, {by, }yev, we have proved
in the Theorem 0, that is equivalent to a = V.
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b) If 8 is t-conorm, we define the degree of membership of R, P
and () as follows:

IMQ(xvy) = 0
tr(y,z) = ay
pp(y,z) = by

and with the same proceeding we conclude that verifying

o (a; V b;) =a (a;)V a (b;)

7 7

as we have seen in the Theorem 0, if and only if a = V.

This item of the demostration is finished following the same pro-
ceeding for the non-membership, concluding that A = A.

<) Let’s take o = V, A = A, 8 and p any t-norms and t-conorms

(l’,Z) = \/{5[#@(1’79)7#1%(%2)\/,up(y,z)]}:
= \V{Blug(z,y), ur(y, )1V Blug(z, y), pp(y, 2)]} =

Hrvpyo
A p

using the associative property of the t-conorm V, we have

= \V{Blug(z,y), ur(y, )] V Blug(e, ), np(y, )]} =

= V{Blro(e,y), urly, )1} V N {Blrale, y), nr(y, 2)]} =
= NRaéﬁQ(xvz) Vv ﬂpaéﬁQ(l',Z) V(z,z) e X x Y.

Following the same steps it is proved that

= /\ . D
Z/(R/\P)\//\éiQ(x7Z) V(RzéiQ)(%Z) V(PzéiQ)(:z;,z)

Theorem 8 For eery o, 3, A, p any t-norms or t-conorms and R, P €

IFR(YY x 7), Q € IFR(X xY), it is verified that

(RAP)E Q< (RS QAPS Q).

Ap Ap
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Proof. Analogous to the one made in the Theorem 5. O

Theorem 9 Let R, P be two elements of IFR(Y X 7), @ €[FR(X XY'),
a different from the null t-norm and X different from the null t-conorm.

Then

(RAP) éﬁQ: (Rjéﬁ Q)N (P :Yéﬁ Q) if and only if o = A and X = V.
» e

(&3
Ap

Proof. 1t is done following the same proceeding to the one used in he
proof of the Theorem 7. O

From the analysis of the previous Theorem it is deduced that the
choice of the a, 3, A and p t-norms or t-conorms will depend on the
problem traced on each case. However, the distributive equalites will
demand the choice of V and A for a and A or A and « respectively.

Theorem 10 Let () € I[FR(X xY), P € IFR(YY x Z) R € IFR(Z €

U), B and p any t-norms or t-conorms.

v,B
If o=V and A = A, then (R /\C,)p P) 2 2 2, Q).

Proof. In this proof we will use the facts that / is associative, that ([5],

1)
VVay = VVa,
3a/n) = Vs,

3 (V) - VGl

7

and the same properties are applied to A.
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- \/ {ﬁ[ﬂ@(%Z)a\/{ﬁ[ﬂp(y,t),ug(t,z)]}} =

Y t

= \/{\/W[NQ(%Z)aﬂ[ﬂp(y,t),ug(t,z)]}} =
= \/{\/[ﬁ [ﬂ[ucz(w,y),up(y,t)]ﬂR(t,z)]]} —

t Y

= \/{ [\/ﬁﬂ@wy)ﬂP(?J, ,MRtZ)}:

t

bl

= gt Jex

A,p /\p

The equality I/(Rvéﬁp)vé%(x, Z)=v

Ao e Ao Ap
X x Z corresponding to the non-membership is proved in analogous

way. O

Rvéﬁ(PvéﬁQ)(:Jc,z) for every (x,z) €

It is quite simple to prove that if @« = A and A = V., the associative
property is also fulfilled.

From the study made until now about the composition of the intu-
itionistic fuzzy relations, we can deduce the following conclusions:

1) If a = Vand A = A, the composition P \//\c’)ﬁ R verifies the studied
P

properties, except the distributive one of the composition respecting
the intersection (Theorem 9).

2) If @ = A and A = V, the composition P Cc’)ﬁ R verifies all the
P

properties, except the distributive one respecting the union (Theorem
7).

3) p and p can be any t-nmorms or t-conorms, not fixed by any
condition.

5 Intuitionistic fuzzy relations in a set

We will study now the properties of the binary intuitionistic fuzzy

relations R € TFR(X x X), defined in a set X. We will see that the
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exigency of the verification of certain ordinary properties, as it was
expected, will allow us to determine the possible values of 3 and p.
It is convenient to state that in the notation used for the compo-

sition, P o R, the symbols a and 3 placed up are applied to the

rnernbershlp and the symbols A and p placed down are applied to the
non-membership. Therefore, the order of placement is very important,
so this fact will have to taken into account in all what follows.

