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Abstract

The class of overtaker binary relations associated with the order
in a lattice is defined and used to generalize the representations of
L-fuzzy sets by means of level sets or fuzzy points.
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Introduction

Thanks to the reflexive property of order, in ordered sets (L, <) every element
a verifies o = sup{f/ f < a}. There are some relations that verify this
property in spite of being proper subsets of < in L x L. An example is the
strict order < associated with the order < in L = [0,1].

In the Fuzzy Set Theory there are theorems about the representation of
fuzzy sets, such as Zadeh’s level sets decomposition of a fuzzy set in level
sets A(x) = sup{a A Aq(2)/ o € L} (See [6]). There are also results based
on atoms or fuzzy points &, (where ,(z) = «, and Z,(y) =0, y # x), such

as A =U{i, | o < A(x)}.
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In this work it is verified that in completely distributive lattices both kind
of representation are particular cases of a more general one that is based on
the family of overtaker relations.

The paper is organized in the following way. The first section introduces
the concepts of additional and overtaker binary relations and some of their
properties are analyzed. The second section takes into consideration some
particular lattices that are interesting from the overtaker relations viewpoint.
The last section shows the representation theorem.

1 Overtaker binary relations

Let (L,V,A,0,1) be a complete lattice with the induced order <.
Definition 1.1 A relation R C LXL such that:

Al aRf = a <.

A2 (a< B,y <6, BRy) = aR6.

A.3 Va € L(0Ra).

is called additional relation. The set of additional relations is denoted
Ad(L).

FEvery relation R € Ad(L) is antisymmetric and transitive and the relation
Ry equal to the order < on L is the mazimum on Ad(L), as it can be easily
proved. Morevoer, Ry € Ad(L) given by: aRof iff a =0 is the minimum.

Proposition 1.2 If (M, <) is the poset of maps m from L to S(L) such
that m(x) C| « Yo € L (with the usual pointwise order given by m < m’ iff
m(x) € m'(x)); | « is the ideal {y/y < x} of L; S(L) C P(L) is the set of
semiideals in L and Iy, Ipnqqy are the identities in M and in Ad(L) then

a) ( Ad(L),C, Ry, R1) is a complete lattice.
b) The applications ® : Ad(L) = M and ¥ : M = Ad(L) defined

O®(R) = mp with mp(z) ={y/yRx} Cla VYarelL
U(m) = {(y,2)/y € m(z)} = R,

are isomorphisms, that is @ oW = Iy, Wo ® = Iyqq,).
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Proof. 1t follows directly from definitions. H

Observations.

1) This proposition shows that (M, <) is a complete lattice with the sup
and inf operations defined ¢(x) = U(m(x)/m € H) € S(L) and x(x) =
N(m(x)/m € H) € S(L) Yo € L, where H C M, ¢ = supH and
Y = inf H.

2) As a consequence of proposition 1.2, asociated to the zero Ry and the
unit Ry relations in Ad(L) we have the maps mpg, and mpg,

mpy(v) ={y/yRox}={0} Vae L.
mp,(z) ={y/y<az}=lx Veel.

We consider now the relations that are associated with the class of maps

(my)ses(r) from L to S(L), that is, those defined by

VS € S(L) (1)

lx otherwise

ms(x):{x/\S:lxﬂS if £ <supS

where 2 A S = {z Ay/y € 5}. We have:

Proposition 1.3 Let (my)ses(r) be the family of functions m, : L — S(L)
defined in (1) and let = inf(m,/S € S(L)), then

(i) mie M VS eS(L).

(ii) u(z) =N(S e S(L)/x <supS) Vx e L.
(iii) p =inf(m,/S € S(L)) belongs to M.
Proof. Direct from definitions. m

With the functions mg and p are associated the additional relations R,,,

and R, through:
YyRu.v < (y el anSifz <supSory el xotherwise).

yR,x < yen(SeSL) ez <supf).

Next proposition provides alternative determinations for F2,.
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Proposition 1.4 In a complete lattice L the following statements are equiv-
alent:

(1) xRy
(ii) (S semiideal and y < supS) =z € S.

(iit) W #N C L andy <supN) =z <n for somen € N.

Proof. (i) = (ii).
Suppose S semiideal and y < sup S. Then

rRy=xeply)=nNS/y<supS)=z€S.
(i) = (iii).
For N C L, we can consider the semi ideal | N = {z/3dz € N,/ z < z}.

According to ref [1] sup N =sup | N. I S =] N and y <supS =sup | N
then = €| N and therefore there are some n € N verifying x < n.

