
 

 Running title: Branched-chain amino acid biosynthesis inhibitors 
 

 

 

 

 

 

Corresponding author: 

Mercedes Royuela 

Departamento de Ciencias del Medio Natural 

Universidad Pública de Navarra 

Campus de Arrosadía, E-31006 Pamplona, Spain 

 

Tel: +34 948169120 

Fax: +34 948 168930 

E-mail: royuela@unavarra.es  

 

mailto:royuela@unavarra.es


Branched-chain amino acid biosynthesis inhibitors: 
herbicide efficacy is associated with an induced carbon-
nitrogen imbalance 

 Ana Zabalza, Amaia Zulet, Miriam Gil-Monreal, Maria Igal, Mercedes Royuela*

Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Campus Arrosadia, 

E-31006, Pamplona, Spain 

© 2013. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/



 
3 

Summary  
 

Acetolactate synthase (ALS; EC 4.1.3.18) and ketol-acid reductoisomerase (KARI; EC 1.1.1.86) 

are two consecutive enzymes in the biosynthesis of branched-chain amino acids. Several 

commercial herbicides inhibit ALS as their primary site of action. KARI has also attracted attention 

as a potential target for herbicides. Although potent and selective inhibitors of KARI have been 

discovered, these inhibitors display less herbicidal activity than ALS-inhibiting herbicides. To obtain 

a better understanding of these findings, we have compared the physiological effects induced in 

pea plants after KARI or ALS inhibition. Although, both types of inhibitors induce growth arrest and 

photosynthesis inhibition, plant death occurs more rapidly under ALS inhibition than KARI 

inhibition. Carbohydrates accumulated in the leaves and roots following treatments with both 

inhibitors. The carbohydrate accumulation in the leaves occurred as a consequence of a decrease 

in sink strength. In contrast, the free amino acid content was only affected through ALS inhibition. 

These results indicate that although KARI and ALS inhibition block the same biosynthetic pathway 

and exert common effects on carbon metabolism, nitrogen metabolism is more affected via ALS 

than KARI inhibition. Thus, metabolic alterations in nitrogen metabolism induced through ALS 

inhibitors might contribute to the increased efficacy of these chemicals as herbicides.  

 

 

Keywords: mode of action; herbicide; branched-chain amino acid; acetolactate synthase; ketol-acid 

reductoisomerase.  
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Introduction 
 

Valine, leucine and isoleucine form the small group of branched-chain amino acids 

(BCAAs). Bacteria, archaea, fungi and plants synthesise BCAAs, while animals, including humans, 

are not able to synthesise BCAAs de novo and have to acquire these amino acids through their 

diets.  

A unique feature of BCAA biosynthesis is that valine and isoleucine are synthesised in two 

parallel pathways through a single set of four enzymes, acetolactate synthase or acetohydroxy 

acid synthase (ALS; EC 4.1.3.18), ketol-acid reductoisomerase or acetohydroxy acid 

isomeroreductase (KARI; EC 1.1.1.86), dihydroxy-acid dehydratase and branched-chain 

aminotransferase, which catalyse the formation of these two amino acids using different 

substrates. ALS catalyses the condensation of either two molecules of pyruvate to form 

acetolactate or one molecule of pyruvate and one molecule of 2-ketobutyrate to form 2-aceto-2-

hydroxybutyrate (Singh, 1999). KARI catalyses the reductive isomerisation of AL to 2,3-dihydroxy-

3-isovalerate or the conversion of 2-aceto-2-hydroxybutyrate to 2,3-dihydroxy-3-methylvalerate 

(Durner et al., 1993).  

ALS is the best-studied enzyme involved in BCAA metabolism because it is the target for 

commercially successful herbicides. There are five different chemical classes of herbicides that 

inhibit ALS: sulfonylureas, imidazolinones, triazolopyrimidines, sulfonylaminocarbonyl triazolinones 

and pyrimidinyl-oxy-benzoates. These chemicals have emerged since the 1980s and have been 

demonstrated as potent, selective, broad-spectrum herbicides and inhibitors of plant growth. Due 

to their high efficacy, these inhibitors are used at low field application rates in the range of grams 

per hectare, while other herbicides are applied in the range of kilograms per hectare. The efficacy 

and potency of ALS inhibitors have ensured the continued success of these herbicides, which have 

rapidly challenged, and in some instances replaced, traditional products, particularly in cereals and 

soybeans (Cobb and Reade, 2010). Currently, ALS inhibitors represent the second largest class of 

active herbicidal products and are traditionally used in weed control for many non-transgenic crops. 

