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ABSTRACT 

In this research work, a study on the mechanical properties of isothermal forging for 

connecting rods is made from previously ECAP (Equal Channel Angular Pressing)-

processed AA1050 and AA5083 aluminium alloys. This severe plastic deformation 

(SPD) process is used in order to achieve a starting material with a submicrometric 

structure, thus improving the mechanical properties of the part. In this study, the design 

and the experimentation process is shown, where this involves the design stage by 

finite element simulations, the experimental tests and the use of metallographic 

techniques for the required properties to be analysed. It is observed that there is an 

improvement in the mechanical properties when the starting material is ECAP-

processed before carrying out the isothermal forging. This improvement consists in an 
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increase of 20 % in the hardness of the final connecting rod which also possesses a 

microstructure grain size of 500 nm. To come to these conclusions, the results 

obtained with the connecting rods manufactured by isothermal forging from previously 

ECAP-processed material are compared with those conventionally manufactured. 

Therefore, the feasibility and the advantages of the industrial manufacturing of 

mechanical components by isothermal forging from ECAP-processed material are 

demonstrated here as mechanical properties are achieved, as well as a better flow of 

the material and at a lower forging temperature. In the existing bibliography, there are 

no research works dealing with the manufacturing of connecting rods from ultra-fine 

grained material and that is the reason why this present study is considered to be of 

scientific and technological interest, and therefore, it may be considered to be at the 

frontline of current knowledge. 

 

Keywords: Isothermal Forging, FEM, ECAP, SPD 

 

 

1. Introduction 

The Equal Channel Angular Pressing (ECAP) process was first proposed by Segal et 

al. [1] in 1972 in the former Soviet Union in order to obtain ultra-fine grained materials 

by severe plastic deformation (SPD). Nevertheless, it is over these past few years 

when a great deal of scientific and technological interest has come about from the 

development and application of these materials. It consists in a discontinuous severe 

plastic deformation process in which a material is extruded through a die with two 

channels of the same cross-section that intersect at an angle between 80º and 135º. 

The material may be processed several times in order to accumulate a higher plastic 

strain value inside it [2]. In comparison with other severe plastic deformation 

processes, this process is the one which introduces the most homogeneous strain 

values and allows parts with higher size to be processed [3]. Over the last decade, the 

ECAP process has become a manufacturing process of ultrafine grain size metals and 

alloys used to improve their mechanical properties. In spite of the great interest in 

these materials, few elaborations exist that attempt to exploit these above-mentioned 

advantages. 

Although the number of research works which analyse the ECAP properties over the 

materials thus-processed is numerous, the number of practical applications of these 

materials is scant. As examples of manufactured parts, it is interesting to mention the 

research work by Luis et al. [4], in which the design and subsequent manufacturing of 

rings are carried out from ECAP ultra-fine grained material. The manufacturing of these 

is designed by means of finite element simulations with two forging strokes or stages 

and both the mechanical properties and the microstructure are studied. A comparison 

is made between the results obtained at different forging temperatures [4]. Puertas et 

al. [5] study the design of a Francis turbine blade from ECAP-processed AA1050 and 



3 

then subjected to isothermal forging. It is observed that there is a noticeable 

improvement in the mechanical properties as a consequence of the submicrometric 

structure gained by ECAP and which allows parts with better mechanical properties to 

be manufactured from ultra-fine grained material. 

In the existing bibliography, several research works related to the design, analysis and 

manufacturing of connecting rods are found. Nevertheless, none of them is related to 

the manufacturing of this mechanical component from ultra-fine grained material, as 

has been proposed as an innovation in this present research work. 

Finite element studies have been improved more and more with the passing of the 

years. In the one by Takemasu et al. [6], the objective is to design the forging process 

of a connecting rod with no flash in order to save costs. To this end, it is necessary to 

finely control the volume and geometry of the preform in order to avoid both the flash 

appearance and the incomplete die filling. The optimization of this process is carried 

out by finite element simulations and the authors divide the preform into three different 

parts which are separately simulated. As a further advancement to this research work, 

Vazquez and Altan [7] make a design for hot forging of connecting rods by finite 

element with the aim of saving material costs as the amount of flash is reduced. They 

also make a comparison between these results and other results experimentally 

obtained. The die and preform design is iterative in order to reach a part with no flash 

which is the best adjusted to the final geometry. The results obtained achieve a flash 

saving of between 20 % to 40 %, in relation to conventional forging, where the final 

flash percentage is 5 % with respect to the part. 