5.1 Identity relation

Definition 4 1) The relation A € IFR(X x X)) is called relation
of identity if:

m(%y)z{ (1) Zi;z ,

Z/A(l’,y):{(l) ZZIE;?JV( y) € X x X.

2) The complementary relation A., defined by

m(%y)z{ (1) Zi;z ,

yrFy

will be represented by the symbol V.

Z/A(l’,y):{(l) fo_yV( y) € X x X.

Is evident that A = A= and V =V~

Theorem 11 Let o, 3, A, p be any t-norms or t-conorms and R €

IFR(X x X).

i) R o A= A R R if and only if a is t-conorm, [ is t-norm,

A is t norm and p is t- conorm.
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A7 A7 . . . .
ii) R ao; V=V ao; R = R if and only if o is t-conorm, (3 is t-norm,

A is t-norm and p is t- conorm.

Proof. i) <)

,uRaéﬁA(l',Z) = Oz{ﬂ[,uA(l',y),,UR(y,Z)]} =

A p

,2, Bluale,2), pre, 2)) Blpale. y). nrly 21} =
= & 1B unlx, ), B0, prly, )1} =
2 {pr(x,2),0} = pg(x, z) (x,z) € X x X.

v, (0,2) = AMplvalz,y),vrly, 2)l} =

= A {plva(ea).onle, ) plos (o), valy. 2))) =
= 2 ol vl Lol vl )]} =

= 32 {vr(z,2),1} = vg(z, 2) (r,z) € X x X.
y£x

=) Now we suppose that R o A= A R R, it 1s fulfilled for

A,p

each R € IFR(X x X). We will only deal Wlth the membership func-
tions (we will work in a similar way in the non-membership functions)
and we will distinguish between four cases:

1) a t-norm and § t-norm. Taking R = A, we get

Ap

A Y A=A then ,uAaﬁA(:L',Z) = pua(x,z) Y(x,z) € X x X.
Ap

If x = z, then

U oap (xvx) = O‘{ﬂ[ﬂA(xvy)muA(yvx)]}:

0 ABlus(es0), s (e, 0)] Bl (2,), e 0]} =
= (S A0.00 = o {10} =0 # pa(e,2) =1
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for every € X in opposition to the hypothesis.
2) a t-conorm and [ t-conorm. Taking R = A and = # z, we have

,uAaéﬁA(l',Z) = Oz{ﬂ[,uA(l',y),,UA(y,Z)]} =

T e {Blualz, ), palz, 2)], Blpalz,y), paly, 2)]} =
T ke {BIL, pale, 2)], B0, paly, 2)]} =
= a {81,080, pa(z,2)) Bl0. paly, )]} =

- y;oééx {6[170]76[07 1]76[070]} =
_ y; {1,1,0} =1 # palz,2) =0

y#z

for every (x,z) € X x X different from pa(x,z) =0if @ # =.
3) a t-norm and 3 t-conorm. Taking R in the following way

1 if o=y
NR(xay)—{?él if oy
by means of hypothesis IMRaﬁA(l',l') = pugr(x,z) = 1 VYo € X have to

A p

be fulfilled.

pRaéﬁA(:z:,x) = 2&{5[/%(1'79)7#“% x)]} =

A,p

{Blualz, 2), pr(e, ©)], Blualz,y), paly, )]} =
{B[1,1], 810, prly, x)]} =
{1, pr(y, )} = prly, @) # 1 = pr(z, @),

e
2
e

y#w
e
2

it is against the hypothesis. In consequence, it is proved that « is

t-conorm and 4 is t-norm in the conditions of the Theorem.
Making a development, which is analogous to the previous one,

for the non-membership functions, we deduce that A is t-norm and p

t-conorm.

ii) The proof of this item is similar to the one made in i), using V.
O
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5.2 Reflexivity and antireflexivity
Definition 5 The relation R € [FR(X X Y') is called:

1) Reflexive if for every x € X pp(x,z) = 1. Just notice that
vr(z,z) =0 Ve € X.