The combination of the widespread usage of ALS-inhibiting herbicides and the development of 

resistance to these herbicides has resulted in the evolution of 127 ALS inhibitor-resistant weed 
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species (Heap, 2012). In most cases, where the underlying resistance mechanism has been 

investigated, resistance occurs through point mutation(s) in the ALS gene that reduce the 

sensitivity of the enzyme to herbicides (Powles and Yu, 2010). The characteristic attributes of ALS 

inhibitors (i.e., their low toxicity and high efficacy) indicate that the inhibition of BCAA biosynthesis 

is a suitable target for herbicidal action; however, the rapid evolution of weed resistance to ALS 

inhibitors limits the applicability of these compounds and represents a significant challenge. New 

chemistry and novel herbicides with unique modes of action are needed to manage the evolution of 

resistance of weeds to existing herbicides (Gewick, 2010; Duke, 2012).  

A major research effort has emerged for the development of new products to inhibit the 

synthesis of branched-chain amino acids through the inhibition of another enzyme in the same 

pathway, thereby targeting inhibitors that might behave as herbicides, similar to ALS inhibitors, but 

function via a new  mode of action, thereby avoiding the selection pressure on ALS. Thus, efficient 

inhibitors of all the enzymes in the branched-chain amino acid pathway, with similar in vitro Ki 

values have been identified, but only inhibitors of ALS have been commercialised (Wittenbach and 

Abell, 1999; Duke, 2012). Compounds such as 2-dimethylphosphinoyl-2-hydroxyacetic acid (Hoe 

704) and N-hydroxy-N-isopropyloxamate (IpOHA) are potent and selective competitive inhibitors of 

KARI (Schulz et al., 1988; Aulabaugh and Schloss, 1990) but only display minor herbicidal activity. 

Two explanations have been suggested for their lack of potency in the field: these compounds 

exhibit slow binding inhibition of KARI in solution and act as competitive inhibitors that prevent the 

optimal effects of the inhibitor through the accumulation of substrates (Leung and Guddat, 2009). 

Cyclopropane-1,1-dicaboxylic acid (CPCA) acts as a KARI inhibitor in Escherichia coli in vitro and 

in some weeds in vivo (leaf disks) (Gerwick et al., 1993). This inhibition has been enzymatically 

characterised in rice, showing that CPCA mimics the transition state of the reaction. Nevertheless, 

this inhibition is substantially less potent in vivo than suggested by the effects on KARI in vitro (Lee 

et al., 2005), even when different substitutions are tested (Liu et al., 2007; 2011). 

After an inhibitor reaches its primary target, several physiological effects are triggered 

within the plant. Although the biochemical mechanism underlying the blocking of ALS activity 
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through ALS inhibitors has been extensively studied, little is known regarding the physiological 

process underlying plant death resulting from inactivated ALS.  

In general, after the target of an inhibitor has been affected, death occurs as a result of 

various causes. First, death could be associated with the lack of end products generated from the 

inhibited pathway. Second, plant death could result from an accumulation or increased availability 

of the substrates of the inhibited enzymatic pathway. Third, lethality could be associated with 

several side reactions triggered after the inhibition of the target. Thus, the differences in herbicidal 

efficacy detected between ALS and KARI inhibitors might reflect the physiological processes 

leading to plant death. The two types of inhibitors should have similar effects if lethality results from 

the lack of end products (i.e., valine, leucine and isoleucine), but these compounds would be 

expected to perform differently if plant death is more associated with substrate accumulation or 

side effects.  

An impairment of carbon and nitrogen metabolism has been reported in treated plants 

following ALS inhibition (Zabalza et al., 2004; 2005; 2006). In contrast, although several aspects of 

the physiological response after KARI inhibition have been reported (Wittenbach and Abell, 1999), 

no exhaustive studies on the effects of these inhibitors on carbon or nitrogen metabolism have 

been performed.  

The aim of this study was to characterise the effects of a KARI inhibitor on carbon and 

nitrogen metabolism compared with an ALS inhibitor. To this end, pea plants were treated with 

imazethapyr (IM, an ALS inhibitor) or CPCA (a KARI inhibitor), and the effects of these compounds 

on carbohydrate and amino acid contents were compared, as these metabolic indicators are 

altered following ALS inhibition. CPCA was supplied at two different concentrations to determine 

whether the physiological responses were dose dependent.  
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Materials and methods 
 

Plant material and treatment application.  