As is the case for this present study, most of the existing research works use the finite 

element analysis as a tool for the forging design. There are research works such as 

that by Grass et al. [8] in which the thermo-mechanical manufacturing process of a 

connecting rod is analysed by FEM, where it is composed of several rolling and forging 

stages. In this study, it is observed that the precision of the FEM simulations is very 

high if it is compared to the experimental tests. Moreover, it is seen that it is possible to 

study the material flow by following several points throughout the simulation. In another 

FEM study by Grass et al. [9], these authors study not only the temperature influence 

on the strain introduced in the material but also the grain size prediction during the 

forming process at temperature with the help of recrystallization models defined. The 

results are very similar in comparison to those experimentally obtained. 

There are other studies in which finite element method is used in order to evaluate the 

viability of other methods for manufacturing parts [10]. Furthermore, it is very important 

to accurately predict springback when working with sheet metal [11]. In the research by 

Yin et al. [12], these authors study the forging process of an aluminium connecting rod 
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for an air compressor. They substitute the manufacturing process by casting or hot 

forging for a liquid die forging, thus avoiding the appearance of defects produced by 

pores or non-metallic inclusions. Thanks to this manufacturing process, the product 

quality is improved and it is observed that this plastic forming technique is very useful. 

The research work by Wang and He [13] reviews the developments that have been 

applied to the manufacturing of connecting rods. These are based on the addition of a 

central feeding system for the billet and a temperature control system, the use of 3D 

CAD/CAM tools so as to optimise the rolling and transversal rolling processes, the 

improvement in accuracy thanks to better equipment such as hydraulic presses and 

transversal rolling machinery and an improvement in quality due to the use of dies 

which allows trimming, punching and calibrating operations to be combined. Along this 

line, it is also very important to model and to simulate the shaping/forming machinery 

and equipment, above all in relation to its dynamic behaviour [14]. There also exist 

studies related to the forging of connecting rods from dust material such as the one by 

Qiu et al. [15]. The starting material is metallic dust from a Ti-1.5Fe-2.25Mo (wt. %) 

alloy and FEM simulations are employed to analyse the process. It is observed that the 

mechanical strength at the end of the piston rivet of the part is the lowest, whereas it is 

homogeneous for the rest. 

The use of finite element modelling is not only related to the process design but to the 

study of the material behaviour as is the case of the research work by Chen et al. [16], 

in which the mechanical properties of a connecting rod are intended to be improved by 

a modification to the manufacturing process which consists in changing the liquid used 

for quenching the part. Oil is changed into aqueous polymer or water. These authors 

compare the results obtained from the connecting rods quenched in the new fluid with 

the original ones and it is observed that that the mechanical properties are better and 

no cracks appear. Finite element analysis is used so as to simulate the quenching 

process and it is found that there is a good correlation between the results simulated 

and those experimentally obtained. Another study on the behaviour of a material is that 

by Khare et al. [17], where the causes for the cracks that occur are studied by finite 

element simulations in the case of the connecting rods for a gasoline engine. Once the 

critical zones of the part are analysed, a redesign is made in order to avoid the 

connecting rod failure to fatigue. This new redesign is also analysed by finite element 

and it is experimentally validated in order to check the reliability of the FEM 

simulations, which are in good agreement with experimental results. 

In a preliminary research to this present study, Luri et al. [18] shows the design process 

of a set of forging dies to manufacture a connecting rod from ultra-fine grained material. 
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The forging process is designed with two strokes and is simulated both by finite volume 

and finite element modelling in the case of an AA5083 aluminium alloy. 

As was previously mentioned, in this present study connecting rods are manufactured 

from nanostructured starting material. In order to achieve this submicrometric structure, 

the material is previously ECAP-processed. 

In the existing bibliography, there are numerous and different studies on the ECAP 

process, depending on the type of metal or alloy employed. Some of these research 

works are outlined below, where they are focused on the parameters which influence 

the mechanical properties and on the microstructure of the material, such as the 

number of passages, the ECAP route employed and the intersection angle. 

In relation to the ECAP processing, there are several research studies in which 

compression tests are performed in order to add a new variable for improvement in the 

mechanical properties. 

Another of the important parameters to be analysed is the number of ECAP passages 

the billet is subjected to. In the study by Alhajeri et al. [19], AA1050 billets are ECAP-

processed at room temperature up to six passages in order to analyse the mechanical 

properties of the material by means of taking microhardness measurements along the 

longitudinal and transversal axes. It is observed that after the first ECAP passage, the 

increase in strain is the highest in relation to the others. The highest strain value is 

located at the centre after the first passage but when the number of ECAP passages is 

increased, the strain distribution becomes more homogeneous. 