: . pr(z,z)=0 :
2) Antireflexive if for everyx € X { vilz,2) = 1, that is to say,

if its complementary R. is reflexive.
Theorem 12 For every R € IFR(X), it is verified that
i) If R is reflexive, then A < R
ii) If R is antireflexive, then V > R.

Proof. 1t 1s the consequence of the Definitions 4 and 5. O

Theorem 13 For o t-conorm, [ t-norm, A t-norm and p t- conorm,
it is verified that:

i) If R € IFR(X xY) is reflexive, then R < R jéf R

i) If R € IFR(X x X) is antireflexive, then R > R Aé; R

Let’s notice the importance of the placement of «, 3, A and p. The

second condition of the Theorem can be written in this way R. < R, :Yéﬁ

R. and, therefore, the sign of the inequality and the order of oz,ﬂ,f\
and p, with regard to the first condition, are maintained. However, we
will use the first notation, taking always into account the placement
that «, 3, A and p occupy.

Proof. 1)

W a,p (J?,Z) = %{5[#3(1?,3;),#3(%2)]}:
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ﬂ[:uR(x?x)v:uR(xvz)]vﬂ[:uR(xvy)v:uR(va)]} =
pr(x, z), Blur(z,y), urly, 2)1} = pr(x, 2)

because « 1s t-conorm.

Vo (,2) = Mplvr(e,y), vely, 2)]} =

T oy Ulatalonene h lonteg)onta. ) =
= ol vl )l ) vl 2]} =
= A {Z/R(J?,Z),P[V (:Evy)7l/R( 72)]} < VR(xv'Z)

because A is t-norm.
The proof of the item ii) is analogous to the one made in the item

). O
Next example states the existence of intuitionistic fuzzy relations

which satisfy the property R < R o R and they are not reflexive.

Let X be the following set X = {:1; y,z} and R € IFR(X x X)
given by

x oy z x oy z
x 0.3 0.7 0.2 z 0.6 0.1 0.8
FR=1 0 05 08 05 | "7 |y 02 0 04
2 0.1 0.4 0.1 06 02 0.7

Fora=V,3=A, A=A and p =V, we have

x Y z x Y z
| = 05 07 0.5 |z 02 01 04
PRe'r = | y 05 08 05 | "R [y 02 0 04
’ 2 04 04 04 ’ 2 02 0.2 04

resulting that R < R Zéc R not being R reflexive.

Theorem 14 If R € IFR(X x X)) is reflexive, a, 8 are t-conorms and

A, p are t-norms, then
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. a8
i) R<R SO R
Ap

ii) R< R jéﬁ R is the binary ordinary relation X x X.
P

Proof. 1)
Hoegp(2) = a ABIL pr(e, 2], Blur(e,y), nrly, 2)I} =
: = o {LBlun(a.y)pnly. 2]} = 1= il ).
VRaéﬁR(xvz) = y;oéx{ [OvyR(xvz)]vp[VR(xvy)vVR(yvz)]} =
P {

0, plvr(e, y), vrly, 2)I} = 0 < vr(z, 2),

so that /LRaéﬁR(l',Z) > prlx,z) and Z/RaéﬁR(:Jc,z) < vgp(x,z) V(x,z) €
Ap A p

X x X, therefore, R < R jéﬁ R.
P

The item ii) is consequence of the item i). O

Theorem 15 Given R € IFR(X X Y'), for a t-conorm and X t-norm,
it is verified that

i) If R is reflexive, then R :Yéf R is reflexive.

.. . . . A, . . .
ii) If R is antireflexive, then R o; R is antireflexive.

Proof.

,uRaéﬁR(l',l') = Oz{ﬂ[,uR(l',y),,UR(y,l')]} =

(e, @), (e )], Bl v), iy, )]} =

{5
{B[1, 11, Blur(e, y), prly, @)1} =
a il

Blur(z,y), ur(y, 2)]} = 1.

«
vt
a
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In the same way, we can prove that Z/Ra”@R(l',l') =0Vee X.

A p

ii) The proof of this property is similar to the one made for the
reflexivity. O

Corollary 1 If R € IFR(X x X) is reflexive, o is t-norm and X is

t-conorm, then
n—times

RY=R$ RS R-§R
Ap Ap Ap
with n =1,2,..., it is reflexive.

Theorem 16 Let R, be a reflexive intuitionistic fuzzy relation in X X
X. Then

i) (Ry)™! is reflexive.
ii) Ry V Ry is reflexive for every Ry € IFR(X x X)
iii) Ry N\ Ry is reflexive & Ry € TFR(X x X) is reflexive.