Pisum sativum L. cv. Snap Sugar Boys were grown in an aerated hydroponic culture in a 

growth chamber (Zabalza et al., 2005). When the plants were 12 days old, the tanks were divided 

into four groups: one control group and three inhibitor-treated groups. The ALS-inhibiting herbicide 

IM (commercial formula, Pursuit 10, BASF Española SA Barcelona, Spain) was applied to the 

nutrient solution at a concentration of 69 µM (20 mg active ingredient L-1). CPCA (1,1-

cyclopropanedicarboxylic acid), a KARI inhibitor, was applied to the nutrient solution at 

concentrations of 200 or 500 µM (26 and 65 mg L-1, respectively). The nutrient solution was 

replaced every 3 days to maintain constant inhibitor concentrations in the nutrient solution 

throughout the experiment. The experiments were repeated in two independent series, with three 

replicate tanks per treatment. 

The pea growth was determined using root and shoot lengths as the best indicators of 

growth inhibition. For metabolite analyses, leaf and root samples were collected at 0, 1, 3, 7, 10 

and 15 days after treatment. Plants were also harvested at 22 days after both CPCA treatments. At 

harvest, leaf and root samples were collected, immediately frozen in liquid nitrogen and stored at 

-80ºC until further analysis.  

Gas exchange measurements 

The net CO2 assimilation rate was measured in the youngest fully expanded leaf of intact 

plants using the portable ADC-LCi Infrared Gas Analyzer System (ADC BioScientific Ltd., Herts 

England). The leaf area was determined using the Li-3000 system (Li-Cor, Lincoln, Nebraska, 

USA). 

Determination of metabolite contents  

Acetolactate was extracted from the leaves and roots and analysed as previously described 

(Zabalza et al., 2005). The extraction and quantification of quinate through ion chromatography 

and amino acids via capillary electrophoresis was performed according to Orcaray et al. (2010). 

The glucose, fructose and sucrose contents were determined in ethanol-soluble extracts, and the 

ethanol-insoluble residue was extracted for starch analysis. The concentrations of starch and 
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soluble sugars were determined using capillary electrophoresis according to the methods of 

Zabalza et al. (2004). 

Statistical analysis 

The mean values were calculated using the samples obtained from individual plants as 

replicates. The results were subjected to a separate one-way ANOVA for each day of treatment 

SPSS 16.0). The means were separated using the least significant difference method (p < 0.05, 

Fisher protected). Significant differences between each treatment and the control plants (not-

treated plants) are highlighted in the figures using a different symbol for each treatment. When the 

obtained values were percentages, a prior transformation to arcsine √(x/100) was applied. 
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Results  

The addition of 69 µM IM to the nutrient solution produced root and shoot growth inhibition 

(Fig. 1). The effects detected after IM treatment were used as references to determine the 

concentration of the other inhibitors, and preliminary analyses were conducted to determine the 

CPCA concentrations that induce similar effects (in terms of speed and intensity). Two CPCA 

concentrations were adopted (200 and 500 µM) to compare the effects obtained following IM 

treatment. Although root growth was arrested and shoot growth was suppressed after the 

administration of CPCA to the nutrient solution (Fig. 1), the pea growth was more severely inhibited 

after IM treatment. The administration of 200 and 500 µM CPCA arrested root growth on the 7th 

and 10th day after the onset of treatment, respectively, and the inhibition of shoot growth was 

observed from day 10 of the treatment period.  

Plant death occurred at 22 days after IM treatment (net photosynthesis, almost null). The 

death of pea plants following KARI inhibition took longer than after ALS inhibition and occurred in a 

dose-dependent manner; 200 and 500 µM CPCA caused plant death after 36 and 31 days of 

treatment, respectively.  

The addition of CPCA to the nutrient solution dramatically increased the acetolactate (the 

substrate of KARI) content in the leaves and roots from the beginning of the treatment (Fig. 2). This 

result confirms the effectiveness of CPCA as a KARI inhibitor in vivo. The acetolactate 

accumulation in the roots increased over a period of 10 days and was maintained thereafter (Fig. 