One of the most important aspects to be taken into consideration in relation to the 

microstructure of ECAP-processed materials is the heat treatment that these materials 

are subjected to. In the research work by Luis et al. [20], an improvement both in the 

mechanical properties and in the grain size is observed in the case of a previously 

ECAP-processed AA1050 which is subjected to a subsequent heat treatment. These 

authors applied a heat treatment at 300 ºC during 5 h which produces recrystallization 

and thus leads to a significant improvement in the ductility of the material processed in 

relation to the starting material. 

 

2. Optimization of the die design 

This section deals with the way the design of the isothermal forging for the connecting 

rod is carried out. A great deal of research has been carried out over the past few 

years in the field of engineering design, thus leading to different design processes and 

methodologies [21]. In addition, it is very interesting to utilise complementary design 

tools at an early stage of the design process, such as the finite element method [22]. 
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In order to manufacture the part by isothermal forging, a previous design of both the 

starting billet and the forging dies needs to be carried out in order to be capable of 

knowing in advance if the forging is correctly performed and within the hydraulic press 

capacity used in this study, which is 3000 kN. 

To obtain an optimum design (see Figure 1), it is necessary to carry out a process 

which involves several iterations. A first design of the die and the starting billet is taken 

as the basis. Subsequently, finite volume simulations with the Simufact Forming 12TM 

software are performed in order to analyse the processing force, the flow of the 

material and the correct filling of the die. If any of these factors is deficient, a new 

design for the initial billet is made either by increasing the material volume in those 

zones where the cavity is not properly filled or decreasing the material volume if the 

flash is excessive, which causes a significant increase in the processing force. It should 

be taken into account that the starting billet has fixed maximum dimensions with a 

diameter of 18 mm and a length of 80 mm. Therefore, the dimensions of the connecting 

rod have to be in line with the available material volume due to the limitations of the 

ECAP press in use at the Public University of Navarre. After several redesigns with 

which the forging process is refined, the final part is obtained fulfilling the established 

requirements. 

 

 

Figure 1. Flow diagram for the optimization process 
 

Figures 2 (a) to 2 (h) show different cases in which the requirements established for a 

correct design of both the die and the starting billet are not fulfilled. 

 

 

CAD DESIGN 

FEM SIMULATIONS 

DIE MANUFACTURE 

YES NO 
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Are the conditions accomplished? 

conditions 

Dies 

Preform 

Fmax = 3000 kN 

Dies are filled correctly 
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a) Unfilled preform die 
b) Stroke-load curve for an unfilled 

preform die 

  

c) Overfilled preform die 
d) Stroke-load curve for a overfilled 

preform die 

  

e) Unfilled final die 
f) Stroke-load curve for an unfilled final 

die 

  

g) Overfilled final die 
h) Stroke-load curve for an overfilled final 

die 
Figure 2. Different failures in FEM models 

 

If the designs corresponding to the preform forging are analysed, it may be observed in 

Figure 2 (a) that the die filling is not sufficient. As one of the two conditions established 

for the correct die design (Figure 1) is not fulfilled, the dimensions of both the preform 

and the forging die are redesigned. Figure 2 (b) shows the load-stroke curve of the 
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process, where it is observed that the forging force has a value within the capacity of 

the hydraulic press. Figure 2 (c) shows the complete filling of the die but nevertheless, 

when Figure 2 (d) is analysed, it is observed that the force required exceeds the limit of 

3000 kN for the hydraulic press and therefore, it is necessary to make a new redesign. 

Once the optimum design is achieved, the second forging stroke, with which the final 

connecting rod is manufactured, starts to be analysed. 

Figure 2 (e) shows an example of simulation where the die cavity is not completely 

filled. This case does not fulfil the second requirement either, as the maximum press 

force is exceeded, as can be observed in Figure 2 (f). Therefore, a new redesign of the 

final forging die is needed. Figure 2 (g) shows a complete die filling but however, the 

amount of flash required is too high. This leads to an increase in the force required to 

carry out the second stroke, which can be observed in Figure 2 (h), where it is shown 

that the force required for this final stroke is higher than 5000 kN. 

After several iterations for the design process, the adequate preform and forging dies 

are obtained in order to carry out the experimental tests (see Figure 3). 

 

 

 

a) Final design for the bottom die b) Set of the dies with the preform 
Figure 3. Design of the dies from finite elements analysis 

 

The meshing of both the die and the preform is automatically performed. Initially, nearly 

11000 elements are used for the first forging stroke (see Figure 4 (a)) and nearly 40000 

elements for the second forging stroke (see Figure 4 (b)). The elements used here are 

tetrahedral with four integration points and an edge size of 1 mm. 