(iil) = (i).

If S € S(L)is a semiideal and y < sup S then for some my; € S @ < ms.
As S is semiideal, it follows that = is € S, therefore x is in N(S/ y < sup 5) =
((y); hence zR,y. A

Definition 1.5 A relation R € Ad(L) is a overtaker relation on L, if
Va (o = sup(§/ fRa)). @)

Let Ov(L) be the set of overtaker relations; for |L| > 2 Ov(L) is a proper
subset of Ad(L) .

Some examples.

1) The order relation < of the lattice L belongs to Ad(L) and verifies (3),
so it is an overtaker one.

2) On the contary, the relation o # 0 = sup{/3/ fRoa} < a it is not.
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Let (R, )565(,;) be the family of binary relation associated with the family
(my)ses(r). that is y R, .« iff y € my(x) and let R, € Ad(L) be the relation
associated with p = inf(m,)ses) € M; under these assumptions

Proposition 1.6 In the case of a lattice L being Browerian and complete:

(i) Va(x = sup{y/yR,..x}), that is, R, is an overtaker relation for every
5.

it) The relation R, € Ad(L) wverifies R, = int (Ov(L)).
(it) v (L) v Ad(L)( (1)

Proof. (i) As ms € M VS € S(L), R, is an additional relation. Moreover,

it is an overtaker one:

As
JanS=lznS if @ <supS
ms(v) = { lz otherwise
we have © = sup | @ = supmy(x) for my(x) =] x. In other case, when

x <sup S, then my(x) =« A S so as the lattice L is Browerian sup m,(x) =
sup(x A S)=x AsupS = x.

(ii) Let mo € M, where M is the set defined as in 1.2(b), then mg(x) =
N{mg(z)/R € Ov(L)}. As R, = N{R,,./S € S(L)} and R,,, € M, we
have R, 2 R,. In the reverse, for R in Ov(L) we have that for all y
y = supmpg(y), and, being mp(y) a semiideal (due to A.2 and 1.4(ii)), then
(x,y) € R, implies « € mp(y), that is (z,y) € R; as this occurs for every R
in Ov(L), (z,y) € Ryy,s0 Ry C Ry M

Note that g is the infimum of Ov(L) in Ad(L) , but not necessarily the
minimum and therefore it is possible that p ¢ Ov(L), that is

Jz(suply/y Rux} < ).

In a different context, the authors Balbes and Dwinger analyze the map
p and characterize the complete and completely distributive lattices with the
following theorem

Theorem 1.7 ([1]) If L is a complete lattice

(i) YP(u(sup P) = U(p(z) [ € P)).
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(ii) The complete lattice L is completely distributive iff
Va(x = sup p(x)).

(tii) If L is completely distributive

We are concerned with the following direct consequences of 1.7

Corollary 1.8 (i) pp € Ov(L) & L is completely distributive.

(i) For every complete lattice L the following are equivalent:

(a) P#0 and 2R, sup P.
() Ime P: x <m.

In lattice theory, a point « € L is called completely join-irreducible ([1])
iff (xt < supP = Im € P: 2 < m). As a consequence of 1.8, the set
K = {(z,2)/x € L, x is completely join-irreducible} included in LXL is
a subset of R,, so in terms of R, the complete join-irreducibility of x is
equivalent to xR, x.

Corollary 1.9 (a) If L is a completely distributive lattice, then p is the
mintmum of v(L) in Ad(L), i.e., R, € Ov(L)and (R € Ov(L)= R, C
R).

(b) L is completely distributive lattice iff Va(x = sup{y/y € R,x}).

Proof. (a) follows from proposition 1.6 and theorem 1.7 (ii). (b) is a conse-
quence of (a). W

The relation R, is a transitive one, that is R, o i, C R,. For equality
we have the following:

Proposition 1.10 If L is complete and completely distributive then
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(i) R,oR,=R,.

(it) xR, sup P < R, m for some m € P.

Proof. (i) It is sufficient to prove that R, C R, o R,. From Corollary 1.9:
tR,y < xR, sup(z/zR,y) and from corollary 1.8 it follows that for some z,
xR, zR,y.

(i) If 2R, (sup P), then according to (i), +R, o R,(sup P) and in conse-
quence there is some z such that « R, 2R, (sup P), and 1.8 (b) guarantees the
existence of some m € P such that +R,z <m,so zR,m. A

2 Aspects of relation R, in special complete
lattices

The binary relation R, depends on the order < in the lattice L. We look
now for characterizations of R, in some types of lattices.