2B). Although CPCA was absorbed in the roots, the acetolactate accumulation was higher in the 

leaves, with maximum accumulation detected after 3 days of treatment (Fig. 2A).  

Although ALS inhibition reduced the net photosynthesis by day 7, plants treated with 200 

µM CPCA only showed an inhibition of photosynthesis at the end of the study (15-22 days), while 

plants treated with 500 µM CPCA were inhibited after the tenth day of treatment (Fig. 3). At the end 

of treatment, the leaves of plants treated with both CPCA doses showed low photosynthetic rates.  

To the best of our knowledge, this study is the first to describe the effects of KARI inhibition 

on net photosynthesis (Fig. 3) and carbohydrate contents (Fig. 4 and 5). In general, all of the 

applied treatments resulted in carbohydrate accumulation in the leaves in the form of both soluble 
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carbohydrates (fructose, glucose and sucrose) and starch from the onset of treatment, although 

several differences were detected. Under IM treatment, the metabolite content was only monitored 

until day 15, and at day 22, the plants were dead. IM treatment caused a greater increase in the 

fructose and glucose contents than that observed under CPCA treatment, whereas the sucrose 

accumulation was higher after KARI inhibition than after ALS inhibition. The glucose accumulation 

observed following CPCA treatment was dose dependent, with greater and earlier accumulation 

occurring in plants treated with 500 µM CPCA than in those treated with 200 µM CPCA (Fig. 4B). 

The pattern of sucrose and starch accumulation was similar for both concentrations of CPCA 

tested (Fig. 4C and D). In both cases, the accumulation was significant after 3 days of treatment. 

Although the sucrose and starch accumulation was maintained for the duration of the experimental 

period in the leaves of pea plants supplied with 200 µM CPCA, the leaves of pea plants treated 

with the highest concentration of CPCA showed sucrose and starch contents that were similar to 

those observed in the control leaves after 22 days.  

Despite the accumulation of carbohydrates in the leaves, there was no carbohydrate 

shortage in the roots. Indeed, carbohydrates (both sucrose and starch) also accumulated in the 

roots when CPCA or IM was added to the nutrient solution. Similar to the leaves, the sucrose 

accumulation in the roots was dependent on the CPCA dose applied. The higher CPCA 

concentration (500 µM) provoked a stronger effect on the sucrose content (Fig. 5A); however, the 

starch accumulation was not as great. The roots of pea plants treated with IM showed the highest 

starch accumulation on day 7, and the values were close to the control values at days 10 and 15. 

In CPCA-treated plants, the starch accumulation was only significant at 7, 10 and 15 days from the 

onset of treatment (Fig. 5B). 

Fig. 6 shows the free amino acid contents and patterns of branched-chain and aromatic 

amino acids in the roots and leaves. Because these herbicide treatments induce carbohydrate 

accumulation in leaves and roots (Fig. 4 and 5), the content of the total free amino acid pool was 

expressed per gram of sugar-free fresh weight. Only the ALS inhibitor induced the short-term 

accumulation of the total free amino acid pool in both leaves and roots. The administration of 

CPCA to the nutrient solution did not change the short-term content of total amino acids in the 



 
11 

leaves, but the amino acid content was reduced from day 15 of the study (Fig. 6A). The only 

modification observed in the roots was detected at 7 days after treatment, when both 

concentrations of CPCA caused a significant transient accumulation of free amino acids (Fig. 6D).  

 These results must be considered together to interpret the observed amino acid contents 

following these treatments, as a general increase in the total free amino acid content through 

proteolysis could ultimately mask the inhibitor-induced reduction in the synthesis of specific amino 

acids. Consequently, it is useful to express the specific amino acid content as a percentage of the 

total free amino acids, instead of an absolute value. The percentages of inhibited amino acid 

(branched chain) biosynthesis are provided (Fig. 6B and E). The percentage of branched-chain 

amino acids was increased in the leaves 7 days after IM and CPCA treatment (Fig. 6B). In the 

roots, after a transient reduction at 3 and 7 days, the percentage of branched-chain amino acids 

increased at the end of the study (Fig. 6E). 