 

  
a) Initial billet mesh b) Preform mesh 
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Figure 4. Finite element meshing of the initial billet and the preform 
 

Finite volume simulations are carried out with a flow rule for AA5083 nanostructured 

after two ECAP passages [23]. In this case, there is no problem in performing the 

isothermal forging as the equipment for the experimental tests to be carried out allows 

a maximum force of 3000 kN. 

In order to be able to obtain the damage results for the material, the Cockroft-Latham’s 

damage criterion has been selected. Once the pre-processing steps have been shown, 

the results obtained in the case of the strain and the damage values are shown for 

each of the two forging strokes. 

In the case of the first stroke (see Figure 5), a connecting rod preform is obtained and 

subsequently, this is subjected to a second stroke so as to achieve the final shape. The 

processing force, the plastic strain and the damage value are studied, where Figure 5 

shows the strain and damage results after the first stroke. 

 

  
a) Total equivalent plastic strain b) Damage 

Figure 5. Total equivalent plastic strain and damage results 
 

It may be observed from the strain results shown in Figure 5 (a) that the distribution is 

rather homogeneous throughout the part, where the central part is that with the lowest 

strain value. Figure 5 (b) shows the zones with the highest damage values, which are 

the internal edges of the two heads, whereas the zone with the lowest damage value is 

the internal one. 

In the second stroke shown in Figure 6, the final shape is obtained for the one-piece 

connecting rod. Taking the strain value accumulated by the preform in the first stroke 

into account, the results for the plastic strain are shown in this previous figure. 
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Figure 6. Total equivalent plastic strain 

 

It is observed in the final connecting rod that the strain value is very homogeneous 

throughout the part. The central zone is the one with the lowest strain variation and the 

zones close to the two holes are those with the highest strain values. Nevertheless, the 

difference between the values of both zones is around 10 %. 

 

3. Experimental set-up 

Once the design process of the dies and the preform for obtaining a nanostructured 

single-piece connecting rod has been shown, its manufacturing is now tackled by a 

series of planned experimental tests in order to analyse the improvements which may 

be involved in the methodology proposed. As was previously mentioned, at present, 

there are no studies which show the manufacturing of connecting rods from ultra-fine 

grained material and therefore, this present research work is concerned with the 

development of connecting rods by means of an isothermal forging starting from 

ECAP-nanostructured AA1050 and AA5083 aluminium alloys. 

This section shows the experimental design in order to carry out the study on the 

forging of a single-piece nanostructured connecting rod both from ultra-fine grained 

material and non-ultra-fine grained material. The main aim of this study is to analyse 

the differences obtained in the mechanical properties between the connecting rod 

forged both from annealed material and from ECAP ultra-fine grained material. In 

addition, the influence of the forging temperature is also studied. 

 

Attainment of the material 

The starting material consists of cylindrical aluminium billets with a diameter of 20 mm 

and a length of 120 mm, as is shown in Figure 4 (a). The initial processing of the 

material consists in performing two ECAP passages with route C, with which the billet 

is rotated 180º in each passage. 

The forging of the connecting rod is carried out in two stages. The first stroke allows a 

plane preform with no holes and ribs to be obtained, whereas the final part is obtained 
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with the second stroke. Figure 7 (a) shows the connecting rod bottom die attached to 

the hydraulic press and Figure 7 (b) shows the starting billet set on the preform cavity. 

In order to save an additional forging stage, the ECAP-processed cylindrical billets are 

machined by a CNC lathe with the aim of reaching the previously designed dimensions 

for the preform. 

 

 

The forging is carried out at 30 mm/min. The dies are previously heated at the required 

temperature and once they reach that temperature value, the billet is placed on the die 

with a five-minute wait for the part to be at the same temperature as the forging dies. At 

this moment, the first stroke is performed over the billet (see Figure 7 (c)). 

Subsequently, the preform is placed on the die cavity which belongs to the final design 

of the connecting rod to be forged and the second and definitive stroke is performed by 

isothermal forging. Figure 7 (d) shows the final connecting rod forged. 

The different experimental tests carried out are shown below in order to study both the 

forgeability and the mechanical properties of the connecting rod designed which is 

manufactured from AA1050 and AA5083. 

  
a) Bottom die b) Billet on the bottom die 

  
c) Preform after the 1st forging stage d) Connecting rod 

Figure 7. Connecting rod dies 



12 

In both material cases, the starting material is in the two states: N0 (annealed material) 

and N2 (ECAP ultra-fine grained material twice with route C). In the case of AA1050, 

four isothermal forging temperatures are taken for N0 and N2: 25 ºC, 75 ºC, 125 ºC 

and 175 ºC. Nevertheless, in the case of AA5083, the forging temperature values are 

higher since this is an alloy with a higher hardness than AA1050. Therefore, the forging 

temperature values selected for N0 and N2 are as follows: 200 ºC, 250 ºC and 300 ºC. 