2.1 The relation R, in complete chains

Chains are lattices L where all elements are comparable under <. A totally
ordered and complete lattice is a complete chain; complete chains are also
completely distributive lattices. There we have the following

Proposition 2.1.1 For < the strict order binary relation in a complete
chain L and K = {(x,x)/ « € L, x is completely join-irreducible}, we have

R,=KU<

Proof. As R, C<, xR,y implies < y or ¥ =y, so (z,y) €< UK.

This is in the other sense for (z,y) €< UK, (x,y) €< or (x,y) € K;
in the first case + < y < sup N, and as L is a chain there exists some
n € N such that # < n and according with 1.4(iii), « R,y; in the second case
(z,y) e KC R, 1
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Consequences

1) In complete chains, R, is the “way below” relation << (defined in [2]
and related with Fuzzy Set membership in [7]).

2) For finite chains L, ©+ € L = a is completely join-irreducible and
consequently R, =<.

3) For L =[0,1] C R the only completely join-irreducible element is 0, so
we have

rRy<rs<yorx=y=0.

2.2 The relation R, in product lattices

If (L,)zex is a family of complete and completely distributive lattices, the
product

L=X(L,[z€X)={A:X > |J L, | Va(A(x) € L)},

reX

with the usual pointwise definitions of SUIP A; and INF A;:
1€ [AS

(SUP A;)(z) =sup{Ai(z)/ieI}VeeX.

el
(INF A)(x) =inf{A;(x) /ieI}Vx e X.
is a complete and completely distributive lattice (See [1]).

Let (L., <,) and (£, <) be the posets associated with the complete lat-
tices L, and L respectively; 0, and 0 the zeros in L, and £; u, and p
the relations associated (as in 1.3) with L, and £; (R,,)-ex the family of
relations associated (as in 1.4(iii)) with (L,)sex. Finally, let R, be the anal-
ogous relation associated with product £. We shall now consider the mutual
relationships between (R, ).ex and R,,.

Definition 2.2.1 Let A € £. The support [6] of A is

supp (A)={z € X | A(x)#0,} C X.
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Proposition 2.2.2 Supp(SIEJIP Ay) = U supp ((A)) for every family (A;)ier

=3
in L.

Theorem 2.2.3 Let L be the product lattice of the family (L;)zex of com-
plete lattices. The following conditions are equivalent:

(i) 0# AR,B.
(ii) supp(A) is a singleton {x} and A(z)R,, B(z).

Proof. (i) = (ii): SupposeAE,CandA;zﬁO If AR B, then from 1.4(iii) we
have ) #H C £ and B<SUPH = 3C € H: A<C

We now consider the maps z, : X — £ given by

Io(z)=a€ L,
{ T,(y) =0, € L, Vy#ux. (5)

defined for € supp (B), o € L, and 0, # a <, B(l‘)

The subset Hg = {&, / « € supp(B), o € L,,0, # a <, B(:L')} is non
empty and it is included in £; B = SUP Hg, so there is an &, € Hp such
that A < #,. Thus, § # supp(zzl) C supp(a,) = {z}, so supp(zzl) is the
singleton {z}.

In order to show A(:L')RM Bx, we now consider a nonvold subset H of L,
verifying B, <, sup H. It is sufficient to proving the existence of some A in
H such that 121(:1;) <, h. Let H C L be the subset of maps h:X — L[

associated with B as well as to H under the definitions

{l:z(:z;):liEHng
h(y)=B(y) € L, ify#a.

For these maps, when y # x we have (SUPH)(y) = sup{iz(y) [/ heH} =
sup{B(y)} = B( ), and (SUPH)(z) = sup{h(z) /h € H} = sup{h/ h €
H} =sup H >, B(z). So B < SUP'H. From 1.4(iii) follows the existence of
a map h € H such that A < &, soA() h() h.

~In order to see (ii) = (i), let we suppose that supp(A ) = {z} and
A(z)R,,B(x). Let F besuch that B < SUP F. Then B(z) <, (SUP F)(z) =
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at verifies

sup{C( ) € F}. By hypothesis, there is some C~' .7: tNh
=0, <, Cly) Yy # @

/| C :
A(x) <, C(x). This inequality and the obvious A(y)

show tha A< C and therefore ARMB. |

Corollary 2.2.4 [f(L,).cx is a family of completely distributive lattices and
L is the completely distributive product L =X(L, | * € X), then

VB € L(B = SUP{z, [z € supp(B), ozRMB(:L')}).