The well-known herbicide glyphosate inhibits aromatic amino acid biosynthesis. Recent 

studies have shown that ALS inhibitors and glyphosate share several physiological aspects in their 

modes of action (Orcaray et al., 2010; 2012), suggesting that there is a cross-regulation between 

the two biosynthetic pathways. Thus, it would be interesting to compare the effects on the 

percentage of aromatic amino acid content after the inhibition of branched-chain amino acid 

biosynthesis at different enzymatic points in the pathway. Fig. 6C and F show that the aromatic 

amino acid content was increased after the inhibition of ALS and KARI in both the leaves and 

roots.   

The effect of the herbicides on the content of quinate, a compound synthesised in a lateral 

branch of the shikimate pathway, was also monitored for seven days (Fig. 7). Only the addition of 

the ALS inhibitor induced a significant increase in the quinate content of the leaves of treated 

plants after 3 days. Although after 7 days of treatment, the quinate accumulation was significant in 

plants treated with CPCA or IM, this accumulation was more prominent after ALS inhibition than 

after KARI inhibition.  
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Discussion 

Because ALS inhibition was identified as the target of a number of successful herbicides, 

the search for new herbicides targeting other enzymes involved in branched-chain amino acid 

biosynthesis has emerged. These studies have produced inhibitors for almost every step in the 

pathway. However, the amounts of these inhibitors required to control weeds are significantly 

higher compared with ALS inhibitors, thereby diminishing their usefulness as commercial 

herbicides. In this study, the effects of the inhibition of KARI, the second common enzyme in the 

biosynthetic pathway, on carbon and nitrogen metabolism were compared with the effects induced 

following ALS inhibition. The observed differences could potentially reflect differences in the 

herbicide efficacy between KARI and ALS inhibitors.  

Although legume crops are tolerant to imazethapyr, the concentration of IM used in this 

study (20 mg active ingredient L-1) correspond to 100 times the recommended field application rate 

and was high enough to elicit ALS inhibition (45% inhibition after 1 day and near 100% after 3 

days) (Gaston et al., 2002). Furthermore, this treatment generates physiological effects similar to 

another ALS inhibitor, chlorsulfuron, to which the pea plant is susceptible (Zabalza et al., 2004; 

2005; Orcaray et al., 2010; 2011).  

The accumulation of acetolactate observed in this study confirmed that CPCA inhibited 

KARI, similar to the accumulation described in maize after Hoe 704 treatment (Schulz et al., 1988) 

and in Abutilon theophrasti after CPCA treatment (Gerwick et al., 1993). Both inhibitors caused 

plant death, growth inhibition and photosynthetic decline (Fig. 1, 2 and 3). Nevertheless, the three 

physiological effects occurred early under ALS inhibition than with KARI inhibition, in a dose-

dependent manner.  

While carbohydrate accumulation in the leaves and roots has been described as a general 

physiological effect of ALS inhibition (Zabalza et al., 2004), this study is the first to demonstrate 

that starch and soluble carbohydrates accumulated in the leaves (Fig. 4) and roots (Fig. 5) 

following CPCA treatment. The simultaneous analysis of the carbohydrate contents facilitated the 

evaluation of the effect on phloem transport. As proposed for ALS inhibitors, an increase in the 

sucrose and starch contents in sinks suggests that sucrose is transported from the leaves to the 
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roots at a higher rate than utilised in the sinks. Under these conditions, the sugar gradient required 

for long-distance transport is abolished; thus, phloem transport is inhibited, suggesting that the 

carbohydrate accumulation in the leaves of treated plants reflects a reduction in sink strength. The 

inhibition of carbon fixation was detected at 10 days after CPCA treatment (Fig. 3). As 

photosynthesis did not decline in the short term, it is reasonable to assume that the treated plants 

maintained sufficient photosynthetic carbon assimilation rates to accumulate carbohydrates in both 

sources and in sinks (Zabalza et al., 2004). 

KARI inhibition blocked plant growth, but this inhibition was not due to a lack of respiratory 

substrates, as carbohydrates accumulated in both sources and in sink organs. The growth arrest 

detected after the inhibition of amino acid biosynthesis suggests that metabolism was impaired, 

which does not facilitate the utilisation of the available carbohydrates at the expected rate.  

The net photosynthesis was reduced, and carbohydrates were accumulated in both the 

roots and leaves following ALS and KARI inhibition. Thus, it is reasonable to conclude that the 

modes of action of ALS and KARI inhibitors share these aspects. Moreover, other changes in 

carbon metabolism, such as the induction of ethanolic fermentation (Zabalza et al., 2005) and 

alternative oxidase (Gaston et al., 2003; Aubert et al., 1997), have been reported after both 

treatments. Taken together, these data suggest that plants treated with ALS or KARI inhibitors 

show a similarly altered carbon metabolism, in which the available carbohydrates are not 

consumed, and less efficient metabolic pathways are activated. 