In order to analyse the material mechanical properties, microhardness measurements 

are taken on each of the connecting rods forged. The experimental conditions for the 

microhardness tests (as regulated in the ISO 6507-1:2005 norm [24]) are as follows: a 

first time of 4 s for the approach, a load of 300 g is applied during 10 s and a final time 

of 4 s for the withdrawal of the penetrator. However, before taking the measurements, it 

is necessary to prepare the samples to be studied. To this end, each of the selected 

samples is embedded in resin and then it is subjected to a metallographic polishing. 

With the aim of achieving a mirror-like polished surface, several polishing stages with 

different sandpapers ranging from P600 to P2500 are needed. Subsequently, two final 

polishing stages with diamond suspensions of 1 m and 3 m, respectively, are carried 

out. Later on, the microhardness measurements are taken on each of the zones of the 

samples. Starting from the strain pattern observed with the FEM simulations shown in 

Figure 6, the five zones of the connecting rod forged shown in Figure 8 are selected to 

be studied. 

 

 

Figure 8. Microhardness zones 
 

Taking the distribution into account, four measurements are taken at each of the zones 

since the strain pattern is rather homogeneous. 

To complete the analysis of the mechanical properties, optical and SEM micrographs 

are also taken in order to be capable of observing the size and the distribution of the 

microstructure grains in detail, where its grain size reaches a value lower than 1 m, as 

is shown in Figure 8. 
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5. Discussion of results 

After having shown the process design by finite element simulations, the experimental 

tests to be carried out and the analysis of the mechanical properties, this present 

section outlines the most important results obtained from the forging process. 

When comparing the preform and the final connecting rod obtained by FEM and those 

experimentally obtained, it may be concluded that the predictions from the simulations 

are good, as can be observed in Figures 9 and 10. It may be observed that the small 

head has a higher amount of flash, whereas the design for the big head to be filled is 

very tight and as a consequence of this, there is very little amount of flash. It happens 

that at lower forging temperature values, the material does not fill the part completely. It 

is intended to optimise both the material flow and the processing force as much as 

possible in order to avoid an excessive amount of flash and to achieve a correct filling 

of the die cavity. 

 

  

a) FEM preform b) Experimental preform 
Figure 9. Preform 

  

a) FEM connecting rod b) Experimental connecting rod 
Figure 10. Connecting rod 

 

Forging force 

In order to analyse the forging force, load-stroke curves are plotted for each of the two 

strokes required to forge the connecting rod. With the help of a computer connected 

with the press, force and displacement data are measured and then treated in order to 

obtain the above-mentioned curves. 
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a) N0 preform and N0 connecting rod b) N2 preform and N2 connecting rod 

 

 
c) N0 preform and N2 preform 

 
Figure 11. Load-stroke curves for AA1050 

 

Figure 11 (a) shows the load-stroke curves corresponding to the first and to the second 

strokes which are required to manufacture the connecting rod from AA1050 N0 state. 

As is observed in Figure 11 (b), the limit force of 2000 kN is reached more quickly for 

the second stroke. This is due to the fact that the material accumulates a higher strain 

value in the preform rather than in the starting material. Figure 11 (c) shows that the 

ultra-fine grained material with two ECAP passages requires a higher force level than 

the one which is not nanostructured. This is also due to the strain value accumulated in 

the ECAP process. For example, for a displacement of 6 mm, the force required up to 

that moment in the case of the non-nanostructured billet is 65 kN, whereas in the case 

of that nanostructured with two ECAP passages, it is 165 kN. 

 

Microhardness 

Table 1 shows the microhardness measurements taken from all the connecting rod 

cases under consideration. As well as the values obtained, the part zones where these 

measurements are taken are shown in this table. Moreover, the microhardness mean 

value for each zone is shown as well as the standard deviation values, which enables 

the variability in the results to be analysed. 
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Three strain measurements are taken from each of the zones shown in Figure 8 and 

the mean and the standard deviation values of these are calculated. The reason why 

three measurements are selected per each zone is due to the strain homogeneity that 

is observed in the results from the FEM simulations. 