Proof. From 1.7 and 2.2.3 we deduce

< —0) or (0 # AR,B)} =

B =SUP{A / AR,B} = SUP{A
( . and aR, B(z))}

/
= SUP{A / (A=0)or (A
and obviously we can leave out the map 0 in the calculation of SUP. m

Let be remarked that 2.2.4 gives us a representation of the maps

BeL = X(L,/ ® € X) by means of those &, € X(L, /x € X) defined
by (5).

3 The relation R, and the L-fuzzy and fuzzy
sets

The previous concepts and results can be applied to characterize some notions
of Fuzzy Set Theory.

a) Characterization of fuzzy belonging of fuzzy points

In the case L, = L Vo € X, Lis {A: X — L} = LX, that is the set of
L-fuzzy subsets of X as defined in ref.[3]. In particular, when L is the
chain [0,1] £ comes of to be the set of fuzzy sets of X in Zadeh’s classical
sense of ref.[4]. According to 2.2.3 and 2.2.4 and the third consequence from
2.1.1, we can say for every pair A and B of fuzzy sets of X that

(0# AR,B) < (A =i, and o < B(x)).

Let be remarked that the second member of the equivalence is exactly the
definition of fuzzy belonging of fuzzy-point &, (see ref [8] and [9]), to the
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fuzzy set B according to ref. [5]. Thus, fuzzy belonging is just a particular
case of R, and we have

B =SUP{i, / x € supp(B), a < B(z)}.

for every fuzzy set B € [0,1]%, that is, the representation of B through
fuzzy-points &, that appears in ref ([5]).

b) Level Sets .
In the fuzzy sets theory, the fuzzy subsets B are often determined through
the synthesis (see Zadeh [4]) of their families (B, )aejoq of strict level sets

(B,)={r € X /a<B(z)} € X Vac|01].
Definition 3.1 Let B € LX. The p-level sets of B are the ordinary subsets
B ={teX /aR,B(z)} CX
for a € L. The family (BX),er verifies
Proposition 3.2 If A, A; and B are L-fuzzy sets and a € L, 5 € L then
(i) A<B= A>CB: Vacl.
(i) a < B = A5 CA, VAelLX
(iii) ZLEJI(AZ)z - (SZIEJIP %L)z Ya € L, and if L is completely distributive lattice:
U(AL = (SUPA); Vae L.

1€l

(iv) (INFA)* C N(A), YVaecL. ®
el iel
Proof. (i) For z € AZ, aR A( ) < B(z), s0 aR B( ) and © € BZ.
(ii) For = € A%, we have SR, A(z) and then o < BR, A(z). This implies
aR,A(x) and z € A*.
(iii) As 121]‘ < (S}GJIP %L) for each j and according the first part

(A C (S[EJIPA) for each j, so | J(A (SUPA)

el el
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In the case of L completely distributive, x € (SUIP %L)z implies
1€

aRM(SUIP(:I;), that is aR, sup /L(l‘) which together with proposition 1.10
1€ 1€l

(i), guarantees a R, A;(x) for some i € I, that is = belongs to LEJI(A]‘)Q.
j

(iv) The proof is similar to that of the first part of (iii). W

Proposition 3.3 Let L be completely distributive, A € LX a L-fuzzy set and
A% (x) the membership function of ordinary set A%. Then; for every x € X

{8/ B R,A(x)} ={aAAL(z) [ a € L}.

Proof. Let 3 be an element of the left set, then x € A}, Aj(x) = 1 and
B=pBA1=p3AAy(x), so B belongs to the right set.

Conversely every (3 of the right set either equals or does not 0. If 5 =0,
it trivially satisfies 0 € {3/ ﬂRMA(:p)} If 3% 0 then 8 =aA A%(x), where
a#0and 0# A% (x) =1 and o = 3, that is ﬂRMA(:p), thus implying that 3
belongs to the right set. ®

Corollary 3.4 (Representation of L-fuzzy sets). For every A € L%,

A=SUP{aA A/ aclL}).

Proof. Just by Zadeh’s decomposition and 3.3. B

Conclusions and future works

The need for representation theorems of fuzzy sets concerning the possibility
of building fuzzy sets from families of ordinary sets, has been considered in
the literature of the field since its inception (see [11], [12] and [13]).

Our representation is relevant to L-fuzzy sets when L is a product lattice.
There it brings advantage over the usual one because only the “coefficients”
a placed over the axis need to be accounted for, as shows Th. 2.2.3.

We have in mind to continue working on extending the concepts of fuzzy
membership from this point of view. This can be interesting for fuzzy topol-

ogy.
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