Proof. Just notice that

= pr(@,2)Vpp,(r,0) =1V pp,(z,7) =1

URyvR T, T ( )
vp, (@, 2) Avg,(z,2) = 0A pp,(x,2) =0
=

(z,x)
VR1VR2(x7 l’)
(z,z)
(z,z)

KR\ T, T AﬂR2(x l’)—l/\,uR2($ $)—/LR2($ l’)
= vp, (v, 2) Vg (x,2) =0V up,(z,2) =vp,(z,2). O

IMR1/\R2 xz,T
Z/Rl/\RQ r,T

Y

As an immediate consequence, the result is that R :Yéﬁ A is reflexive
7p

for every R € IFR(X x X). This observation gives place to the next
Definition.

Definition 6 We will call reflexive closure of a relation R € IFR(X X
X) to RV A.
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5.3 Symmetry and antisymmetry.

Definition 7 1) A relation R € IFR(X x X) is called symmetric if
R = R™, that is, if for every (z,y) of X x X

{ ,MR(J/’,?J) = NR(yvx)
vr(z,y) =ve(y, )

in a contrary manner we will say that it is asymmetric.
2) Let R be an element of IFR(X x X) we will say that it is an-

tysymmetrical intuitionistic relation if

pr(z,y) # pr(y, )
V(z,y) e X x X, x#y=1 vrlz,y) #vrly z)
7"—R(xv y) = WR(yv l’)

The definition of antysymmetrical intuitionistic relation is justified
because of the following argument:
The relation

- o Jopr(ey) < ey, o)
x =gy if and only if { valz.y) > vply. o)

is an order in the referential X if the intuitionistic fuzzy relation R €
IFR(X X X) is reflexive, transitive and intuitionistic antisymmetri-
cal fuzzy ([8]). This fact does not take place if we take, instead of
the intuitionistic antisymmetrical previous property, the definition of
antisymmetrical fuzzy property given by A. Kaufmann ([12]).

Theorem 17 Let R be an element of FR(X x X). R is antisymmet-

rical intuitionistic if and only if

V(z,y) with x #y then pgr(x,y) # pr(y, ).

Proof. As vr(x,y) = 1 — pg(x,y) and wg(z,y) = 0 for every (z,y) €
X x X, then

pr(7,y) # pr(y, @) if and only if § vr(z,y) # VR(y,x))
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Theorem 18 [If «, 3, \,p are whichever t-norms or t-conorms and

—1
R, P € IFR(X x X) are symmetrical, then R jéﬁ P = (P o R) .

P Ap

Proof.

-1
R=R"' P=P" then R jc’f pP=pRr1Y p= (P °y R) 0

P Ap A

It R is evidently symmetrical, then R jéﬁ R is symmetrical. It
P

is evident that the composition of two symrr{etrical relations will not
always be symmetrical.

Let’s notice that if R, P € IFR(X x X) are symmetrical, it is verified
that

H Véﬁ (l’,Z) = H_ap (va)

RoP PoR
Np A p
VRVé)ﬁP(xvz) = VpaéﬁR(va)
A, p A,p

for every (x,z) € X x X.

Definition 8 A relation R € IFR(X x X) is called perfect antisym-
metrical intuitionistic relation if for every (v,y) € X x X with x # y

and
IMR(xv y) >0
or

pr(z,y) =0 and vg(z,y) < 1,

then
ir(y, ) =0
and
VR(yvx) =L

An example of an intuitionistic antisymmetrical perfect relation is
the following one:

r Yy oz r Yy oz
x 04 03 0.1 z 0.5 0.7 0.4
FE=1 0 0 05 0 [T |y 1 03 06
50 0 01 1 107
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Notice that if R € FR(X x X) is perfect antisymmetrical intuition-
istic, then it is antisymmetrical perfect fuzzy, because

pr(y,x) =0
Y(x,y) with @ # y and pr(x,y) > 0= ¢ and
VR(yvx) = 17

because the possibility pr(x,y) = 0 and vr(x,y) < 1 can never appear
in fuzzy sets.

5.4 Transitivity and c-transitivity.

Definition 9 Let’s take « t-conorm, 3 t-norm, A t-norm and p t-
conorm.

a7ﬁ
o

1) We will say that R € IFR (X x X)) is transitive if R> R Kk R.