 

Table 1. Microhardness values (expressed in terms of Vickers Hardness number - HV) 
of AA1050 and AA5083 connecting rods 

AA1050 N0 Trt 
 

AA1050 N2 Trt 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 
 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

44.5 44.3 39.2 46.6 47.0 
 

53.4 50.0 47.6 50.3 54.4 

42.3 44.1 39.1 45.7 42.6 
 

51.8 52.4 51.5 50.9 50.3 

45.2 45.4 39.5 45.8 47.1 
 

50.8 51.6 49.3 50.9 53.4 

44.00 44.60 39.27 46.03 45.57 
 

52.00 51.33 49.47 50.70 52.70 

1.51 0.70 0.21 0.49 2.57  1.31 1.22 1.96 0.35 2.14 

MEAN: 43.89 SD: 2.77 
  

MEAN: 51.24 SD: 1.73  

           

AA1050 N0 T75 
 

AA1050 N2 T75 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 
 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

44.0 44.8 38.1 43.6 45.2 
 

49.5 48.6 47.7 49.8 48.4 

44.1 45.0 38.1 43.0 44.8 
 

48.2 48.6 47.1 47.3 49.0 

40.8 44.8 39.1 43.4 43.3 
 

47.3 48.9 48.4 48.5 50.2 

42.97 44.87 38.43 43.33 44.43  48.33 48.70 47.73 48.53 49.20 

1.88 0.12 0.58 0.31 1.00  1.11 0.17 0.65 1.25 0.92 

MEAN: 42.81 SD: 2.52 
  

MEAN: 48.50 SD: 0.91  

       

AA1050 N0 T125 
 

AA1050 N2 T125 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 
 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

40.0 46.1 36.0 41.2 41.9 
 

47.4 47.3 47.6 48.8 47.4 

40.8 45.2 36.8 41.7 42.5 
 

45.0 46.8 48.9 48.5 49.1 

41.9 45.5 36.6 41.5 42.8 
 

44.9 45.1 48.5 48.1 45.8 

40.90 45.60 36.47 41.47 42.40  45.77 46.40 48.33 48.47 47.43 

0.95 0.46 0.42 0.25 0.46  1.42 1.15 0.67 0.35 1.65 

MEAN: 41.37 SD: 3.08 
  

MEAN: 47.28 SD: 1.47  

      
     

AA1050 N0 T175 
 

AA1050 N2 T175 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 
 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

44.2 39.8 36.7 40.1 43.9 
 

45.0 48.1 45.6 47.8 45.4 

42.8 40.0 36.8 40.2 45.7 
 

46.4 47.5 45.8 47.4 45.6 

42.5 40.2 36.9 40.3 42.6 
 

46.7 47.3 48.7 47.0 46.0 

43.17 40.00 36.80 40.20 44.07  46.03 47.63 46.70 47.40 45.67 

0.91 0.20 0.10 0.10 1.56  0.91 0.42 1.73 0.40 0.31 

MEAN: 40.85 SD: 2.76 
  

MEAN: 46.69 SD: 1.11  

      
     

AA5083 N0 T200 
 

AA5083 N2 T200 
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Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 
 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

115.8 108.7 112.6 119.0 108.7 
 

135.6 132.7 128.9 134.9 131.5 

111.9 106.1 115.8 116.8 111.2 
 

128.8 135.0 131.6 130.7 128.8 

113.3 113.7 116.8 114.2 109.9 
 

130.0 136.6 131.7 136.3 127.5 

113.7 109.5 115.1 116.7 109.9  131.5 134.8 130.7 134.0 129.3 

1.98 3.86 2.19 2.40 1.25  3.63 1.96 1.59 2.91 2.04 

MEAN: 112.97 SD: 3.60 
  

MEAN: 132.04 SD: 3.01  

       

AA5083 N0 T250 
 

AA5083 N2 T250 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 
 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

99.2 100.6 96.3 105.6 96.9 
 

112.7 111.5 108.9 111.8 111.3 

101.4 103.9 100.8 99.1 95.0 
 

112.6 110.2 109.1 109.9 111.8 

103.4 99.6 100.9 103.1 99.2 
 

113.2 110.8 108.3 110.2 108.4 

101.3 101.3 99.3 102.7 97  112.8 110.8 108.8 110.6 110.5 

2.10 2.25 2.63 3.07 2.10  0.32 0.65 0.42 1.02 1.84 

MEAN: 100.36 SD: 2.92 
  

MEAN: 110.71 SD: 1.59  

      
     

AA5083 N0 T300 
 

AA5083 N2 T300 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 
 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