Similar ratios of branched-chain and aromatic amino acids were observed after KARI and 

ALS inhibition. The increase in the percentage of aromatic amino acids after ALS inhibition (Fig. 6C 

and F) has been previously described (Orcaray et al., 2010).  

IM induced an increase in the free amino acid pool (Fig. 6), which is a well-known 

physiological effect of ALS inhibitors (Shaner and Raider, 1986; Anderson and Hibberd, 1985; 

Zabalza et al., 2006; Orcaray et al., 2010; Zabalza et al., 2011). Rhodes et al. (1987) proposed that 

this increased pool reflects an increase in protein turnover as a result of increased degradation and 

reduced synthesis rates. Indeed, although protein synthesis occurs after ALS inhibitor treatment, 

the amino-acid components of these proteins are typically not generated from newly incorporated 
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nitrogen (Zabalza et al., 2006), but are primarily scavenged through protein degradation. Similarly 

to ALS inhibitors, other herbicides that inhibit amino acid biosynthesis have been reported to 

increase the free amino acid pool. Amino acid accumulation has been shown in pea plants treated 

with lethal doses of glyphosate (Orcaray et al., 2010; 2012), and glufosinate, an inhibitor of 

glutamine synthase, increases protein degradation (to release free amino acids) (Cobb and Reade, 

2010). These data suggest the important role of this physiological effect on the lethality caused by 

these herbicides.  

Interestingly, the effects of ALS and KARI inhibitors on the amino acid content were 

different, as no significant changes were detected after KARI inhibition (Fig. 6A and D), suggesting 

that ALS inhibition induces a greater alteration of nitrogen metabolism than KARI inhibition. As free 

amino acid accumulation has been reported after treatment with either of the three types of amino 

acid biosynthesis-inhibiting herbicides (ALS inhibitors, glyphosate and glufosinate), it is reasonable 

to proposed that this physiological effect is a marker of herbicide efficacy.  

Quinate is a compound synthesised in a lateral branch of the shikimate pathway, occurring 

in relatively high concentrations in several types of tissues (Yoshida, 1975; Osipov and 

Aleksandrova, 1982; Albertini et al., 2006). Although its physiological role has not been completely 

clarified, quinate is considered as a reserve compound of the shikimate pathway. ALS inhibitors 

induce quinate accumulation in plant leaves (Orcaray et al., 2010). Moreover, exogenous quinate 

application had phytotoxic effects, showing that this plant metabolite induces the toxic effects of the 

herbicides; thereby, suggesting the importance of this metabolite in the mode of action of ALS 

inhibitors (Orcaray et al., 2010).  Quinate accumulation after KARI inhibition was detected later, 

and this accumulation was not as prominent as observed with ALS (Fig. 7). Thus, similarly to 

growth inhibition and photosynthetic decline, these physiological effects occurred earlier under ALS 

than under KARI inhibition.  

In this study, we used two different doses of the KARI inhibitor CPCA.  Plants treated with 

the highest dose (500 µM) of CPCA died, and several changes were more marked (rapid) than 

those produced in plants treated with a 200-µM dose. These changes include an earlier reduction 

in the net photosynthesis, the increased accumulation of acetolactate in the leaves and roots and 
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an increased glucose and sucrose accumulation in the leaves and roots, respectively, leading to 

the increased inhibition of plant growth. The metabolic changes induced through CPCA occurred in 

a dose-dependent manner. Furthermore, previous studies on whole plants or in cell culture have 

shown that the accumulation of acetolactate and acetoin (the product of the decarboxylation of 

acetolactate) is correlated with the phytotoxicity (Wittenbach et al., 1991), suggesting that these 

metabolic disorders are associated with lethality. Thus, plants treated with the highest inhibitor 

dose showed a more altered metabolism and died earlier than plants treated with the lowest dose. 

Although the response of plants treated with KARI inhibitors is similar to that described for 

ALS inhibitors (Wittenbach and Abell, 1999), the results presented in this study showed that 

several important differences can be detected. The two types of inhibitors show common effects on 

carbon metabolism, but only the ALS inhibitor induced an increase in the free amino acid content. 