3P

2) We will say that R € IFR (X x X)) is c-transitive if R < R & R.

)

Notice that not only the sign of inequality changes in the items 1)
and 2), but also the order of a, 3, A and p.

Definition 10 Let R be an element of IFR(X x X), a t-conorm, [3
t-norm, X t-norm and p t-conorm.
1) We will call transitive closure of R, to the minimum intuition-

A
istic fuzzy relation R on X x X which contains R and it is transitive,
that is to say

AN
a) R<R
Aoagh A
b) R6 R<R
Ap

A
¢) If R,P € IFR(X x X), R <P and P is transitive, then R< P.

2) We will call e-transitive closure of R to the biggest c-transitive
\%
relation Re IFR(X x X) contained in R.
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Theorem 19 For every R € IFR(X x X), it is verified that:
Ifa=V, A=p, =Aand p=V, then

i) R= RVR S RVR S RVéAR\/...\/R”
Y]

i) R= RARS RAR'S RC&IR/\.../\R”

begin n = Cardmal(X).

Proof. 1)

A
a) R <R is evident.
b) We will use now the distributive property of the composition

respecting the union, (R V 5) :Yéf Q= (R :Yéf Q) v (S d Q) Sa=V

Ap
and A = A, studied in the Theorem 7.

(R\/RéR\/R RS RV. \/R”)ZC

(R\/RéR\/R RéR\/ \/R”)IC:

:RAOV(R\/R S RVR'S RS RV. \/R”)\/

VRS RS (R\/RéR vRY% ARoR\/...\/...)...g
A, , ) AV AV

<<R\/R RV R AR "RV \/R”).

c) We will see now that is the minimum transitive relation which
contains R; so we will use the following notation

VA VA VA
RP=Ro R, R'=Ro RoR,...
ANV AV AV

Let’s take R < P, being P transitive, that is P /\\/o/\\/ P < P, because

of the monotony of the composition (Theorem 5), we get

R < P
R < P?<P
R < P
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VA

therefore \/ RY = P :>R< P, then R RV R R VR 2 "R 2,
Rv...V R”
ii)
\%
a) R >R is evident.
\% \% \%
b) In order to see that RCéZRZR we will use the distributive prop-

erty of the composition respecting the intersection (Theorem 9).

(RAP)S Q= (RaéﬁQ)/\<PaéﬁQ)<:>oz:/\,)\:v.
AP AP AP
(R/\R AéVRAéVR/\.../\R”)AéV
VAT VA VA
(R/\R AéVRAéVR/\.../\R”):
VAT VA
(R/\R AéVRAéVR/\.../\R”)/\

?
O
NAS

RA
/\(RAoVR/\AVR) A AR =
VA v
\%

— RO RAR™S R'S RA...ANR">R.
VLA VA A

c) Finally, we will see that is the biggest c-transitive relation con-
tained in R. Let’s take P < R, P c-transitive, that is P < P " p

)

P
P

R
P/\C,)VPSR/\C,)VR

) )

IAIA

\
therefore, P < A RY =R< R. O

n=1

Theorem 20 Let R, P be two elements of [FR(X x X) and let’s have
a=V, A=A, =Aand p=V. Then

AN AN \ \
R < P then R<P and R<P.

Proof. 1t is similar to the ones made in the items ¢) of i) and ii) of the
previous Theorem. O
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\% A
Corollary 2 For every R € IFR(X x X), R<r <R holds.

Starting from the reflexivity and transitivity of the intuitionistic
fuzzy relations, the following result can be established

Corollary 3 For o t-conorm, [ t-norm A t-norm and p t-conorm, it
is verified that

i) If R € IFR(X x X)) is reflexive and transitive, then R = R ¢ R.

Ap

i) If R € IFR(X x X)) is antireflexive and c-transitive, then R =
A

R o R.

a7ﬁ

From the analysis made about the intuitionistic fuzzy relations in
a set, now we can extract the following conclusions:

A) The fulfilment of the properties R jéﬁ A=A jéﬁ R=Ry
P P

RYvV=v Y R=R (Theorem 11), requires that 3 should be t-

a7ﬁ a7ﬁ

norm, p t-conorm and a =V, A = A.