93.5 90.3 90.8 90.2 90.5 
 

93.4 94.6 94.0 94.1 94.3 

92.4 92.2 91.8 90.9 90.6 
 

94.9 94.9 93.5 94.3 94.2 

92.4 87.8 91.5 89.6 89.3 
 

94.3 93.8 93.1 95.1 94.4 

92.8 90.1 91.4 90.2 90.1  94.2 94.4 93.5 94.5 94.3 

0.64 2.21 0.51 0.65 0.72  0.75 0.57 0.45 0.53 0.10 

MEAN: 90.92 SD: 1.44 
  

MEAN: 94.19 SD: 0.57  

 

In the results obtained in the finite element simulations (see Figures 12 (a) to 12 (h)), it 

may be observed that the zones where there is a higher plastic strain value are zones 

2 and 4, as occurs in the experimental tests. Nevertheless, it may be appreciated that 

the strain value varies very little in each test, where this variation is lower than that 

obtained in the experimental tests. On the other hand, it is possible to appreciate that 

the strain value is higher in the connecting rods simulated with an AA1050 flow rule 

with two ECAP passages and route C rather than in the case of the non-nanostructured 

AA1050. 

 

 
 

a) Connecting rod forged at 25 ºC from b) Connecting rod forged at 75 ºC from 
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AA1050 in N0 state AA1050 in N0 state 

  
c) Connecting rod forged at 125 ºC from 

AA1050 in N0 state 
d) Connecting rod forged at 175 ºC from 

AA1050 in N0 state 

  

e) Connecting rod forged at 25 ºC from 
AA1050 in N2 state 

f) Connecting rod forged at 75 ºC from 
AA1050 in N2 state 

  
g) Connecting rod forged at 125 ºC from 

AA1050 in N2 state 
h) Connecting rod forged at 175 ºC from 

AA1050 in N2 state 
Figure 12. Strain values obtained in the simulations for the AA1050 connecting rod 

 

Figure 13 shows the microhardness mean values for each connecting rod zone and for 

each forging temperature. These results belong to the connecting rod with the AA1050 

starting material in N0 state. It is observed in each of the four curves for the different 

temperature values that the zone with the lowest hardness value is the central zone 

and the zones close to the holes are those with the highest hardness values. The 

results obtained correspond to those observed in the finite element simulations. It is 

observed, as expected, that hardness decreases as the forging temperature is 

increased, except in the case of the curve for the forging at 175 ºC. This may be due to 

the fact that all the values are very similar and they are found within the measuring 

variability. 
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Figure 13. Microhardness for AA1050 in N0 state 
 

Figure 14 plots the same curves as those shown in Figure 13 but in this case for the 

connecting rod with the AA1050 starting material which is ECAP-processed twice. In 

the case of the curves at 25 ºC and 75 ºC, the zones with the highest strain values are 

those close to the holes, where the central zone is the one which has the lowest strain 

value. However, at 125 ºC and 175 ºC, this behaviour pattern is not observed, where 

this may occur because of the anisotropy which has the initial billet ECAP-processed 

twice [25]. Depending on how the initial billet is placed in the forging die, the plastic 

strain inside this is distributed in a different manner during the forging process. 

 

 

Figure 14. Microhardness for AA1050 in N2 state 
 

Figures 15 and 16 show the microhardness results obtained for AA5083. As occurs in 

the case of the AA1050, there are differences observed in the results corresponding to 

AA5083 microhardness in N0 and N2 states. The microhardness values obtained in the 

case of AA5083 in N0 state are shown in Figure 15. The highest microhardness values 

are obtained in the case of the connecting rod forged at 200 ºC, where the difference 

observed for microhardness is 20 % in relation to the connecting rod forged at 300 ºC. 
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Figure 15. Microhardness for AA5083 in N0 state 
 

Figure 16 shows the microhardness values obtained for the connecting rods forged 

from ECAP ultra-fine grained material (N2). The increase in hardness is significant and 

it is 15 % in relation to the non-ultra-fine grained material. The highest microhardness 

values are reached in the case of the isothermal forging at 200 ºC, where there is a 

decrease in the mean value of about 30 % in relation to the forging process at 300 ºC. 

 

 

Figure 16. Microhardness for AA5083 in N2 state 
 

Once the results obtained for each study case have been analysed, Figure 17 shows a 

comparison for the microhardness mean values between the connecting rods with N0 

and N2 as starting materials. Figure 17 (a) clearly shows that hardness is about 20 % 

higher in the case of the AA1050 connecting rods with the N2 state and therefore, there 

exists a significant improvement in the mechanical properties starting from a previously 

ultra-fine grained material. In addition, the variability in the data is higher in the case of 

the microhardness measurements taken from the ECAP-processed material, where 

this may be caused by the anisotropy which the material presents. The same effect 

may be observed in Figure 17 (b) for the case of AA5083, with the only difference 
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being that at a temperature of 300 ºC, the microhardness values are practically the 

same due to the fact that grain growth occurs. 