Thus, the imbalance in the carbon/nitrogen metabolism induced after ALS inhibition is more 

phytotoxic than that induced after KARI inhibition, reflecting the differences in herbicidal efficacy.  

Studies on KARI and ALS inhibitors show that these two adjacent enzymes in the same 

pathway are not necessarily equal targets for herbicides. Several biochemical explanations have 

been proposed for the differences in herbicidal activity. First, the time required to achieve 

substantial inhibition through the application of IpOHA or Hoe704 in vitro is extremely long, which 

would considerably increase the time required for the inhibition of the target enzyme in vivo 

(Dumas et al., 1994). Second, a large excess of KARI in plants might disturb the effect of the 

inhibitors at the active site of the enzyme. Indeed, in barley, the level of KARI is 10 to 20-fold 

higher than the level of ALS (Durner et al., 1993). Third, ALS undergoes irreversible inhibition in 

vivo in response to inhibitor binding (Hawkes and Thomas, 1990; Durner et al., 1991), while KARI 

inhibitors do not show this irreversibility (Durner et al., 1993; Aulabaugh and Schloss, 1990). 

Moreover, the results presented in this study suggest that the increased metabolic alterations 

induced through ALS inhibitors contribute to the enhanced performance of these compounds as 

commercial herbicides.  
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Legends of Figures 

Fig. 1. Shoot length (A) and root length (B) in control pea plants or plants treated with imazethapyr 

or 200  and 500 µM CPCA supplied to the nutrient solution. Mean ± SE (n=8). The symbols 

indicate significant differences between the control and imazethapyr (^), 200 µM CPCA (*) or 500 

µM CPCA (#) treatments on the indicated days (p < 0.05). 

Fig. 2. Shoot (A) and root (B) acetolactate content in control pea plants or plants treated with 

imazethapyr or 200 µM or 500 µM CPCA supplied to the nutrient solution. Mean ± SE (n=4). The 

symbols indicate significant differences between the control and imazethapyr (^), 200 µM CPCA (*) 

or 500 µM CPCA (#) treatments on the indicated days (p < 0.05). 

Fig. 3. Net photosynthesis in control pea plants or plants treated with imazethapyr, 200 µM CPCA 

or 500 µM CPCA in the nutrient solution. The measurements were performed daily on the 

youngest fully expanded leaves. Mean ± SE (n=6). The symbols indicate significant differences 

between the control and imazethapyr (^), 200 µM CPCA (*) or 500 µM CPCA (#) treatments on the 

indicated days (p < 0.05). 

Fig. 4. The fructose (A), glucose (B), sucrose (C) and starch (D) contents in the leaves of control 

pea plants or plants treated with imazethapyr, 200 µM CPCA or 500 µM CPCA. Mean ± SE (n=4). 

The symbols indicate significant differences between the control and imazethapyr (^), 200 µM 

CPCA (*) or 500 µM CPCA (#) treatments on the indicated days  (p < 0.05). 

Fig. 5. The sucrose (A) and starch (B) contents in the roots of control pea plants or plants treated 

with imazethapyr, 200 or 500 µM CPCA supplied to the nutrient solution. Mean ± SE (n=4). The 

symbols indicate significant differences between the control and imazethapyr (^), 200 µM CPCA (*) 

or 500 µM CPCA (#) treatments on the indicated days (p < 0.05). 

Fig. 6. Total free amino acid contents in the leaves (A) and roots (D) and the percentages of 

selected amino acids with respect to the total free amino acid contents in the leaves (B and C) and 

roots (E and F) of control pea plants or plants treated with imazethapyr, 200 µM CPCA or 500 µM 

CPCA. B and E: branched-chain amino acids; C and F: aromatic amino acids. Mean ± SE (n=4). 
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The symbols indicate significant differences between the control and imazethapyr (^), 200 µM 

CPCA (*) or 500 µM CPCA (#) treatments on the indicated days  (p < 0.05).  

Fig. 7. Quinate content in the leaves of control pea plants or plants treated with imazethapyr, 200 

or 500 µM CPCA supplied to the nutrient solution. Mean ± SE (n=4). The symbols indicate 

significant differences between the control and imazethapyr (^), 200 µM CPCA (*) or 500 µM 

CPCA (#) treatments on the indicated days (p < 0.05). 
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