B) For every intuitionistic fuzzy relation R of IFR(X x X), we have
proved in the Theorem 13 that if « is t-conorm, 3, t-norm, A t-norm
and p t-conorm, it is verified that:

1) If R is reflexive, then R < R R,

A

2) If R is antireflexive, then R > R & R.

a7ﬁ

C) In the Theorem 19, we have proved that if « =V, A=A, = A
and p =V, then

A
1) R=RVR'S RVR'S RS RV...VR"
\%
2) R=RAR'S RAR'S RS RA...AR"
VA VAT V,A

The previous reasonings justify the fact that since this moment
we are going to do the study of the composition of relations for the
particular case « = V, 3 t-norm, A = A and p t-conorm. It is evidnet
that V and A satisfy the restriction of the Proposition 1, (a < A*). It is
also evident that the richest case in propertiesis a =V, f=A, A=A
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and p = V. In spite of all these arguments, we will always indicate the
choice of t-norms and t-conorms made.
Finally, we will insist on the fact that there is a difference between

R \//\c’)ﬁ Pand RS P, because, although we will use the first one more
7p V

often, the second one will be very important in the next part.

6 Relations partially included

Now we are going to present a new type of relations (partially included
relations). The justification for the introduction of this new type of
relations is the following one: Atanassov’s operators do not generally
keep the transitive property of the intuitionistic fuzzy relations. In the
second part of this paper we will see that, if the intuitionistic fuzzy
relation is transitive and partially included, in this case, Atanassov’s
operators keep the transitive property, and for this reason the study of
these relations is justified.

Definition 11 We will say that a relation R € IFR(X x X)) is partially
included, if for every x,y,z € X with pr(x,z) # pr(z,y),

Sign (IMR(xv'Z) - IMR(Zvy)) = Slgn (VR(Zvy) - Z/R(J?,Z))-
Just notice that htis condition is equal to
if pr(x,2) < pr(z,y), then 1 —vp(x,z) <1 —wvg(z,y) or
if pr(x,z) > pr(z,y), then 1 —vp(x,2) > 1 —vr(z,y).

Let’s take X = {x,y, z}, the relation R € IFR(X x X) given by

x Yy oz x Yy oz
|2 04 07 01 |z 03 01 07
FRE=1 4 04 0 02 PRZ1 0y 03 04 04
2 09 0.7 1 > 0 01 0

is partially included.
The previous definition only affects to intuitionistic fuzzy relations,
because it is verified by all the fuzzy relations, as we can prove it in

the
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Theorem 21 If R € FR(X x X), then is partially included.

Proof. As vp(x,y) =1 — ug(x,y) for every x,y € X, we have:
Slgﬂ (VR(Zvy) - Z/R(J?,Z)) = Slgn (1 - ILLR(Z7y) -1+ IMR(xv'Z)) =
= Sign (pr(7,7) — pr(z,y)). O

Theorem 22 Let R be an element of IFR(X x X), if for every (x,y) €
X X X 7wr(x,y) = constant, then R is partially included.

Proof.

mr(x,y) = 1 —pgr(z,y) —vr(x,y) = constant, then
vr(z,y) = 1— pgr(x,y) — constant.

It pr(z,y) > pr(y, z), then vp(z,y) < vr(y, 2)
If pr(x,y) < pr(y, 2), then vr(z,y) > vr(y, 2)
for every z,y,z € X.

Theorem 23 Let R be an element of IFR(X x X) such that for every
tern x,y,z € X

Sign (,MR(J?,y) — ,MR(y,Z)) = Sign (WR(xvy) - WR(y,Z)),

then R is partially included.
Proof. Supposing that R is not partially included, that is, a tern
x,y,z € X exists in such a way that, for example, it satisfies

pr(r,y) > pr(y, =)
VR(xvy > VR(y,Z),

~—
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it is verified in this case that pgr(x,y) + vr(x,y) > pr(y, z) + vr(y, 2)
and therefore

7"—R(x? y) < ﬂ—R(yv Z)v
from which we have got for this term:
Sign (er(e,y) = prly, 2)) # Sign (wr(e,y) = 7rly, 2))

which is in opposition to the hypothesis. O

Theorem 24 [f Cardinal(X) = 2 and R € IFR(X x X)) is reflexive

and symmetric, then R ts partially included..

Proof. Tt is enough to apply the definition of partially included rela-
tions. O

7 Remark

The theory developped in this work is used in the paper Intuitionistic
fuzzy relations, (Part II), where the effect of Atanassov’s operators on
the properties of intuitionistic fuzzy relations in a set is studied.
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