 

  
a) AA1050 b) AA5083 

Figure 17. Microhardness values for N0 and N2 

 

Moreover, Figure 18 shows four optical micrographs with regard to the N0 and N2 

states of the two aluminium alloys under consideration in this present research work 

(AA1050 and AA5083). In relation to their grain size value, it may be observed that 

AA1050 has a grain size value higher than AA5083 both for N0 and N2 states. This 

means that AA1050 is a softer aluminium alloy in comparison with AA5083, as may be 

observed from the microhardness values obtained after the forging process for the 

manufactured connecting rods. If the two starting states for each aluminium alloy are 

compared, it may be observed that the microstructure of the ECAP-processed 

materials presents deformation bands inside the grains, which leads to a harder 

material and thus with a higher value of mechanical strength, as the microhardness 

measurements reveal. 

 

  

a) AA1050 N0 b) AA1050 N2 
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c) AA5083 N0 d) AA5083 N2 
Figure 18. Optical micrographs for AA1050 and AA5083 in N0 and N2 states 

 

Two optical micrographs for different forging cases and taken from zone 3 are shown in 

Figure 19. Figure 19 (a) corresponds to the connecting rod forged at 25 ºC from non-

ultra-fine grained material, whereas in the case of Figure 19 (b), the starting material is 

previously ECAP-nanostructured. It may be observed that in the case of Figure 19 (a) 

the grain distribution is more uniform and equiaxial. Nevertheless, in the case of Figure 

19 (b), grains are deformed and the shape has become elliptical, where the major axis 

of these is aligned in the same direction. This is because of the two previous ECAP 

passages that the material undergoes before being forged. 

 

  

a) Connecting rod forged at 25 ºC from 
AA1050 in N0 state (zone 3) 

b) Connecting rod forged at 25 ºC from 
AA1050 in N2 state (zone 3) 

Figure 19. Optical micrographs 
 

In order to complete this present research work, SEM micrographs are taken from the 

connecting rods with ultra-fine grained material so that it is possible to clearly observe 

the grain size and its distribution throughout the microstructure. A uniform distribution 

of grain is observed in Figures 20 (a) and (b) with nanometric grain size values. It may 

be observed that there are grains with a size lower than 500 nm. Grains with a lower 

size than those at 25 ºC may be observed in Figure 20 (c), where these seem to be 

located inside a former grain, thus signifying that the material is recrystallized. Figure 
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20 (d) shows a very similar situation where the material also seems to have undergone 

a recrystallization process. 

 

  

a) Connecting rod forged at 25 ºC from 
AA1050 in N2 state (zone 3 at 10000x) 

b) Connecting rod forged at 25 ºC from 
AA1050 in N2 state (zone 3 at 25000x) 

  
c) Connecting rod forged at 125 ºC from 
AA1050 in N2 state (zone 3 at 25000x) 

d) Connecting rod forged at 175 ºC from 
AA1050 in N2 state (zone 3 at 25000x) 

Figure 20. SEM micrographs 

 

6. Conclusions 

In this present research work, forging of single-piece connecting rods from AA1050 and 

AA5083 previously ECAP-nanostructured is studied by finite element simulations and 

experimental tests. The results obtained by FEM are in good agreement with reality. 

Both mechanical properties and microstructure from the connecting rods manufactured 

are studied by microhardness tests along with optical and SEM microscopy. 

In spite of the fact that the material under study (AA1050) presents a low level of strain 

hardening, a significant improvement in hardness is obtained in the case of the 

connecting rods manufactured from ultra-fine grained material. The increase in 

hardness is about 20 %. 
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The manufacturing of connecting rods from ultra-fine grained material at room 

temperature is achieved with a good filling of the die cavity in the case of AA1050. In 

addition, forging tests are carried out at different temperature values (25 ºC, 75 ºC, 125 

ºC and 175 ºC), where it is found that a lower hardness value takes place when forging 

temperature increases. It is observed by scanning electron microscopy that at 175 ºC, 

dynamic recrystallization starts to take place in the case of the previously ECAP-

processed billets. 

Furthermore, connecting rods are manufactured from nanostructured AA5083. In the 

same way as with AA1050, connecting rods are experimentally forged (at 200 ºC, 250 

ºC and 300 ºC) and microhardness measurements are taken in order to analyse the 

mechanical properties of the material. 

Finally, it may be concluded that this present research work presents an efficient way 

of obtaining mechanical components with high resistance, specifically in those 

aluminium alloys, such as AA1050, which have a low value of strain hardening. 
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